Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Потенциал электрического поля в бесконечности условно принят равным нулю

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 7.6.2024

ПОТЕНЦИАЛ

Потенциал электрического поля есть величина, равная отношению потенциальной энергии точечного положительного заряда, помещенную в данную точку поля, к этому заряду;

=П/Q,

или потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к этому заряду:

=A/Q.

Потенциал электрического поля в бесконечности условно принят равным нулю.

Отметим, что при перемещении заряда в электрическом поле работа Aв.с внешних сил равна по модулю работе Aс.п сил поля и противоположна ей по знаку:

Aв.с= – Aс.п.

Потенциал электрического поля, создаваемый точечным зарядом Q на расстоянии r от заряда,

.

Потенциал электрического поля, создаваемого металлической, несущей заряд Q сферой радиусом R, на расстоянии гот центра сферы:

внутри сферы (r<R) ;

на поверхности сферы (r=R)

;

вне сферы (r>R) .

Во всех приведенных для потенциала заряженной сферы формулах  есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

Потенциал электрического поля, созданного системой п точечных зарядов, в данной точке в соответствии с принципом суперпозиции электрических полей равен алгебраической сумме потенциалов 1, 2, ... , n, создаваемых отдельными точечными зарядами Q1, Q2, ..., Qn:

Энергия W взаимодействия системы точечных зарядов Q1, Q2, ..., Qn определяется работой, которую эта система зарядов может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой

,

где i — потенциал поля, создаваемого всеми п–1 зарядами (за исключением 1-го) в точке, где расположен заряд Qi.

Потенциал связан с напряженностью электрического поля соотношением

Е= –grad.

В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой

,

или в скалярной форме

,

а в случае однородного поля, т. е. поля, напряженность которого в каждой точке его одинакова как по модулю, так и по направлению,

E=(12,)/d,

где 1 и 2 — потенциалы точек двух эквипотенциальных поверхностей; d расстояние между этими поверхностями вдоль электрической силовой линии.

Работа, совершаемая электрическим полем при перемещении точечного заряда Q из одной точки поля, имеющей потенциал 1, в другую, имеющую потенциал 2,

A=Q(12), или ,

где El проекция вектора напряженности Е на направление перемещения; dl перемещение.

В случае однородного поля последняя формула принимает вид

A=QElcos,

где l — перемещение;  — угол между направлениями вектора Е и перемещения l.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

 Электрическая емкость уединенного проводника или конденсатора

C=ΔQ/Δφ,

где ΔQ - заряд, сообщенный проводнику (конденсатору); Δφ -  изменение потенциала, вызванное этим зарядом.

  Электрическая емкость уединенной проводящей сферы радиусом R, находящейся в бесконечной среде с диэлектрической проницаемостью ε,

Если сфера полая и заполнена диэлектриком, то электроемкость ее от этого не изменяется.

Электрическая емкость плоского конденсатора

,

где S - площадь пластин (каждой пластины); d - расстояние между ними; ε - диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Электрическая емкость плоского конденсатора, заполненного п слоями диэлектриком толщиной di каждый с диэлектрическими проницаемостями ε, (слоистый конденсатор),

Электрическая емкость сферического конденсатора (две концентрические сферы радиусами R1 и R2, пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ε)

Электрическая емкость цилиндрического конденсатора (два коаксиальных цилиндра длиной l и радиусами R1 и R2, пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ε)

Электрическая емкость С последовательно соединенных конденсаторов:

в общем случае где п - число конденсаторов;

в случае двух конденсаторов

в случае п одинаковых конденсаторов с электроемкостью С1 каждый

C=C1/n.

    Электрическая емкость параллельно соединенных конденсаторов:

в общем случае C=C1+C2+...+Cn;

в случае двух конденсаторов C=C1+C2;

в случае п одинаковых конденсаторов с электроемкостью С1 каждый C=nC1.

ЭНЕРГИИ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Процесс зарядки конденсатора можно представить как последовательное перемещение малых порций dQ заряда с одной пластины (обкладки) на другую. Если первоначально пластины нейтральны, то перенос, например, положительного заряда с первой пластины на вторую приведет к возникновению отрицательного заряда на первой пластине. Следовательно, в результате таких переносов первая пластина будет заряжаться отрицательно, а вторая – положительно. Между пластинами возникнет постепенно возрастающая разность потенциалов 12=U. Вывод формулы для энергии заряженного конденсатора аналогичен приведенному выше выводу формулы. Отличие состоит в замене потенциала    на разность потенциалов U

. (7)

Таким образом, формула для энергии заряженного конденсатора имеет следующий вид

. (8)

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ

 

       Поляризация – это ограниченное смещение связанных зарядов или ориентация дипольных молекул, возникающая в любом диэлектрике при воздействии электрического поля.

Выделяют два определения поляризации:

  1.  Свойство световых и электромагнитных колебаний размещаться в одной определенной плоскости. Плоскость поляризации падающего луча.
  2.  Отложение на электродах различных веществ, ослабляющих силу тока. Поляризация электродов.

В зависимости от механизма или порядка смещения электрических зарядов различают следующие виды поляризации:

  1.  Электронная поляризация;
  2.  Ионная поляризация;
  3.  Упруго-дипольная поляризация;
  4.  Ионно-релаксационная поляризация;
  5.  Дипольно-релаксационная поляризация;
  6.  Миграционная (межслоевая) поляризация;
  7.  Электронно-релаксационная поляризация;
  8.  Поляризация ядерного смещения;
  9.  Остаточная (электретная) поляризация;
  10.   Спонтанная (сегнетоэлектрическая) поляризация;
  11.   Пьезоэлектрическая поляризация.

     Значение емкости конденсатора с диэлектриком и накопленный в нем электрический заряд обусловлены несколькими механизмами поляризации, которые различны у разных диэлектриков и могут иметь место одновременно у одного и того же материала.

 

На рисунке 1 представлена эквивалентная схема диэлектрика, в котором существуют различные механизмы поляризации, можно представить в виде ряда подключенных параллельно к источнику напряжения  конденсаторов.

В зависимости от характера химической связи различают следующие 3 основные механизмы поляризации диэлектриков: электронную, ионную и дипольную (ориентационную).

Электронная поляризация присуща всем диэлектрикам и превалирует в кристаллах с ковалентной связью. Под действием внешнего электрического поля P происходит смещение электронов атома относительно его ядра (деформация его электронной оболочки) и возникают индуцированные диполи. Диэлектрические свойства индуцированных диполей относятся к числу резонансных явлений.

    Электронный механизм поляризации является наименее инерционным, т.к. масса электрона значительно меньше массы частиц, участвующих в процессе поляризации. Время установления электронной поляризации составляет ≈ 10-15 с, что сравнимо с периодом световых колебаний.

Классификация диэлектриков по виду поляризации:

  1.  Линейные диэлектрики;
  2.  Нелинейные диэлектрики;
  3.  Неполярные диэлектрики;
  4.  Полярные диэлектрики;
  5.  Ионные диэлектрики.

Линейные диэлектрики относят к пассивным диэлектрикам, применяемым в основном в качестве различных видов электрической изоляции или диэлектрика конденсаторов.

Нелинейные диэлектрики относят к активным диэлектрикам, параметры которых зависят от величины приложенной разности потенциалов. Емкостью конденсатора с нелинейным диэлектриком можно управлять электрическим полем.

Неполярные диэлектрики (нейтральные) — состоят из неполярных молекул, у которых центры тяжести положительного и отрицательного зарядов совпадают. Примером практически неполярных диэлектриков, применяемых в качестве электроизоляционных, являются углеводородные материалы, нефтяные электроизоляционные масла, полиэтилен, полистирол и др. В неполярных однородных диэлектриках наблюдается только электронная поляризация. Если материал является  неоднородным, то кроме электронной поляризации в диэлектрике также наблюдается миграционная поляризация.

Полярные диэлектрики (дипольные) — состоят из полярных молекул, обладающих электрическим моментом. В таких молекулах из-за их асимметричного строения центры масс положительных и отрицательных зарядов не совпадают. К полярным диэлектрикам относятся фенолоформальдегидные и эпоксидные смолы, кремнийорганические соединения, хлорированные углеводороды и др. В полярных однородных диэлектриках наблюдается электронная и дипольно-релаксационная поляризации. Если материал является  неоднородным, то в нем также наблюдается миграционная поляризация.

Ионные соединения  представляют собой твердые неорганические диэлектрики с ионным типом химической связи. Для  этой группы соединений характерны  кроме электронной, ионная и электронно-релаксационная поляризации. Принято выделять группу диэлектриков с быстрыми видами поляризаций  электронной и ионной, и с замедленными видами поляризаций релаксационного типа, накладывающихся на  электронную  и ионную поляризации. К первой группе, в которой наблюдаются только быстрые виды поляризаций, относятся кристаллические вещества с плотной упаковкой ионов. К ним относятся каменная соль, кварц, слюда, корунд и др. Ко второй группе, в которой кристаллические диэлектрики с неплотной упаковкой ионов в решетке имеют также и ионно-релаксационную поляризацию, относятся неорганические стекла, электротехнический фарфор, ситаллы, микалекс и др. [4].

Виды поляризации по скорости протекания процесса

1. Быстрые поляризации:

а)электронная;

б)ионная;

2. Замедленные поляризации:

а) дипольно-релаксационная поляризация;

б) ионно-релаксационная поляризация;

в) электронно-релаксационная поляризация;

г) миграционная поляризация;

спонтанная поляризация;

Быстрые поляризации - это упругие поляризации, которые происходят практически мгновенно, без потерь энергии приложенного электрического поля, то есть без выделения тепла в диэлектрике. Быстрые (деформационные) поляризации обусловленные упруго связанными частицами. Упруго связанные частицы имеют одно положение равновесия, около которого они совершают тепловые колебания, и под действием приложенного поля они смещаются на небольшие расстояния

Замедленные поляризации - это релаксационные поляризации, которые происходят не мгновенно, с потерями энергии приложенного электрического поля, с выделением тепла в материале. Замедленные поляризации обусловленные слабо связанными частицами. Слабо связанные частицы имеют несколько положений равновесия, в которых они в отсутствие электрического поля могут находиться равновероятно. Переход слабо связанных частиц из одного равновесного положения в другое осуществляется под действием флуктуации теплового движения. Слабо связанная частица какое-то время колеблется около положения равновесия, затем под действием флуктуации скачком меняет это положение равновесия на другое. Время нахождения частицы в определенном положении равновесия зависит от высоты потенциального барьера между данными положениями равновесия. Смещение слабо связанных частиц происходит на гораздо больше расстояния, чем смещение упруго связанных частиц.

ЗАКОНЫ ОМА

 1)Для участка цепи

  Закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи. Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор. С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.

  Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:

I=U/R

Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Следует знать что:

I – величина тока, протекающего через участок цепи;

U – величина приложенного напряжения к участку цепи;

R – величина сопротивления рассматриваемого участка цепи.

  При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи либо напряжение на входных зажимах цепи.

U = I *R

Но при этом необходимо знать ток и сопротивление участка цепи.

      Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:

R =U/I

2) Для полной цепи

  Закон Ома для полной цепи - его еще можно назвать закон Ома для замкнутой цепи, имеет вид I=E/(R+r).

Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r - сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить. 




1. ПереяславХмельницкий государственный педагогический университет имени Григория Сковороды молодежна
2. Курсовая работа на тему- товароведение и экспертиза молока пастеризованного жирностью 32 Содержание Введ
3. РЕФЕРАТ дисертації на здобуття наукового ступеня доктора педагогічних наук КИЇВ '
4. Бугаев Борис Николаевич (Андрей Белый)
5. тематичних наук Київ 2004 Дисертація є рукопис Робота виконана в Інститут
6. Инновационный путь развития технологии создания новых лекарственных средств
7. Тема ’ 2.2. Лекція ’ 4.html
8. золотой век.ВергилийГорацийОвидийримс историки
9. задание. Задача 1 httphcxl
10. Особенности климата нашего края
11. УТВЕРЖДАЮ Заместитель директора по учебной работе _________С
12. Салическая правда- общая характеристика регулирование имущественных и обязательственных отношений
13. на тему- Страны ОПЕК и их внешнеэкономические связи выполнила студентка экономического ф
14. это форма взаимного соперничества субъектов рыночной экономики
15. Реферат- Дискурсивный анализ
16. Канцэпт шчасце у мове сучаснай беларускай паэзіі
17. вариантом последовательных АЦП
18. БелГУ ИСТОРИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА РОССИЙСКОЙ И ВСЕОБЩЕЙ ИСТОРИИ Театр Древней Греции
19. Разработка и обоснование отбора дидактического материала для письменного инструктирования учащихся в ходе одного из уроков производственного обучения
20. Принципы составления коммерческой переписки