Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
министерство образования и науки Российской Федерации
Старооскольский технологический институт им. А.А. УГАРОВА
(филиал) федерального государственного автономного образовательного учреждения
высшего профессионального образования
«Национальный исследовательский технологический университет «МИСиС»
ОСКОЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ
УТВЕРЖДАЮ
ПРЕДСЕДАТЕЛЬ НМС опк__________
пРОТОКОЛ №______
ОТ «______» _________________2013г.
АНГЛИЙСКИЙ ЯЗЫК
Методические указания по аудиторному и внеаудиторному чтению и переводу для студентов III-IV курсов
Специальности
150401 Металлургия черных металлов
150412 Обработка металлов давлением
Старый Оскол 2013
Рассмотрены на заседании П(Ц)К специальности 080114 и СГД Протокол №___________ от «___________» ____________2013 Председатель ____________И.Н. Федотова |
Методические указания составлены в соответствии с рабочей программой по дисциплине Иностранный язык (английский) название дисциплины, МДК, ПМ Специальности 150401, 150412 Зам .директора по М Р к.п.н., доцент _______________А.М. Степанова |
Составитель: Федотова И.Н., преподаватель ОПК СТИ НИТУ «МИСиС»
Рецензенты:
внутренний
Травкина Е.А., преподаватель ОПК СТИ НИТУ «МИСиС»
внешний
Дабанова Я.Н., ассистент кафедры филологии СОФ НИУ БелГУ
Содержание
Введение
Transport
Industry
Equipment. Mechanisms.
Supplementary reading
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Список использованных источников
Введение
Одной из важных задач изучения иностранного языка в учреждении среднего профессионального образования является обучение студентов различным видам работы с текстами по специальности. Значимость этого умения определяется тем, что в последнее время активно развиваются научно-технические и производственные контакты российских и зарубежных предприятий, шире становятся международные связи. Это, с одной стороны, открывает новые возможности в освоении достижений мировой науки и технического прогресса, а с другой требует иного подхода к обучению работе с текстами по специальности на иностранном языке.
Для организации такой работы необходима систематическая целенаправленная деятельность студентов на занятиях и внеаудиторно, в ходе которой они бы приобретали навыки работы с текстом, прежде всего чтение всех видов, перевод, постановка вопросов, аннотирование, реферирование, полный письменный и реферативный перевод.
В данные методические указания включены тексты для чтения и перевода для студентов, обучающихся по специальности150401 Металлургия черных металлов 150412 Обработка металлов давлением, которые подобраны с учетом возможности решения всех этих задач.
Все тексты, использованные в методических указаниях, являются оригинальными, но их некоторая сложность снимается за счет лексических пояснений и разнообразных упражнений, что способствует лучшему пониманию материала и облегчает работу студента.
Их основной целью является формирование прочных навыков чтения, перевода, извлечения и обработки информации по специальности , расширение словарного запаса студентов.
Формированию лексических навыков способствуют список необходимой лексики по каждой теме, а также упражнения на ее закрепление.
В методических указаниях содержится раздел «Supplementary reading» а также приложения, предназначенные для организации внеаудиторной самостоятельной работы студентов.
Указанные особенности позволяют использовать методические указания как на аудиторных занятиях, так и при организации самостоятельной работы.
UNIT 1. TRANSPORT
Vocabulary
land transport наземный транспорт
water transport водный транспорт
air transport воздушный транспорт
transport транспорт, транспортировать
transportation транспортировка
goods товары, груз
vehicle экипаж, повозка, автомобиль
lorry грузовик
coach карета, экипаж, автобус (междугородный)
internal внутренний
combustion сгорание
engine двигатель
source источник
to pave мостить
distance расстояние
to connect соединять, связывать
slowly медленно
horsepower лошадиная сила
to fly летать
mile миля
to replace перемещать, заменять, вытеснять
timber строительный лес
to operate действовать, управлять, приводить в движение
capacity мощность, емкость
reliable надежный
drawback недостаток
trouble поломка, авария, неполадки
readings показания (на приборе)
to convert превращать(ся)
urgent срочный, крайне необходимый
fast быстрый
bulky большой, громоздкий
cargo груз
to combine соединять, сочетать
across - через
TEXT 1. THE HISTORY OF LAND TRANSPORT
Introduction
The word transport means to carry people or goods from place to place. It is also used for the vehicles that carry people or goods - for example, motor transport includes buses, lorries, motor coaches and motor cars. The American word for the same thing is transportation, and the remark "transportation is civilization" was made by an American, the motor-car manufacturer Henry Ford
The history of transport is divided into two stages. The first stage is that in which all forms of transport depended directly on the power of men or animals or on natural forces such as winds and current. The second stage began with the development of the steam engine, which was followed by the electric motor and the internal combustion engine as the main sources of power for transport.
THE WHEEL, STEAM CARRIAGES AND RAILWAYS
One of mankind's earliest and greatest inventions was the wheel. Without it there could be no industry, little transportation or communication, only crude farming, no electric power
Nobody knows when the wheel was invented. There is no trace of the wheel during the Stone Age, and it was not known to the American Indians until the White Man came, hi the Old World it came into use during the Bronze Age, when horses and oxen were used as work animals. At first all wheels were solid discs.
The problem to be solved was to make the wheels lighter and at the same tune keep them strong. At first holes were made in the wheels, and they became somewhat lighter, Then wheels with spokes were made. Finally, the wheel was covered with iron and then with rubber.
Light two-wheeled carriages were used widely in the ancient world. As time passed they were made lighter, stronger, and better. Later people joined together a pair of two-wheeled carts into a four-wheeled vehicle. At first only kings and queens had the privilege of driving in them.
In the West the first steam carriage was invented in France. The three-wheeled machine had the front wheel driven by a two-cylinder steam engine, and carried two people along the road at a walking pace. It was not a great success, as the boiler did not produce enough steam for keeping the carriage going for more than about 15 minutes.
The steam engine appeared in 1763. It was followed by several improved steam road carriages. Their further development was prevented by railway companies The rapid spread of railways in the United Kingdom was due largely to George Stephenson, who was an enthusiast as well as a brilliant engineer,
He demonstrated a locomotive that could run eighteen kilometres an hour and carry passengers cheaper than horses carried them. Eleven years later Stephenson was operating a railway between Stockton and Darlington. The steam locomotive was a success
In Russia the tsar's government showed little interest in railway transportation. After long debates the government, which did not believe in its own engineers, finally decided to invite foreign engineers to submit (представить) projects for building railways in Russia.
Yet at the very time when foreign engineers were submitting their plans, in the Urals a steam locomotive was actually in use. It had been invented and built by the Cherepanovs, father and son, both skilful mechanics and serfs (крепостные). The first Russian locomotive was, of course, a "baby" compared with the locomotives of today. Under the boiler (котел) there were two cylinders which turned the locomotive's two driving wheels (there were four wheels in all), At the front there was a smoke stack (труба), while at the back there was a platform for the driver.
I. Answer the following questions.
1. What kind of animals were used for work during the Bronze Age?
2. What were the first wheels like?
3. What are the stages in the development of the wheel?
4. How many people did the first steam carriage carry?
5. Who demonstrated the first locomotive in the United Kingdom''
6. Was the Russian government interested in railway transportation?
7. Who were the Cherepanovs?
8. What was the first Russian locomotive like?
9. Are the locomotives widely used in Russia?
10. What kind of locomotives are used in Russia now?
TEXT 2. THE EARLY DAYS OF THE AUTOMOBILE
1. One of the earliest attempts to propel a vehicle by mechanical power was suggested by Isaac Newton. But the first self-propelled vehicle was constructed by the French military engineer Cugnot in 1763. He built a steam-driven engine which had three wheels, carried two passengers and ran at maximum speed of four miles. The carriage was a great achievement but it was far from perfect and extremely inefficient. The supply of steam lasted ' only 15 minutes and the carriage had to stop every 100 yards to make more steam.
2. In 1825 a steam engine was built in Great Britain The vehicle carried 18 passengers and covered 8 miles in 45 minutes. However, the progress of motor cars met with great opposition in Great Britain. Further development of the motor car lagged because of the restrictions resulting from legislative acts. The most famous of these acts was the Red Flag Act of 1865, according to which the speed of the steam-driven vehicles was limited to 4 miles per hour and a man with a red flag had to walk in front of it.
Motoring really started in the country after the abolition of this act.
3. In Russia there were cities where motor cars were outlawed altogether. When the editor of the local newspaper in the city of Uralsk bought a car, the governor issued these instructions to the police. When the vehicle appears in the streets, it is to be stopped and escorted to the police station, where its driver is to be prosecuted."
4. From 1860 to 1900 was a period of the application of gasoline engines to motor cars in many countries. The first to perfect gasoline engine was N. Otto who introduced the four-stroke cycle of operation. By that time motor cars, got a standard shape and appearance.
In 1896 a procession of motor cars took place from London to Brighton to show how reliable the new vehicles were. In fact, many of the cars broke, for the transmissions were still unreliable and constantly gave trouble.
The cars of that time were very small, two-seated cars with no roof, driven by an engine placed under the seat. Motorists had to carry large cans of fuel and separate spare tyres, for there were no repair or filling stations to serve them.
After World War I it became possible to achieve greater reliability of motor cars, brakes became more efficient. Constant efforts were made to standardize common components. Multi-cylinder engines came into use, most commonly used are four-cylinder engines.
5. Like most other great human achievements, the motor car is not the product of any single inventor. Gradually the development of vehicles driven by internal combustion engine - cars, as they had come to be known, led to the abolition of earlier restrictions. Huge capital began to flow into the automobile industry.
From 1908 to 1924 the number of cars in the world rose from 200 thousand to 20 million, by 1960 it had reached 60 million! No other industry had ever developed at such a rate.
TEXT 3. WATER TRANSPORT
1. One of the most important things about water transport is the small effort needed to move floating craft. A heavy boat or a barge weighing several tons can be moved through the water, slowly but steadily, by one man. An aeroplane of the same weight as the barge needs engines of 1,000 horsepower or more in order to fly.
2. The raft made of logs of wood is supposed to be the earliest type of boat.
Rafts seem to be clumsy vessels, although the Norwegian scientist Thor Heyerdahl and his five companions in 1947 made a voyage on the raft Kon-Tiki from Peru to Tuamotu Islands - a distance of 4,500 miles.
3. The water transport in ancient times developed most rapidly on great rivers. The ancient Romans used vessels to carry their armies and supplies to colonies. These ships, usually called galleys, continued to be used in the Mediterranean till 1750.
4. The introduction of the magnetic compass allowed long voyages to be made with much greater safety. At the end of the 15th century, sailing vessels are known to have carried men from Europe to America and round Africa to India.
The middle of the 19th century proved to be the highest point in the development of sailing ships.
5. Steam and Motor Ships. One of the earliest steamboats is known to have been tested at the end of the 18th century. The first steamship to cross the Atlantic was the Savannah, 98-foot ship built in New York, which made the crossing in 1819. Like all the early steamships, it had sails as well as paddles.' By the middle of the 19th century it became possible to build much larger ships for iron and steel began to replace timber.
6. The rapid increase in the size and power of ships was promoted by the industrial revolution.)The industrial countries produced great quantities of goods which were carried to all parts of the world by ships. On their return voyages, the ships brought either raw materials such as cotton, metals, timber for the factories, or grain and foodstuffs for the growing population.
During the same period, a great deal was done to improve ports, and that permitted larger ships to use them and to make loading and unloading faster.
7. Improvements introduced in the 20th century included the smoother and more efficient type of engines called steam turbines and the use of oil fuel instead of coal. Between 1910 and 1920 the diesel engine began to be introduced in ships. These diesel-engined ships are called motor ships. The largest ships, however, are still generally driven by steam turbines. In the late 1950s a few ships were being built which were equipped with nuclear reactors for producing steam.
8. In 1957 the world's first atomic ice-breaker was launched in Leningrad.
This atomic ice-breaker is equipped with an atomic engine owing to which her operating on negligible quantities of nuclear fuel is possible. In spite of the capacity of her engine being 44,000 h.p. it will need only a few grams of atomic fuel a week.
The atomic ice-breaker has three nuclear reactors. The operation of the nuclear reactor is accompanied by powerful radiation. Therefore, the icebreaker is equipped with reliable means of protection. The ice-breaker is designed for operation in Arctic waters.
TEXT 4. AIR TRANSPORT
1. Modern air transport using craft which is heavier than air requires a good deal of power merely to stay in the air. It is for this reason that air transport uses more fuel to carry a ton over a distance of a mile than land or water transport. Another drawback of air transport is that whereas a ship, truck or train whose engines break down can stop until they are mended, an aircraft with the same trouble must land. This means that an aircraft must have several engines and this increases its cost. Safety precautions for air transport also tend to make it expensive. It cannot be relied upon for regular services in places or seasons with low clouds and mist. The great advantage of air transport being its high speed, all civilized countries try to develop it. If you want to save time, you will naturally fly by air.
2. The earliest form of air transport was balloons, which are sometimes called "free balloons" because having no engines they are forced to drift by the wind flow. This fact alone makes balloons not reliable enough for carrying people. If they were safer, they would be used more for transportation, but at present the scientists use balloons mostly for obtaining information about the upper atmosphere, its density, and other scientific subjects. Weather balloons are particularly used by meteorologists. They carry instruments whose readings are automatically sent back to the ground by the radio, the position of the balloon being obtained by radar. Small balloons released from air-fields are observed to obtain the direction and strength of the wind.
3. The heavier-than-air machines called aeroplanes were rather slow in being adopted for transport. The first aeroplane flight was made in 1884.
World War I quickened the development of aeroplanes enormously. By 1918 they were no longer unreliable things capable of only short flights, but powerful machines able to carry heavy loads at high speeds for long distances. What was more, the ending of the war meant that thousands of aeroplanes and skilled pilots were available.
The first aeroplanes were machines that had been used as bombers. They were quickly converted for use by passengers by fitting extra seats and windows. The first regular public air service from London to Paris was started in August.
4. During World War II the value of aeroplanes for carrying heavy loads was recognized. This led after the war to an increase in the practice of sending goods by air. Air freight is expensive but is often thought worth while for such goods as early vegetables, fruit and flowers, as well as for things urgently needed such as spare parts for machinery, medical supplies, films and photographs. Some parts of the world are hundreds of miles from a road, railway or waterway, and air transport is the only possible kind of transport. Such places are kept supplied wholly by air.
5. After World War II, bigger and faster airliners were introduced. Jet-propelled aircraft were first used in 1950. Air transport is very valuable for emergency medical work. The most important use of air transport besides carrying passengers is carrying mail. If the letters are sent by air mail, they are not long in coming. Although it is unlikely that aircraft will ever replace ships for carrying heavy and bulky cargoes such as oil, coal, minerals, grain and machinery, air transport is already proving a serious rival to passenger ships on some routes.
6. Helicopters are very useful in places where there is no room for long, flat runways.2 Modern turbo-jet airliners need a run of nearly two miles long to take off, but helicopters can use small fields, platforms mounted on ships and the flat tops of buildings. Helicopters were first introduced for regular airline service in 1947. Later, helicopters were used for carrying passengers and mail on short routes, and for taking airline passengers between the centres of cities and the main airports.
7. While helicopters gain in needing very little space for taking-off and landing, they lose because the speed at which they move forward is quite low. So the problem was to develop an aircraft combining the advantages of the helicopter with the high speed of an ordinary aircraft. If the designers could develop such a machine the problem would be solved. So for this purpose the hovercraft was designed. Hovercrafts are likely to be useful for ferry services - for example, in ferrying motor cars across the English Channel. They may also be useful for travel in roadless countries.
UNIT 2. ОСНОВЫ ПЕРЕВОДА
1. Перевод как вид языковой деятельности
Развитие науки и техники в наше время немыслимо без широкого обмена специальной информацией между людьми, говорящими на разных языках. Специалисты в самых разнообразных отраслях науки и техники должны постоянно следить за всем новым, что появляется за рубежом и извлекать полезную для их профессиональной деятельности информацию. Для этого каждому образованному специалисту необходимо обладать определенными навыками перевода технической литературы, т.е. технического перевода.
Под техническим переводом мы понимаем обычно два вида перевода:
1. Письменный перевод книг по технике, статей в специальных технических и экономических, а также научно-популярных журналах, газетных статей по технико-экономическим вопросам, технической документации (технических условий, спецификаций, чертежей), патентов. Письменный технический перевод с иностранного языка на русский или с русского на иностранный выполняется на рабочем месте, в библиотеке или в домашних условиях с использованием словарей, общих и специальных, справочников и специальной литературы на русском и иностранном языках, что значительно облегчает труд переводчика.
2. Устный перевод осуществляется на конференциях, лекциях, беседах, выставках. Этот вид перевода чаще всего двусторонний: с иностранного языка на русский и с русского на иностранный. Устный перевод, в отличие от письменного, приходится выполнять в условиях, когда отсутствует возможность заглянуть в словарь или справочник. Устный перевод требует от переводчика, кроме хорошего знания родного и иностранного языков, еще и большой эрудиции, физической выносливости и находчивости, не говоря уже о знании терминологии в данной области.
Процесс перевода это активный, целенаправленный процесс, состоящий из трех частей:
Таким образом, перевод это выражение того, что уже было выражено на одном языке, средствами другого языка.
Из этого определения вытекают следующие важные следствия, необходимые при работе с иноязычным техническим текстом:
Техническим переводом в той или иной форме приходится заниматься всем специалистам. Рано или поздно вам попадет в руки книга или журнальная статья по вашей специальности на английском языке, которую вам надо будет прочесть и перевести. Возможно, у вас возникнет необходимость побеседовать с иностранными специалистами на интересующую вас тему. Во всех этих случаях вы столкнетесь с особенностями и трудностями технического перевода, без знания которых можно сделать много ошибок, даже хорошо владея иностранным языком.
Чтобы избежать типичных ошибок при переводе технических текстов, необходимо учитывать следующее:
Выполнение большого количества разнообразных по тематике переводов даст вам необходимый опыт перевода и позволит легче преодолевать встречающиеся при этом трудности.
2. Особенности стиля технической литературы на английском языке
В общем и целом стиль научных работ на английском языке напоминает русский научный стиль: мысль излагается сжато, сухо, точно, часто поясняется чертежами, графиками и математическими формулами. Скорее всего, придется иметь дело с общетехнической литературой, куда входят инструкции к аппаратам с описанием технологического процесса, патентов и т.д. В отличие от русского языка, в таких описаниях могут употребляться разговорные выражения, а также совершенно новые «придуманные» слова (так называемый «технический жаргон»), которые не регистрируются словарями.
Вследствие быстрого развития техники в научном языке постоянно появляются новые термины (неологизмы), которые не успевает зафиксировать даже самый последний словарь. Неологизмы часто представляют большие трудности при переводе.
В английской и американской литературе, как правило, употребляются неметрические единицы измерения, которые при переводе приходится пересчитывать в метрические и в единицы СИ, принятые в настоящее время.
В современной технической литературе на английском языке все чаще употребляются цепочки из поставленных рядом слов, которые не связаны между собой синтаксическими средствами, т.е. предлогами to, of, from и т.д. Например: overload prevention device 'устройство для предотвращения перегрузки'; X-ray thickness gauge 'рентгеновский толщинометр'; two-stage single-cylinder air-cooled reciprocating compressor 'двухступенчатый одноцилиндровый компрессор с возвратно-поступательным движением поршня и с воздушным охлаждением' и т.д.
Обратите внимание на то, что основными словами во всех приведенных выше сочетаниях являются последние слова, а все предшествующие слова служат определениями к ним.
В последнее время усилилась тенденция к образованию новых слов путем сокращения, причем часто такое новое слово не выглядит как сокращение. Например: laser это сокращение light amplification by stimulated emission of radiation, lube от lubrication и т.д.
3. Грамматические особенности технических текстов на
английском языке
Как правило, по внешнему виду английского слова нельзя определить, какой частью речи оно является. Одинаково звучащее слово может быть и существительным, и глаголом, и прилагательным. Сравните, например: clock face 'циферблат' (букв, 'лицо часов') и face the wall 'облицовывать стену'; horse power 'лошадиная сила' и to power 'снабдить двигателем, механизировать'; doctor's car 'автомобиль доктора' и to doctor the car, 'произвести ремонт автомобиля'. Функцию слова в английском предложении можно определить по занимаемому им месту. Сравните: box switch 'закрытый выключатель' и switch box 'распределительная коробка'; big traffic road 'большая проезжая дорога' и big road traffic 'большое дорожное движение'; motor oil 'автотракторное масло' и oil motor 'нефтяной двигатель'.
Если переводить английское предложение с его твердым порядком слов без перегруппировки, то получается так называемый дословный перевод. Дословный перевод может быть правильным, если все английские слова в предложении имеют эквиваленты в русском языке и структура предложения имеет полное соответствие в русском языке, например:
We all know that without alternating current radio-communication is impossible. |
Мы все знаем, что без переменного тока радиосвязь невозможна. |
Но дословный перевод возможен не всегда, и от дословного перевода, однако, следует отличать недопустимый в практике перевода буквальный перевод, т.е. простой механический перевод слов иностранного текста без учета их грамматических и логических связей.
В отличие от языка художественной литературы, который допускает длинноты и повторения, технический текст насыщен фактическим содержанием; поэтому в нем высок удельный вес оборотов с неличными формами глагола и конструкциями с глаголом в страдательном залоге.
4. Некоторые грамматические трудности. Перевод независимых причастных оборотов на русский язык
Независимые причастные обороты, широко используемые в технической литературе, состоят из существительного в общем падеже (или местоимения в именительном падеже) и причастия I.
Основными признаками независимого причастного оборота являются:
1) слово или группа слов перед причастием, играющие роль подлежащего в причастном обороте;
2) наличие запятой, которая отделяет независимый причастный оборот от главного предложения.
A d.с. motor being installed, the r.p.m. could be controlled automatically. |
Так как был установлен двигатель постоянного тока, регулирование числа оборотов можно было осуществлять автоматически. |
Water exists as ice at low temperatures and as steam at higher temperatures, the temperature depending on the pressure. |
При низких температурах вода существует в виде льда, при более высоких в виде пара; величина температуры зависит от давления. |
В зависимости от места в предложении и смысла независимый причастный оборот переводится:
1) обстоятельственным придаточным предложением, вводимым одним из союзов: когда, так как, если, хотя, поскольку (обычно, когда причастный оборот стоит в начале предложения):
A fault occurring, the interlock breaks the control circuit and stops the unit. |
Когда возникает неисправность, блокировка разрывает цепь управления и останавливает агрегат. |
Science having reached a high state of development, new production techniques became possible. |
Так как наука достигла высокого уровня развития, стали возможными новые методы производства. |
2) самостоятельным предложением в составе сложносочиненного предложения, вводимым одним из сочинительных союзов и, а, причем (обычно, когда независимый причастный оборот стоит в конце предложения):
When a bar magnet is broken in two, two complete bar magnets result, two new poles appearing at the fracture. |
Если разделить магнит на две части, получатся два полных магнита, причем в месте излома появляются два новых полюса. |
3) самостоятельным предложением в составе сложносочиненного предложения, вводимым бессоюзно. Такие причастные обороты выражают сопутствующие обстоятельства и всегда стоят в конце предложения:
As many as eight stages may be required for completing the process, two stages being the finishing operations. |
Для завершения процесса могут потребоваться не менее восьми стадий; две из них отделочные операции. |
Некоторые независимые причастные обороты начинаются предлогом with. На русский язык предлог не переводится, а весь оборот соответствует придаточному или самостоятельному предложению, например:
With the steam cut off, it became possible to start repairs. |
После того как был отключен пар, появилась возможность приступить к ремонту. |
Независимому причастному обороту может предшествовать вводное слово there. В таких случаях оборот переводится придаточным обстоятельственным предложением:
There being no fuel in the tank, the car came to a stop. |
Машина остановилась, так как в баке не осталось горючего. |
Независимые причастные обороты, представляющие застывшие словосочетания типа this done, such being the case, переводятся по образцу:
This done, the pointer was returned to zero. |
Затем стрелка была возвращена на нуль. |
Such being the case, the investigation may proceed. |
Если дело обстоит так, исследование может продолжаться. |
УПРАЖНЕНИЯ
НА ГРАММАТИЧЕСКИЕ ТРУДНОСТИ ПЕРЕВОДА
Упражнение 1. Переведите на русский язык следующие предложения:
1. There have been rumours that more efficient carburators have been invented which are said to have increased the gazoline milage of automobiles by as much as 100 per cent.
2. The effect is highly dependent on frequency with the lower frequencies showing less noise.
3. Many proposals for changing the traditional methods of storing and searching for information have been made in the last decade, and some of these have already proved to be of considerable practical value.
4. From what has been said so far, one might think that alternating current has little advantage over a direct current.
5. The atomic bomb explosion may blow a hole in the ocean a mile in diameter, the size depending on the amount of plutoni-um used m the bomb.
6. The best compromise is to select a low-coefficient fixed inductance.
7. It should be stated that we are assuming throughout this chapter that the primary condition that the system be stable is already satisfied.
8. The larger the screen of a television receiver, the more light must it emit if the picture on it is to appear satisfactorily bright.
9. Such fluctuations, being sensitive to the exact location of channel boundaries, would not be expected to reproduce in successive determinations.
10. Working under hard conditions were all the early students of this new field of electronics.
Упражнение 2. Переведите на русский язык следующие предложения:
1. Bohr'stheory of atomic structure turned out to be extremely fruitful in the explanation of various properties of atoms and molecules.
2. On close examination of a piece of granite we find it to be composed of several kinds of minerals having different degrees of hardness, different colours, and different properties in general.
3. As radio waves travel away from their point of origin, they become attenuated as a result of spreading out due to energy being lost in travel.
4. This value is subject to systematic errors, the most important one reflecting our lack of knowledge of the energy spectrum.
5. A gram of water is proved to change exactly to a gram of ice when freezing and to a gram of water vapour when evaporating.
6. The material damping is considered in a manner which seems to be as exact as it can be without the use of nonlinear equations.
7. Hardness and tensile strenghttests are shown to be rather indirect attempts to measure the strenght of the bonds existing between the atoms of the metal.
8. Metals known to exist in more than one crystallographic form are cobalt, cerium, tin, manganese, chromium, thallium.
9. Should extreme gain stability be required, it can be achieved without degrading the noise figure.
10. Since the optical-model potential cannot be expected to take into account all interactions of the neutron with the nucleus an explanation along conservative of low-energy nuclear physics may turn out to be adequate.
Упражнение 3. Переведите на русский язык:
1. Experiments have shown that isomerization does not take place during the reaction of bromine substitution by lithium, but that it is the organolithium compound which is isomerized after formation.
2. The patience of the ancient forgeman must have been remarkable, since he first made his own steel by a slow process, and lost a good percentage during the process.
3. If no energy were lost during the transformation, the input and output would be equal and the machine would be perfect as it would change the form of the energy and lose none.
4. As we have just noted there was a time when heat was supposed to be a sort of substance or fluid which flowed from a body of high temperature to one of lower temperature.
5. Due to the non-coincidence of the geographic and magnetic poles and to the presence of magnetic materials in the earth, the compass needle does point to the true North in only a few places on the earth's surface.
6. The satellite is in a 70 per cent sun-time orbit with the transmitter assembly located on the sun side of the satellite, normal to the sum vector. This is a transient condition with the satellite receiving direct solar evergy 70 per cent of the time.
7. A small amount of sugar being heated in a test tabs, the sugar melts, turns brown in colour, gives off gases and finally dries to a solid black residue which can be identified as carbon.
8. Groups of rabbits were given graded doses of theendoto-xin under test so as to obtain data for calculating the dose required to produce a fever index of 40 cm2, a value which was shown to fall on the linear portion of the doseresponse curve.
9. The newborn elephant and the fallow deer can run with the herd shortly after they are born. By the age of 6 weeks the infant seal has been taught by his mother to navigate his watery world for himself.
10. The geologists teach us that coal has been formed millions of years ago from the enormous quantities of vegetation and trees. The process of their decay must have been very gradual but constant.
5. Технические термины. О переводе терминов
Термин это слово или словосочетание, которое может иметь отличное от обиходного значение в зависимости от области науки и техники, в которой оно употребляется. Термин может быть простым, состоящим из одного слова (switch 'выключатель') и сложным термином-словосочетанием (automatic switch 'автоматический выключатель', high-speed circuit breaker 'быстродействующий выключатель'). Например, слово face как существительное имеет обиходное значение 'лицо'; широкое техническое значение его'поверхность'; в геометрии его значение'грань'; в строительном деле 'фасад', 'облицовка'; в горном деле'забой', 'лава'. Но как это естественно для английского языка, то же слово face может выступать и как глагол; в этом случае основное значение его (обиходное значение) 'стоять напротив чего-либо'; в металлообработке это термин, означающий 'шлифовать'; в строительном деле 'отделывать', 'облицовывать', 'покрывать'.
Соблюдение следующих правил может помочь при переводе терминов:
1. В специальном тексте каждое слово, даже очень хорошо знакомое, может оказаться термином. Так, в морском деле man-of-war значит не 'солдат', а 'военный корабль'; в тексте по механике no play is admitted надо переводить не 'играть нельзя', а 'люфт не допускается'; в тексте по экономике выражение staple sorts, даже если речь идет о сырье для текстильной промышленности, может значить не 'штапельные сорта', а 'основные экспортные сорта'; shoe 'колодка' в описании тормозной системы, для электропоезда 'лыжа токоприемника', для гусеницы 'звено'; dead это 'обесточенный' в электромеханике, 'глухой', т.е. 'несквозной', в машиностроении и строительстве; 'использованный', когда речь идет о растворах, газе и т.п. Переводя техническую литературу, особенно по малознакомой тематике, надо всегда помнить об этой многозначности. Отсюда следует второе правило:
2. Пользуйтесь при переводе специальными техническими словарями. Следует считать неразумной попытку переводить без словаря; это выглядело бы так же странно, как если бы мастер пытался научиться работать без инструмента. Как бы ни была велика память, можно натолкнуться на незнакомый или малознакомый термин или известный термин в совершенно новом значении. При многозначности слова следует брать то его значение, которое принадлежит соответствующей области техники.
3. Может оказаться, что ни одно из значений слова, найденных вами в словаре, не подходит. Это значит, что некоторые значения слова не зафиксированы в словаре. В таком случае вывести из затруднения может хорошее чувство языка, так называемая языковая догадка, но в первую очередь понимание того, о чем идет речь. Поэтому знакомство с соответствующей отраслью техники, хотя бы по популярным пособиям, или консультация специалиста, имеют огромное значение для правильного перевода.
6. Терминологические трудности
Развитие науки и техники сопровождается появлением новых понятий, новых определений и терминов.
Старые термины иногда приобретают новый смысл, подчас самый неожиданный. Появляется многозначность отдельных терминов, которая создает значительную трудность при переводе.
Так, кроме 'металл' слово metal теперь означает: 'балласт', 'щебень'; 'расплавленное стекло', 'стекломасса'; 'рельсы' и др.
Слово leg, кроме значений 'нога', 'лапа', 'опора', имеет еще значения: 'стержень магнитопровода', 'фаза', 'плечо трехфазной системы', 'сторона шва' (при сварке) и др.
В качестве терминов используются части человеческого тела, животных ('голова', 'плечо', 'ребро', 'хвост', 'клюв'), элементы жилищ ('пол', 'стена', 'потолок') и многие др. Такие быстроразвивающиеся области техники, как радиоэлектроника, производство счетно-решающих машин, автоматика и другие, связаны с появлением многих новых терминов.
Ниже приводятся некоторые из современных методов создания терминов.
1. Вкладывание нового смысла в существующие термины.
Термин |
Обычное значение |
Новое или дополнительное значение |
hardening |
закалка |
прочность |
hardware |
стальные изделия |
аппаратура, оборудование |
challenge |
вызов |
проблема, перспектива |
history |
история |
изменение, закономерность развития |
bleed |
брать кровь |
отбор пара (из турбины) |
package |
пакет |
агрегат, установка |
bug |
клоп |
дефект, неполадки, устранение неполадок |
2. Транслитерация.
Метод транслитерации передача букв английского языка посредством букв русского языка находит широкое распространение в физике, химии, медицине, космонавтике: лазер, радар, голография, грейдер и т.д.
3. Создание новых терминов путем конверсии.
а) Примеры превращения существительных в глаголы:
Существительное |
Глагол |
Новое значение |
doctor врач |
to doctor |
Ремонтировать |
motor двигатель |
to motor |
1. механизировать; 2. работать как двигатель |
wire проволока |
to wire |
1. собрать схему; 2. снабдить электропроводкой |
handle ручка |
to handle |
1. управлять (поездом); 2. погружать, выгружать |
б) Примеры превращения глаголов в существительные:
Глагол |
Существительное |
Новое значение |
to break through прорваться |
Breakthrough |
важное научное открытие или достижение |
to spin off раскрутить |
spinoff |
сопутствующий (побочный) результат |
to throw away выбросить |
throwaway |
бесплатная рекламная брошюра |
4. Создание новых терминов при помощи префиксов и суффиксов:
а) Префиксы.
Создано много гибридных терминов при помощи префиксов:
inter-: |
interaction |
взаимодействие |
interface |
интерфейс; сопряжение |
|
interlock |
блокировка |
|
mini-: |
minicar |
малогабаритная автомашина |
minicomputer |
миникомпьютер |
|
re-: |
to refuel |
добавить топливо |
to remoter |
сменить двигатель |
|
rerun |
повторный пробег |
б) Новые суффиксы -ry, -ship, -wise:
Circuitry |
схемное решение, комплекс схем |
Rocketry |
ракетные устройства |
Workmanship |
мастерство, квалификация |
Manpowerwise |
исходя из рабочей силы |
Percentagewise |
считая в процентах |
5. Создание новых терминов при помощи словосложения:
motel мотель (автомашина + гостиница) = motor + hotel; escalator эскалатор (поднимающий элеватор) = escalating elevator; duraluminium дюралюминий (прочный алюминий) durable aluminium.
6. Создание новых терминов путем сокращения слов.
В последнее время создано очень большое количество терминов, представляющих собой однословный вариант многословных терминов, т.е. терминов, составленных из первых (или первых двух) букв разных слов. Таким образом, появился класс терминов, получивших название акронимов. Многие акронимы стали интернациональными, но появилось также очень много «фирменных» акронимов, а также акронимов, совпадающих по написанию с обычными известными словами.
Пример из практики: В лаборатории был создан прибор, получивший название в виде громоздкого термина solid-state monolithic integrated circuit полупроводниковая монолитная интегральная схема. Вскоре длинный термин сократился, сначала до monolithic integrated circuit, затем до integrated circuit и, наконец, до circuit. Но circuit слишком многозначный термин, и кто-то предложил назвать прибор словом chip, которое стало общепринятым термином. Даже в русском языке он принят как чип.
Акроним это термин, составленный из первых (иногда из первых двух) букв многословного термина.
«Классические» акронимы:
Английский термин |
Расшифровка |
Русский термин |
radar |
radio detection and ranging |
радар |
laser |
light amplification by stimulated emission of radiation |
лазер |
Акронимы, сходные, по орфографии с известными английскими словами:
Английский термин |
Расшифровка |
Русский термин |
GIRLS |
generalized information retrieval and listing system |
информационно-поисковая система на машине IBM-1401 |
BOLT |
beam of light transistor |
оптический транзистор |
INCH |
integrated chopper |
прерыватель на интегральной схеме |
EAR |
electronic audio recognition |
электронно-звуковое распознавание |
SOAP |
symbolic optimal assembly program |
эффективная программа трансляции с символического языка фирмы IBM |
SOLOMON |
simultaneous operation linked with ordinal modular network |
параллельная работа, с порядковой модульной сетью |
IDIOT |
instrumental digital online transcriber |
устройство для воспроизведения данных цифровых приборов в реальном времени |
EVA |
electronic velocity analyser |
электронный анализатор скорости |
Разные термины для выражения одного и того же понятия в Англии и в США:
В Англии |
В США |
Русский перевод |
bitumen |
Asphalt |
асфальт |
paraffin |
Kerosene |
керосин |
regulation |
Monitoring |
регулирование |
spanner |
Wrench |
ключ |
lift |
Elevator |
лифт |
petrol |
gasoline, gas |
бензин |
lorry |
Truck |
грузовой автомобиль |
underground |
Subway |
метро |
calorific value, C.V. |
heating value, BTV value |
теплота сгорания, теплотворная способность |
railway |
Railroad |
железная дорога |
shelf |
Rack |
полка |
subway |
tunnel |
подземный переход |
excavator |
shovel dredge |
Экскаватор |
УПРАЖНЕНИЯ НА ЛЕКСИЧЕСКИЕ ТРУДНОСТИ ПЕРЕВОДА АНГЛИЙСКОЙ НАУЧНОЙ ИТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ
Упражнение 1. Переведите предложения на русский язык:
1. In this way each of the waveform gates is switched on in turn for one line period.
2. A mechanical method was substituted for an electric one.
3. This rate, formerly in general use, is now reserved for manual calls.
4. The question arises whether rocks are all natural combinations of mineral matter.
5. Given ferrite-core material, very good transformers can be made.
6. However simple the basic principle of the approach may seem, in many situations such an approach is not used.
7. In the preceding discussion the availability of wideband transformers was assumed.
8. The use of metals is affected by the available ore resources, the cost of extraction and refining, and the way in which they can be employed to practical advantage.
9. Low anode capacitance is of course essential.
10. The prune purpose of giving the computer a daily health check is preventive rather than corrective.
Упражнение 2. Переведите предложения на русский язык:
1. The lower the thrust the longer the smoothing tune can be.
2. Contact for 2 hours was necessary for the 10 2,5dilution to effect significant receptor modification.
3. The average repeater spacing is therefore 16.2 nautical miles (30 kilometres).
4. The question now arises as to how the behaviour of metals is affected by the changes in temperature.
5. The calculation of the correlation of the noise coefficients is now a great deal more involved.
6. The plasticity of steel, whether at room temperature or at elevated temperatures, allows it to be worked either hot or cold.
7. Both a random error channel and a channel with burst errors are considered.
8. The region surrounding a magnet, in which appreciable magnetic forces exist is known as the magneticfleled.
9. Figure 10 illustrates how this self-checking is accomplished.
10. During the remainder of each line period the amplifier operates in a normal manner.
Упражнение 3. Переведите предложения на русский язык:
1. In this presentation one should follow a logical rather than a historical order, though referring to the historical aspects where they are of interest.
2. The plasma is generated in a glass tube by a continuous r. f. discharge at a frequency of 50 megahertz.
3. The charge of an atom is not affected by the number of neiitrons present but depends on the balance between electrons and protons.
4. It remains to be established if the opening-angle distribution depends on the declination of the region.
5. Experience shows that work study does in fact provide one of the most valuable means of improving production efficiency.
6. With the exception of this cell, the data are well fitted to a Poisson distribution with a mean of 19.
7. The increasing demand for oil can only be met by the application of the most efficient methods for its extraction and subsequent treatment.
8. Separate groups of lines for the rotary equipment are no longer justified.
9. The qualitative examination of an organic compound is followed by a quantitative analysis.
10. Such impulse noise is experienced in a wide range of communications media.
7. Работа со словарем
Каждый словарь имеет свой порядок построения, свою систему условных обозначений и сокращений, которые объясняются в предисловии к словарю. Части речи в словарях, как правило, обозначаются сокращенно латинскими буквами. Только после того, как определена грамматическая функция слова и установлено, какой частью речи оно является, можно отыскивать его значение.
Слова в словаре расположены в строго алфавитном порядке. Поэтому для пользования словарем нужно твердо знать порядок букв, принятый в английском алфавите. Слово следует отыскивать не только по первой букве слова, но и по всем его последующим буквам. В верхнем углу каждого столбца даются три индексные буквы, по которым легче определить, следует ли искать слово на данной странице. Например, слово surface находится на странице, имеющей индексные буквы sur.
Слова в словаре даются в их исходной форме: для имени существительного общий (именительный) падеж единственного числа; для прилагательного и наречия положительная степень; для глагола неопределенная форма (инфинитив).
Исходную форму слова мы устанавливаем, отбрасывая его грамматическое окончание. В английском языке словоизменительных суффиксов пять: -s, -(e)s, -(е)r, -(e)st, -(e)d, -ing. Следует помнить основное правило, что при отбрасывании суффикса слово не должно изменяться в чтении. Например, чтобы найти исходную форму слова produced, надо отбросить лишь окончание d, а отнюдь не ed, так как иначе вместо produce основа слова станет читаться produc (такого слова в английском языке не существует).
Как в русском, так и в английском языке слово может быть многозначным. В англо-русских словарях против каждого английского слова в большинстве случаев приводится несколько значений этого слова на русском языке. Среди них вы должны отыскать подходящее для данного контекста, т.е. адекватное слово. Дополнительные значения полезно выписывать только тогда, когда они поясняют первое значение, т.е. дают разные синонимы, или уточняют его. Например, в словаре против слова waste дается ряд значений:
v истощать, истощаться, терять напрасно
п потери, пустая порода, отходы
Если в словаре не дается значения слова, которое подходило бы к данному контексту, следует самостоятельно подобрать такое русское слово, которое наиболее отвечало бы общей мысли переводимого предложения, характеру текста и стилю русской речи.
При этом рекомендуется исходить из основного значения английского слова, а также из значения, наиболее близкого к отыскиваемому. Например, из нескольких значений слова maintenance 'уход', 'обслуживание', 'ремонт' следует отобрать значение, наиболее близкое в данном техническом тексте'содержание', 'эксплуатация'.
Сочетание first cost следует перевести не 'первая стоимость', а 'первоначальные затраты', 'себестоимость'.
Не все производные слова включаются в словарь. Если в словаре не указано значение производного слова, его можно установить на основе правил словообразования, исходя из значения слова-основы. Например, значение наречий repeatedly, necessarily определяем в соответствии с правилами словообразования: repeat повторять, repeated повторный, repeatedly повторно, неоднократно; necessary необходимый, necessarily неизбежно.
Так же определяется значение прилагательных unpredictable, unreliable. Отбрасывая приставку и суффикс, определяем значение слова-основы: predict предсказывать, предвидеть, rely полагаться на. На основании значения суффикса -able способный, умелый, могущий устанавливаем значение слов unpredictable непредвиденный, unreliable ненадежный.
Значение слова, подходящее для данного контекста, не всегда стоит в словаре первым. Следует внимательно просмотреть все гнездо, исходя при отборе значения из общего смысла всего высказывания.
Групповые предлоги следует искать по основному слову, просматривая все значения этого слова в окружении предлогов или в сочетании с другими словами. Например, для определения значения сочетаний in spite of, in accordance with ищем слова spite, accordance. Когда находим их, смотрим, нет ли специального значения для группового предлога, и находим in spite of несмотря на, in accordance with в соответствии с, согласно.
Идиоматическим выражением называется такое выражение, значение которого не выводимо из значения его составных частей. Дословный перевод составляющих его слов может привести к искажению смысла. Значение идиоматического выражения определяется по словарю, где его следует искать в статье на основное смысловое слово. Так, например, a rule of thumb не 'правило большого пальца', а 'правило, установленное практикой', 'прием, основанный на опыте', поэтому этот оборот можно перевести фразой 'практикой установлено'.
Последовательность работы над текстом при переводе с английского языка на русский
1. Прочитать весь текст.
2.Разметить текст, выделяются непонятные термины и словосочетания. Их значения желательно раскрыть до перевода с учетом контекста.
3.Выделиться и жаргонные выражения, а также сокращения, подлежащие выяснению.
4. Англо-американские неметрические меры перевести в метрические.
5. Сделать полный письменный перевод текста.
6. Просмотреть текст перевода, и освободить его от несвойственных русскому языку оборотов и терминов.
Для ускорения и облегчения перевода рекомендуется сделать сначала весь перевод, оставляя трудные места и слова для последующего выяснения.
ТРЕНИРОВОЧНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА
TEXT 1. LARGE NUMBERS
Vocabulary
million миллион
figure цифра
nought ноль
Earth Земля
milliard миллиард
planet планета
Pluto Плутон
average среднее
1. A million is a thousand times a thousand. It has seven figures-one followed by six noughts. 2. The distance from the Earth to the planet Pluto is about 6 milliard kilometres. 3. The average distance from the Earth to the Moon is three hundred eighty-four thousand four hundred kilometres. 4. A milliard is a number written with ten figures. 5, The Earth is an average of 149 million five hundred thousand kilometres away from the Sun.
TEXT 2. A STRAIGHT LINE
Vocabulary
straight line прямая
to mark отметить '
point точка
to intersect пересекаться
to draw начертить
segment отрезок
locate расположить
equal равен
to one another между собой
twice the length of вдвое длиннее, чем
In the straight line ВС mark point A. The straight lines AB and CD intersect in point 0. Draw a segment the length of which equals 3.1 (three point one) cm. The segments AB, ВС and DE, located in one straight line, are equal to one another, but the segment CD is twice the length of the segment DE.
Fig. Geometrical figures
Выполните следующие действия?
Draw: a straight line, a curve, a circumference with a radius of 1 cm, a right angle, a triangle and a square.
Divide: a straight line into several segments.
Connect: any two points of the circumference with a chord.
Put some points: within a circle and on the surface of a sheet of paper outside the circle.
TEXT 3. ACUTE AND OBTUSE ANGLES
Vocabulary
angle угол
obtuse тупой
mutually perpendicular взаимно перпендикулярный
right angle прямой угол
adjacent смежный
acute острый
The angle ABC is an obtuse angle. The straight lines EF and KL are mutually perpendicular. The angles A1B1C1 (A sub one, В sub one, С sub one), A'B'C' (A prime, В prime, С prime) are right angles. The straight lines AC and BD intersect and form adjacent angles. One adjacent angle is an acute angle, the other angle is an obtuse angle.
TEXT 4. EVAPORATION
Vocabulary
evaporation испарение
to observe наблюдать
pan противень
brine соляной раствор
to evaporate испарять
to boil кипятить
to remain оставаться
bottom дно
vessel сосуд
to prove доказывать
common обыкновенный, обычный; общий
solution раствор
It may be observed that when the water of a pan of brine is evaporated by boiling, crystals of salt remain on the bottom of the vessel. This experiment proves that common salt crystals are formed by the evaporation of a solution.
TEXT 5. SUBLIMATION
Vocabulary
sublimation возгонка
iodine йод
steel-grey серо-стальной (цвет)
solid твердое вещество
readfly легко
to vaporize испарять
violet фиолетовый
to allow to cool дать остыть
solid state твердое состояние
vapour state парообразное состояние
liquid жидкость
saturated solution насыщенный раствор
potassium nitrate азотнокислый калий, калиевая селитра
substance вещество
precipitation осаждение
crystallization крисгал-лизация
Iodine, a steel-grey coloured solid, readily vapourizes when heated. The vapour is violet in colour. If the vapour is allowed to cool, it passes directly back into the solid state. This process of passing from the solid state to the vapour state and then back to the solid state without the formation of a liquid, is called sublimation. If a saturated solution of potassium nitrate is heated and then allowed to cool, crystals of the substance form on the bottom of the vessel. These are formed by precipitation, which takes place during the cooling process. The examples just given illustrate very well the methods of crystallization.
TEXT 6. CRYSTALLIZATION
Vocabulary
geometrical solid геометрическое тело
made by a natural process образующийся в естественных условиях
to absorb поглощать
to unite chemically вступать в химическое соединение
water of crystallization кристаллизационная вода
for example например
washing soda стиральная сода
to give up отдавать
to expose подвергать (действию)
to be reduced to powder превратиться в порошок
efflorescent выветривающийся
efflorescence выветривание
What is a crystal?
A crystal is a geometrical solid made by a natural process. Many substances absorb water from solutions when they crystallize; that is, they unite chemically with a definite proportion of water.
The water with which any substance unites during the process of crystallization is called the water of crystallization.
Certain crystal substances, for example, washing soda, give up their water of crystallization when they are exposed to air; they are then reduced to powder. Substances that have this property are called efflorescent, and the process is called efflorescence.
TEXT 7. DELIQUESCENCE
Vocabulary
deliquescence расплывание
moisture влага
impurities примеси
table salt поваренная соль
to tend иметь тенденцию
to solidify твердеть
opening отверстие
salt shaker солонка
to clog закупориваться
damp влажный
to become wet стать влажным
to dissolve растворяться
Certain other substances absorb moisture from the air when they are exposed to it; these are said to be deliquescent. The impurities often present in common table salt are typical of this class of substances. Because these impurities tend to solidify upon absorbing moisture from the air the openings of a salt shaker clog during damp weather.
A substance that absorbs moisture from the air and becomes wet or dissolves in the moisture, is called deliquescent.
TEXT 8. SUSPENSIONS
A
Vocabulary
suspension суспензия
watery водный
to state утверждать, констатировать
molecule молекула
with the naked eye невооруженным глазом
to distinguish различать
to travel проходить
In explaining the watery solutions of sugar, it has been stated that the water of such solutions divides the sugar into particles, called molecules, so small that they cannot be seen with the naked eye. These molecules are distinguished by the great speed at which they travel. Molecules, which are found in all substances, travel fastest in gases, less rapidly in liquids, and very slowly in solids.
В
Vocabulary
recently недавне
to believe верить, считать
have come to пришли к тому
mixture смесь
to behave вести себя
to combine соединяться)
solvent растворитель
solute растворенное вещества
true solution идеальный раствор
Scientists have recently come to believe that molecules in solutions and in liquid mixtures behave very much as they behave in gases, liquids, and solids. For instance, when two substances, such as sugar and water, are combined by dissolving, the particles of the solvent divide the particles of the solute, and the two kinds of particles then mix freely. This is a true solution.
C
Vocabulary
to bear in mind помнить
sand песок
to stir перемешивать
violently сильно
to effect осуществлять; получать
finally в конце концов
to settle осаждаться
agitation перемешивание
to cease прекращать
It should be borne in mind, however, that a suspension, which is another kind of liquid mixture, greatly differs from a solution. A suspension may be demonstrated by placing some sand in a glass of water and then stirring the mixture violently for a moment. If this the two substances mix but no solution is effected. The particles of sand, being larger than any of the particles of the true solution, mix for a while, but since they move about less freely, they finally settle on the bottom when the agitation of the mixture ceases.
TEXT 9. EMULSION, COLLOIDS
A
Vocabulary
insoluble нерастворимый
is effected сделан, приготовлен
emulsion эмульсия
salad салат
dressing приправа
oil масло
vinegar уксус
colloidal коллоидальный
to appear - clear казаться прозрачным
under ordinary conditions в обычных условиях
to subject подвергать
powerful мощный
illumination освещение
plainly легко
completely полностью
homogeneous однородный
If a mixture of two liquids, each insoluble in the other, is effected, the result is called an emulsionjSalad dressing, made by mixing oil and vinegar, is an emulsion.
The fourth type of liquid mixture, called a colloidal solution, differs from any of those already described. Like a true solution, a colloidal solution appears clear when looked at under ordinary conditions. When, however, it is subjected to a powerful illumination, one can see plainly that it is not completely homogeneous.
В
Vocabulary
fail to coagulate не коагулируют
to a degree до величины, степени
sufficient достаточный
it is believed счятают
property свойство
colloid коллоид
is due to the fact объясняется тем
electrical state наэлектризованное состояние
are similarly charged одинаково заряжены
hydrochloric acid соляная кислота (НС1)
neutralize нейтрализовать
precipitation осаждение
Colloidal substances, of which there are many examples among natural products, do not, therefore, form true solutions. Indeed, they fail to coagulate or to crystallize to a degree sufficient for filtration. It is believed that this property of colloids is due to the fact that all the particles are in an electrical state, in which they are similarly charged. The addition of common salt or hydrochloric acid to certain colloidal solutions serves to neutralize the electrical state and so brings about 'precipitation.
C
Vocabulary
nature природа
cell клетка
sap сок (растений)
rubber tree каучуконос
proteins протеины
tremendous огромный
artificial искусственный
tanning дубление кожи
dyeing красильное дело
Colloids exist in nature in the cells of plants and animals, in the sap of certain plants, among which is the rubber tree, and in the class of foods called proteins. Colloids have recently come to be of tremendous importance in certain manufacturing processes, including the making of glass, rubber, artificial silk, tanning leather and dyeing.
ПРАКТИКА ПЕРЕВОДА ТЕХНИЧЕСКИХ ТЕКСТОВ И РАБОТЫ С НИМИ
TEXT 1
Предтекстовые упражнения к тексту 1
I. Переведите на русский язык следующие интернациональные слова и словосочетания:
industrial processes, mathematical, cybernetics, control, information, theoretical principles, technical cybernetics, algorithm, instruction, command, signal, communication, channel, physical systems, transmission function, optimum, parameters, criteria, categories, program, arithmetical, operations, code, indices, automatic control, specialist
II. Переведите на русский язык следующие глаголы:
to create, to design, to solve, to define, to refer to, to ensure, to develop, to process, to actuate, to modify, to assign, io embrace, to yield, to translate, to adopt, to work out, to employ, to fulfil, to describe, to investigate, to imply, to accomplish, to elaborate, to reflect, to insert, to control, to secure, to realize, to produce, to amplify, to feed, to follow, to utilize, to handle, to direct, to pave the way, to impose, to call for, to signify
III. Переведите на русский язык следующие словосочетания:
high-speed machines, automatic control, live systems, outcome of events, phenomenon under study, broader sense, engineering sciences, realm of knowledge, closed-loop communication, complicated task, profound research, elaborate designing, working hypotheses, control algorithms, reproduction of information, subsequent processing, quantitative relationship, linking together, control loop, efficient operation, appropriate transducers, initial conditions, derived solution, control elements, abrupt changes, qualitative changes, correct choice, optimum process, internal potentialities, related commands, unified system, final control elements, school of thought, general-purpose, special-purpose
IV. Переведите текст с английского языка на русский со словарем.
Computers and cybernetics
1. The computers or high-speed electronic machines of today have created entirely new technical possibilities in automatic control of industrial processes. First designed for solving mathematical problems, they soon paved the way for a new field of sciencecybernetics that studies general principles of control both in live and non-live systems.
2. The importance of cybernetics is particularly great in the sphere of engineering sciences. A newly developed field of knowledge is technical cybernetics. Its objectives are to control automatic industrial processes, to study problems of transmission of information and to develop new principles of automatic control.
3. The development of a control computer begins with the study of the objects or units to be controlled. This is followed by the development of working hypotheses about the character of processes taking place in the units, and finally, elaboration of control algorithms.
4. The quantitative relationships of the process being controlled are described by mathematical equations linking together certain functions, some of which are known and others are to be found.
5. The computing device is inserted into the automatic control circuit and made to find optimum solutions to the above-mentioned equations, and control the process, securing the most efficient operation on the basis of computed results.
6. The unit being controlled has transducers which determine the initial conditions and values in the equations being solved.
7. Using the optimum solutions the computing unit of the machine produces the data necessary to form the control signals. The control elements are actuated by operational units specially designed for the purpose. The modified process variables are again fed to the computing device and the cycle of control is repeated.
8. One of the main problems of technical cybernetics is the development of control algorithms to be used in processing and control of information flows. The algorithms worked out for employment in control machines are called programs. These are based on subdivision of the computation process into simple arithmetical operations and on determitiation of the logical operations to be performed with a view to fulfil ths program which gives the sequence of the machine's operations, and must be coded or expressed in the adopted code system.
9. Two systems of computers are now created for control computer design. One of these is the development of general-purpose control machines which may have much wider application but require more complicated logical circuitry and a greater number of instructions and commands employed in the computer. This approach permits control of a great variety of industrial units with the aid of one and the same computer.
10. The second system utilizes modern microcomputer techniques to develop special-purpose machines designed to control a particular process. This leads to the creation of more easily operated, and low-cost control computers. Tests of some control computers manufactured for specific industrial units have shown their efficiency and quite sufficient reliability.
11. In the Soviet Union, both systems of control are applied. Extensive work is carried out in research and design to create special-purpose control computers. Centralized systems of automatic control for industrial plants by means of general-purpose computers are being created.
12. Electronic digital computers perform both arithmetical and logical operations, making it possible to govern processes under rather complicated conditions.
Mathematical devices of continuous action are employed in control machines to direct various technological processes.
13. Application of control computers in industry calls for a great advance in all related branches of science and engineering. Modern measuring instruments must ensure the desired speed and accuracy of measurement of all process variables and initial data necessary for solving a problem.
A considerable increase in the number of variables to be measured and exacting requirements of speed and accuracy of their measurement call for entirely new physical methods and metrological instruments. Control computers signify a tremendous advance in the development of automatic control systems for industrial processes.
V. Ответьте на следующие вопросы:
1. What are computers used for? 2. What is information and why do we need it? 3. What are the main parts of a computer? 4. What is an algorithm? 5. What types of computers are used today? 6. What is a program? 7. What is a command and how does a computer obey the command?
TEXT 2
Vocabulary
iron железо
railway track железнодорожный путь
steel сталь
finished product конечный продукт
iron ore железная руда
blast-furnace доменная печь
coke кокс
limestone известняк
raw materials сырье
shell кожух
plate плита, пластина
to rivet клепать
casing кожух
lining облицовка
firebrick огнеупор
bottom под (печи)
molten iron жидкое (расплавленное) железо
slag шлак
well колодец
water-cooled водоохлаждаемый
tuyere фурма
reduction восстановление
iron oxide окись железа
carbon monoxide окись углерода
poisonous constituent ядовитый компонент
coal gas угольный газ
brittle хрупкий, ломкий
impurity примесь
carbon углерод
chromium хром
manganese марганец
heat treatment термообработка
tempering отпуск (стали)
open-hearth process выплавка стали в мартеновских печах
Bessemer process бессемеровский процесс
copper медь
zinc цинк
lead свинец
bauxite боксит
low strength небольшая (низкая) прочность
resistance to corrosion стойкость против коррозии
casting литье, отливка
gear-box зубчатая передача
piston поршень
cylinder head головка цилиндра
sulphur сера
sulphide окись серы
galvanizing цинкование
to rust ржаветь
tin олово
acid кислота
I. Переведите на русский язык следующие словосочетания:
finished product; iron ore; iron plates; molten iron; water-cooled; blast-furnace; carbon monoxide; raw materials; pig-iron; carbon content; heat treatment; abundant metal; aluminium alloy; galvanized iron; poisonous constituent
II. Переведите на русский язык:
to extract |
is extracted |
to feed |
is fed |
to run off |
is run off |
to remove |
is removed |
to work into |
is worked into |
to vary |
is varied |
to enrich |
is enriched |
to roof |
is roofed |
to coat |
is coated |
Iron and other metals
Thousands of miles of railway track form an intricate network of steel over the world, helping to carry daily billions of freight for different industries. Bridges, motorcars, lorries, ships, locomotives, cutlery, and razor blades are but a few of the many products turned out by the steel industry.
But where does all this steel come from? How is it made?
The extraction of iron
Steel is the finished product in an industry which first makes pig iron from iron ores. These ores are abundant, and therefore iron is cheap to produce.
Iron is extracted in a blast-furnace. Iron ore, coke and limestone are fed continuously(1) into the top of the blast-furnace. The raw materials fall into the top of the tall cylindrical furnace, which may be over 100 feet high. The outer shell of the furnace is of iron plates riveted together, and inside this casing is a lining of firebrick about eighteen inches thick, which is capable of withstanding high temperatures. The furnace is approximately twenty feet wide at its maximum width, and only eight feet wide at the narrowest part, i.e., at the bottom, where molten iron and slag fall through into a well, from which the two materials are run off at intervals. About six feet from the base of the furnace, six narrow cylindrical water-cooled devices, called tuyeres,(2) force a blast of air at about 800°C into the furnace. The hot gases leaving the top of the furnace are used to heat the air passing through the tuyeres.
Reduction of iron oxide
The main reaction in the blast-furnace involves the reduction of iron oxide by carbon monoxide. This, you remember, is the poisonous constituent of coal gas. Its formula is CO, and the reduction of iron oxide is represented thus:
iron oxide + carbon monoxide = iron + carbon dioxide (The sign + is used here to signify "and", or "together with", while the sign = means "yields".):
You will no doubt (3) realize why this is reduction. The carbon monoxide removes oxygen from the iron oxide.
The whole process is continuous, raw materials being fed in at the top (4) while molten iron and slag flow from the bottom. Short of mechanical breakdown,(5) the furnace may be run in continuous operation for years, when it is shut down for replacement of the firebrick linings.
The iron at this stage is rather brittle because of impurities, principally carbon.
By varying the amount of carbon present in iron,(6) and by the addition of other metals like chromium and manganese in small quantities, the nature of the iron is further changed to form steel. Various heat treatments, or tempering, will also affect the nature of steel.
Most of the steel produced in the world is now made by the open-hearth process. Pig-iron and scrap steel, together with small quantities of other metals, are heated in large shallow furnaces. The second important process for making steel is the Bessemer process, in which air enriched in oxygen is blown through molten pig-iron at a high temperature.
Some other important metals
Without doubt,(7) iron is the most important of the metals, and much more of it is produced than of all other metals put together.(8) However, there are other metals which are very common, and of great usefulness. Aluminium is one such metal; copper, zinc and lead are others.
Aluminium is the most abundant metal in the earth's crust, being present to the extent of 8% (9) twice that of iron. The metal occurs principally as the oxide, bauxite, A12O3, and is extracted from it by an electrolytic process.
Aluminium has the advantage of being a very light metal, although when it is pure it has a rather low strength. However, the addition of small quantities of other metals in the making of alloys produces materials which are light but very strong. The aircraft industry, with its demand for very resistant light metals, has helped in the development of aluminium; until today it is one of the commonest metals in industry. Low weight, and resistance to corrosion combine with its toughness to make aluminium very suitable for the bodies of vehicles and also for castingsgear-boxes, pistons, cylinder heads. In engineering also aluminium finds increasing uses. Aluminium has revolutionized our homes and industry.
Copper, lead and zinc are metals which occur in combination with (10) sulphur as sulphides. These metals have been known for a very long time, and each has its own uses. Lead is now a very expensive metal. At one time it was used extensively for roofing and for water piping because of its softness and resistance to corrosion, but copper and iron have taken its place. Copper, being a good conductor of electricity, is used a great deal for electrical wiring and cables. Zinc is used in the making (11) of dry batteries and in the process of galvanizing. In this, iron is dipped into molten zinc, which forms a protective layer on its surface, and so prevents rusting. Galvanized iron is used in sheets for roofing, etc., and also for buckets and dustbins. For food containers, the iron is coated with tin instead of zinc because tin is not subject to attack by acids (12) in food.
ПРИМЕЧАНИЯ:
(1) are fed continuously непрерывно подаются
(2) tuyere фурма
(3) no doubt несомненно, без сомнения
(4) raw materials being fed in at the top независимый причастный оборот, имеющий подлежащее, не совпадающее с основным подлежащим предложения. В русском языке такого оборота нет, поэтому его следует перевести отдельным предложением; '… и такое сырье подается сверху'. Такие обороты могут переводиться придаточными предложениями или независимыми предложениями, иногда со словами 'причем', 'при этом'.
(5) Short of mechanical breakdown при отсутствии механических поломок
(6) carbon present in iron углерод, присутствующий в железе
(7) Without doubt несомненно
(8) all other metals put together всех других металлов, взятых вместе
(9) being present to the extent of 8% зд. его содержание достигает 8%
(10) occur in combination with встречаются в виде соединений с
(11) is used in the making используется для производства
(12) is not subject to attack by acids не подвержен коррозии от действия кислот
TEXT 3
Vocabulary
beam балка
to bend сгибать
rods арматура
hooked ends загнутые концы
compression сжатие
tension растяжение
reinforced concrete железобетон
prestressed concrete предварительно-напряженный бетон
nut гайка
screw болт
Предтекстовые упражнения к тексту 2
I. Переведите на русский язык следующие глаголы и причастия:
to support |
supporting |
is supported |
to stretch |
stretching |
is stretched |
to pull |
pulling |
is pulled |
to tension |
tensioning |
is tensioned |
to place |
placing |
is placed |
To compress |
compressing |
is compressed |
to lengthen |
lengthening |
is lengthened |
to prestress |
prestressing |
is prestressed |
to fix |
fixing |
is fixed |
To prevent |
preventing |
is prevented |
to heat |
heating |
is heated |
II. Переведите на русский язык следующие словосочетания:
own weight, hooked end, chief weakness, along its length, interior part, dwelling-places
New building materials
When a horizontal beam is supported at each end (1) but not in the middle, it bends. The bending is caused by the beam's own weight and by the weight of anything that it has to support. When it bends, the bottom surface is normally in tension; (2) it is pulled in the direction of its length. If the total load is too heavy, the beam will break, and if it is a concrete beam, its chief weakness is in the lower surface, which is in tension.
Steel rods may be placed inside concrete beams while the mixture is still wet, and if these rods have hooked ends, they will grip the concrete (3) and tend to prevent stretching. The steel and concrete together make a good combination to resist compression and tension, and such material is known as reinforced concrete or ferro-concrete.
If the concrete is in the form of a beam which is to be used in a horizontal position, these rods can be placed inside it, but they need not go through the middle. Most of the tension will be along the lower surface, and therefore that is the best place for the rods.
Because concrete does not resist tension well,(4) a system is now in use in which it is not stretched. This is not as difficult to arrange as it seems to be. The concrete beanris compressed along its length by means of steel rods inside it; these rods remain in the beam and therefore the concrete is always compressed unless some greater force tries to pull it apart. As long as the beam is not lengthened more than it is already compressed, the concrete will never be in tension.
Suppose, for example, that the compression in the concrete (caused by the steel rods) is 1,000 pounds per square inch and that the force pulling the beam lengthways (5) when it is in position is 700 pounds per square inch. In that case the concrete is still compressed by a force equal to 300 pounds per square inch, and so it is not in tension at all.(6)
Such material is called prestressed concrete. Holes are often left in the beam when it is made; then the steel rods are placed in the holes and fixed at one end. Nuts on screws at the other end are turned to compress the concrete, or the beam may be compressed by powerful machinery.
There is another method of preventing tension from arising in a beam. If it is arched, and if its ends press against a firm abutment, any pressure on its top surface will tend to compress it instead of putting the lower edge in tension. This is therefore a good system to use with a concrete beam.
The steel rods which pass through an arch may themselves be straight, so that in the middle of the arch they are near the lower surface. If the beam is straight, the same kind of result may be obtained by allowing the rods to be curved or bent, so that they pass along the lower surfaces in the middle of the beam.
Prestressed concrete can be used where ordinary concrete would fail.(7) High buildings are now made with this material and its use has greatly increased. Smaller houses in the city gradually give place to big blocks owing to the great demand for land. In northern countries, where the weather is a constant nuisance to the citizens, even the streets may be roofed over.(8)
Concrete is a bad conductor of heat; moreover, it does not catch fire.(9) These are two great advantages in a building, and especially in a high building. Even if the furniture or the wooden floors are set on fire, and the surfaces of the concrete walls are heated, the interior parts of the walls do not become very hot for the concrete does not conduct heat. The danger of fire in dwelling places is therefore decreasing, and the use of electricity instead of gas and oil for lighting and heating helps in this matter.
ПРИМЕЧАНИЯ:
(1) is supported at each end имеет опоры на концах
(2) in tension в состоянии растяжения
(3) will grip the concrete схватят бетон
(4) does not resist tension well довольно плохо сопротивляется растяжению
(5) pulling the beam lengthways растягивающая балку в продольном направлении
(6) it is not in tension at all совсем без растяжения
(7) where ordinary concrete would fail где обычный бетон разрушится
(8) even the streets may be roofed over даже целые улицы могут быть перекрыты
(9) to catch fire загораться
III. Ответьте на следующие вопросы:
1. Why is it called reinforced concrete? 2. What is prestressed concrete? 3. What is concrete? 4. Why does concrete not catch fire?
UNIT 3. INDUSTRY
TEXT 1. SOURCES OF POWER
Vocabulary
mankind человечество
power энергия
machines механизмы, машины
communication связь
require требовать
obtain получать
fossil fuels окаменелые ископаемые
conventional простой, обычный
convert - преобразовывать
ever-lasting бесконечный
increase возрастать
utilizе использовать
promising обещающий
ocean tides океанские приливы
capacity мощность
efficiency эффективность
The industrial progress of mankind is based on power: power for industrial plants, machines, heating and lighting systems, transport, communication. In fact, one can hardly find a sphere where power is not required.
At present most of the power required is obtained mainly from two sources. One is from the burning of fossil fuels, i. e. coal, natural gas and oil. The second way of producing electricity is by means of generators that get their power from steam or water turbines. Electricity so produced then flows through transmission lines to houses, industrial plants, enterprises, etc.
It should be noted, however, that the generation of electricity by these conventional processes is highly uneconomic. Actually, only about 40 per cent of heat in the fuel is converted into electricity. Besides, the world resources of fossil fuels are not ever-lasting. On the other hand, the power produced by hydroelectric plants, even if increased many times, will be able to provide for only a small fraction of the power required in the near future. Therefore much effort and thought is being given to other means of generating electricity.
One is the energy of hot waters. Not long ago we began utilizing hot underground water for heating and hot water supply, and in some cases, for the generation of electricity.
Another promising field for the production of electric power is the use of ocean tides. Our engineers are engaged in designing tidal power stations of various capacities. The first station utilizing this principle began operating in the Soviet Union on the Barents Sea in 1968.
The energy of the sun which is being used in various ways represents a practically unlimited source.
Using atomic fuel for the production of electricity is highly promising. It is a well-known fact, that one pound of uranium contains as much energy as three million pounds of coal, so cheap power can be provided wherever it is required. However, the efficiency reached in generating power from atomic fuel is not high, namely 40 per cent.
No wonder, therefore, that scientists all over the world are doing their best to find more efficient ways of generating electricity directly from the fuel. They already succeeded in developing some processes which are much more efficient, as high as 80 per cent, and in creating a number of devices capable of giving a higher efficiency. Scientists are hard at work trying to solve these and many other problems.
промышленный прогресс человечества
отопительные и осветительные системы
получается в основном из двух источников
паровые или водные турбины
линии передач
следует отметить, однако
высоко неэкономично
преобразуется в электричество
мировые запасы не бесконечны
с другой стороны
небольшая часть
другие способы получения энергии
энергия солнца
очень многообещающий
эффективность не так высока
получение электричества напрямую из топлива
TEXT 2. HYDROGEN SOURCE OF POWER
Scientists consider hydrogen a very promising energy source. The reserves of hydrogen are practically unlimited. Per unit of weight it contains almost three times more thermal energy than benzene. Besides, hydrogen can be used as fuel in transport, industry and home.
Hydrogen is easy to transport and store. It can be transported over large distances using conventional pipelines. It can be accumulated and kept for a long time either in conventional or natural reservoirs.
Scientists have found many ways of producing hydrogen basically from ordinary water. And large volumes of this fuel can be obtained from coal, whose global reserves are tremendous. There is also an idea of using nuclear power plants to generate hydrogen. Scientists hope to use the energy of the sun, wind and tides to obtain hydrogen.
In several countries car engines fed by hydrogen have been tested successfully. Tests have also shown that adding five to ten per cent hydrogen to benzene increases engine efficiency by 40 - 45 per cent.
What is still holding back the use of hydrogen as fuel, and what has to be done in order to apply it extensively in the economy? The main reason is that now it is more expensive than mineral fuels, but in the near future hydrogen can be made cheaper to obtain. This new kind of energy opens up new prospects in aviation, metallurgy and some other industries.
многообещающий источник энергии;
практически неисчерпаемы;
на единицу веса;
обычный трубопровод;
может накапливаться и храниться;
много путей получения водорода;
большой объем;
мировые запасы огромны;
энергия солнца, ветра и приливов;
работающие на водороде;
добавление от 5 до 10 процентов водорода;
тормозит использование водорода как топлива;
ближайшее будущее;
открывает новые перспективы.
TEXT 3. ATOMIC ENERGY
There are many sources of power. Wind and water are the oldest ones. For centuries coal, oil, wind and water were widely used by man. They were used to produce steam and electricity.
Our time is the age of atomic energy. Scientists of many countries have been working hard for more than a century to find out the secret of the atom. Now the energy of the atom is applied to all the fields of man's activity.
The atom is the smallest piece of the substance which can exist independently. Atoms are electrically neutral, having no electric charge in their normal state. An atom consists of electrons, protons and neutrons. An electron is very small and it has a very small mass. It is negatively charged. The nucleus consists of a number of protons, each with a single positive charge and one or more neutrons, which have no charge. The amount of electricity of any proton is exactly the same as that of an electron. That is why all the atoms are electrically neutral. The electrical nature of atoms is only evident when one starts breaking them into pieces, electrons and others.
At the same time with large atomic stations smaller mobile electricity producing units have been created based on the discovery of radioactive sources isotopes. Mobile nuclear installations may be carried by rail and then by transporters to the out-of-the-way regions even in areas having no roads. Such a station according to estimates can operate without being recharged for two years.
Today scientists are looking for new more efficient nuclear processes of producing energy. But it was only lately that the physicists understood that the process of producing tremendous energy by stars, including our Sun, was the very process they were looking for. Now we know that this thermonuclear process is called fusion and it takes place at fantastically high temperatures. It can be done only by imitating on the Earth the process that makes the Sun shine.
There are many difficult problems to overcome before thermonuclear power stations based on this process can become a reality, but the problem of fuel supply is the least of them: the oceans of the Earth are practically an inexhaustible source of deuterium which plays the decisive part in the fusion process and its extraction from sea water is neither complicated nor expensive.
In short, peaceful uses of atomic energy are vast but we must stop using it on weapons of mass annihilation.
TEXT 4. AUTOMATION
Vocabulary
automation автоматизация
previously ранее
sequence последовательность
assembly plant сборочный завод
nonmanufacturing непроизводственный
device устройство, прибор
resemble походить
efficiency эффективность
flyball governor центробежный регулятор
steam engine паровоз
household thermostat бытовой термостат
facilitate способствовать
punched перфорированный
aid помощь
dimension измерение, размеры
Automation is the system of manufacture performing certain tasks, previously done by people, by machines only. The sequences of operations are controlled automatically. The most familiar example of a highly automated system is an assembly plant for automobiles or other complex products.
The term automation is also used to describe nonmanufacturing systems in which automatic devices can operate independently of human control. Such devices as automatic pilots, automatic telephone equipment and automated control systems are used to perform various operations much faster and better than could be done by people.
Automated manufacturing had several steps in its development. Mechanization was the first step necessary in the development of automation. The simplification of work made it possible to design and build machines that resembled the motions of the worker. These specialized machines were motorized and they had better production efficiency.
Industrial robots, originally designed only to perform simple tasks in environments dangerous to human workers, are now widely used to transfer, manipulate, and position both light and heavy workpieces performing all the functions of a transfer machine.
In the 1920s the automobile industry for the first time used an integrated system of production. This method of production was adopted by most car manufacturers and became known as Detroit automation.
The feedback principle is used in all automatic-coneath mechanisms when machines have ability to correct themselves. The feedback principle has been used for centuries. An outstanding early example is the flyball governor, invented in 1788 by James Watt to control the speed of the steam engine. The common household thermostat is another example of a feedback device.
Using feedback devices, machines can start, stop, speed up, slow down, count, inspect, test, compare, and measure. These operations are commonly applied to a wide variety of production operations.
Computers have greatly facilitated the use of feedback in manufacturing processes. Computers gave rise to the development of numerically controlled machines. The motions of these machines are controlled by punched paper or magnetic tapes. In numerically controlled machining centres machine tools can perform several different machining operations.
More recently, the introduction of microprocessors and computers have made possible the development of computer-aided design and computer-aided manufacture (CAD and CAM) technologies. When using these systems a designer draws a part and indicates its dimensions with the help of a mouse, light pen, or other input device. After the drawing has been completed the computer automatically gives the instructions that direct a machining centre to machine the part.
Another development using automation are the flexible manufacturing systems (FMS). A computer in FMS can be used to monitor and control the operation of the whole factory.
Automation has also had an influence on the areas of the economy other than manufacturing. Small computers are used in systems called word processors, which are rapidly becoming a standard part of the modern office. They are used to edit texts, to type letters and so on.
Automation in Industry
Many industries are highly automated or use automation technology in some part of their operation. In communications and especially in the telephone industry dialling and transmission are all done automatically. Railways are also controlled by automatic signalling devices, which have sensors that detect carriages passing a particular point. In this way the movement and location of trains can be monitored.
Not all industries require the same degree of automation. Sales, agriculture, and some service industries are difficult to automate, though agriculture industry may become more mechanized, especially in the processing and packaging of foods.
The automation technology in manufacturing and assembly is widely used in car and other consumer product industries.
Nevertheless, each industry has its own concept of automation that answers its particular production needs.
15. непроизводственная система
TEXT 5. TYPES OF AUTOMATION
Vocabulary
equipment оборудование
sequence последовательность
initial первоначальный, начальный
investment инвестиция, вклад
to facilitate способствовать
rate скорость, темп
assembly machines сборочные машины
quantity количество
non-productive непроизводительный
changeover переход, переналадка
Applications of Automation and Robotics in Industry
Manufacturing is one of the most important application area for automation technology. There are several types of automation in manufacturing. The examples of automated systems used in manufacturing are described below.
1. Fixed automation, sometimes called «hard automation» refers to automated machines in which the equipment configuration allows fixed sequence of processing operations. These machines are programmed by their design to make only certain processing operations. They are not easily changed over from one product style to another. This form of automation needs high initial in vestments and high production rates. That is why it is suitable for products that are made in large volumes. Examples of fixed, automation are machining transfer lines found in the automobile industry, automatic assembly machines and certain chemical processes.
2. Programmable automation is a form of automation for producing products in large quantities, ranging from several dozen to several thousand units at a time. For each new product the production equipment must be re-
programmed and changed over. This reprogramming and changeover take a period of non-productive time. Production rates in programmable automation are generally lower than in fixed automation, because the equipment is designed to facilitate product changeover rather than for product specialization. A numerical-control machine-tool is a good example of programmable automation. The program is coded in computer memory for each different product style and the machine-tool is controlled by the computer programme.
3. Flexible automation is a kind of programmable automation. Programmable automation requires time to re-program and change over the production equipment for each series of new product. This is lost production time, which is expensive. In flexible automation the number of products is limited so that the changeover of the equipment can be done very quickly and automatically. The reprogramming of the equipment in flexible automation is done at a computer terminal without using the production equipment itself. Flexible automation allows a mixture of different products to be produced one right after another.
2. General understanding:
TEXT 6. ROBOTS IN MANUFACTURING
Vocabulary:
handling обращение
transfer передача, перенос
location местонахождение
pick up брать, подбирать
arrangement расположение
to utilize утилизировать, находить применение
gripper захват
to grasp схватывать
spot welding точечная сварка
continuous непрерывный
arc welding электродуговая сварка
spray painting окраска распылением
frame рама
spray-painting gun распылитель краски
grinding шлифование
polishing полирование
spindle шпиндель
manual ручной
labour труд
hazardous опасный
shift смена
Today most robots are used in manufacturing operations. The applications of robots can be divided into three categories:
Material-handling is the transfer of material and loading and unloading of machines. Material-transfer applications require the robot to move materials or work parts from one to another. Many of these tasks are relatively simple: robots pick up parts from one conveyor and place them on another. Other transfer operations are more complex, such as placing parts in an arrangement that can be calculated by the robot. Machine loading and unloading operations utilize a robot to load and unload parts. This requires the robot to be equipped with a gripper that can grasp parts. Usually the gripper must be designed specifically for the particular part geometry.
In robotic processing operations, the robot manipulates a tool to perform a process on the work part. Examples of such applications include spot welding, continuous arc welding and spray painting. Spot welding of automobile bodies is one of the most common applications of industrial robots. The robot positions a spot welder against the automobile panels and frames to join them. Arc welding is a continuous process in which robot moves the welding rod along the welding seam. Spray painting is the manipulation of a spray-painting gun over the surface of the object to be coated. Other operations in this category include grinding and polishing in which a rotating spindle serves as the robots tool.
The third application area of industrial robots is assembly and inspection. The use of robots in assembly is expected to increase because of the high cost of manual labour. But the design of the product is an important aspect of robotic assembly. Assembly methods that are satisfactory for humans are not always suitable for robots. Screws and nuts are widely used for fastening in manual assembly, but the same operations are extremely difficult for a one-armed robot.
Inspection is another area of factory operations in which the utilization of robots is growing. In a typical inspection job, the robot positions a sensor with respect to the work part and determines whether the part answers the quality specifications. In nearly all industrial robotic applications, the robot provides a substitute for human labour. There are certain characteristics of industrial jobs performed by humans that can be done by robots:
TEXT 7. METALLURGY
Some metals are mined in the native state. Among these are gold, silver, platinum, mercury, tin and copper. Even in the native metals, however, there is considerable foreign material, such as rock, gravel, sand and other impurities, which require removal.
Most of the metals, however, are found in the earth in oxide form. This oxide which may be mined with commercial profit is called ore. Ores of different metals are put through various refining processes to obtain the pure metal.
The more common impurities in iron ore are silica, titanium, and phosphorus. The ores which contain the smallest amounts of these impurities are the most valuable. Much silica and titanium are undesirable. Phosphorus and sulphur are undesirable too because of their adverse effect on iron and steel.
TEXT 8. METALS
Vocabulary
property свойство
metallurgy металлургия
separation разделение, отстояние
dense плотный
arrangement расположение
regularly регулярно, правильно
to slide скользить
malleable ковкий, податливый, способный деформироваться
bent pp of bend гнуть
to fracture ломать
ductile эластичный, ковкий
to draw волочить, тянуть
wire проволока
lead свинец
iron железо, чугун
grain зерно
to depend зависеть
size размер, величина
shape форма, формировать
composition состав
coarse грубый, крупный
treatment обработка
quenching закалка
tempering отпуск после закалки, нормализация
annealing отжиг, отпуск
rolling прокатка
to hammer ковать (напр, молотом)
extrusion экструзия
metal fatigue усталость металла
creep ползучесть
stress давление, напряжение
failure повреждение, разрушение
vessel сосуд, котел, судно
lathe токарный станок
milling machine фрезерный станок
shaper строгальный станок
grinder шлифовальный станок
to melt плавить, плавиться расплавить
to cast отливать, отлить
mould форма (для отливки)
Metals are materials most widely used in industry because of their properties. The study of the production and properties of metals is known as metallurgy.
The separation between the atoms in metals is small, so most metals are dense. The atoms are arranged regularly and can slide over each other. That is why metals are malleable (can be deformed and bent without fracture) and ductile (can be drawn into wire). Metals vary greatly in their properties. For example, lead is soft and can be bent by hand, while iron can only be worked by hammering at red heat.
The regular arrangement of atoms in metals gives them a crystalline structure. Irregular crystals are called grains. The properties of the metals depend on the size, shape, orientation, and composition of these grains. In general, a metal with small grains will be harder and stronger than one with coarse grains.
Heat treatment such as quenching, tempering, or annealing controls the nature of the grains and their size in the metal. Small amounts of other metals (less than 1 per cent) are often added to a pure metal. This is called alloying (легирование) and it changes the grain structure and properties of metals.
All metals can be formed by drawing, rolling, hammering and extrusion, but some require hot-working. Metals are subject to metal fatigue and to creep (the slow increase in length under stress) causing deformation and failure. Both effects are taken into account by engineers when designing, for example, airplanes, gas-turbines, and pressure vessels for high-temperature chemical processes. Metals can be worked using machine-tools such as lathe, milling machine, shaper and grinder.
The ways of working a metal depend on its properties. Many metals can be melted and cast in moulds, but special conditions are required for metals that react with air.
2. General understanding:
1. What are metals and what do we call metallurgy?
2. Why are most metals dense?
3. Why are metals malleable?
4. What is malleability?
5. What are grains?
6. What is alloying?
7. What is crystalline structure?
8. What do the properties of metals depend on?
9. What changes the size of grains in metals?
10. What are. The main processes of metal forming?
11. How are metals worked?
12. What is creeping?
3. Find the following words and word combinations in the text:
Свойства металлов
расстояние между атомами
правильное расположение
сильно отличаются по своим свойствам 5.кристаллическая структура
размер зёрен
форма зёрен
закалка
отжиг
волочение
прокатка
ковка
экструзия
структура и свойства зерна
горячая обработка
усталость металла
ползучесть металла
плавка и отливка в формы
способы обработки металлов
4. Complete the following sentences:
1. Metals are...
2. Metallurgy is...
3. Most metals are...
4. The regular arrangement of atoms in metals...
5. Irregular crystals...
6. The properties of the metals depend...
7. Metals with small grains will be...
8. ...controls the nature of the grains in the metal.
9. Alloying is...
10. All metals can be formed by...
11. Creep is...
12. Metals can be worked using...
5. Translate into English:
1. Металлы плотные материалы потому, что между атомами в металлах малое расстояние.
2. Металлы имеют кристаллическую структуру из-за правильного расположения атомов.
3. Чем меньше зерна, тем тверже металл.
4. Закалка и отжиг изменяют форму и размер зерен в металлах.
5. Легирование изменяет структуру зёрен и свойства металлов.
6. Металл деформируется и разрушается из-за усталости и ползучести.
TEXT 9. METALWORKING PROCESSES
Vocabulary
useful полезный
shape форма, формировать
rolling прокатка
extrusion экструзия, выдавливание
drawing волочение
forging ковка
sheet лист
to subject подвергать
amount количество
condition состояние, условие
perform выполнять, проводить
to harden делаться твердым, упрочняться
at least по крайней мере
common общий
billet заготовка, болванка
orifice отверстие
die штамп, пуансон, матрица, фильера, волочильная доска
cross section поперечное сечение
window frame рама окна
tube труба
hollow полый
initial первоначальный, начальный
thick-walled толстостенный
mandrel оправка, сердечник
impact удар
loosely свободно, с зазором
fitting зд. Посадка
ram пуансон, плунжер
force сила
gap промежуток, зазор
to determine устанавливать, определять
Metals are important in industry because they can be easily deformed into useful shapes. A lot of metalworking processes have been developed for certain applications. They can be divided into five broad groups:
During the first four processes metal is subjected to large amounts of strain (deformation). But if deformation goes at a high temperature, the metal will recrystallize that is, new strain-free grains will grow instead of deformed grains. For this reason metals are usually rolled, extruded, drawn, or forged above their recrystallization temperature. This is called hot working. Under these conditions there is no limit to the compressive plastic strain to which the metal can be subjected. .
Other processes are performed below the recrystallization temperature. These are called cold working. Cold
working hardens metal and makes the part stronger. However, there is a limit to the strain before a cold part cracks.
Rolling
Rolling is the most common metal working process. More than 90 percent of the aluminum, steel and copper produced is rolled at least once in the course of production. The most common rolled product is sheet. Rolling can be done either hot or cold. If the rolling is finished cold, the surface will be smoother and the product stronger.
Extrusion
Extrusion is pushing the billet to flow through the orifice of a die. Products may have either a simple or a complex cross section. Aluminium window frames are the examples of complex extrusions.
Tubes or other hollow parts can also be extruded. The initial piece is a thick-walled tube, and the extruded part is shaped between a die on the outside of the tube and a mandrel held on the inside.
In impact extrusion (also called back-extrusion) (штамповка выдавливанием), the workpiece is placed in the bottom of a hole and a loosely fitting ram is pushed against it. The ram forces the metal to flow back around it, with the gap between the ram and the die determining the wall thickness. The example of this process is the manufacturing of aluminium beer cans.
TEXT 10. DRAWING
Vocabulary
to pull тянуть
reduction сокращение
to achieve достигать
in series серия, последовательно
beyond выше, свыше
yield point точка текучести металла
to retain сохранять, удерживать
to bend гнуть
shearing обрезка, отрезание
edge край
to grip схватывать
lower die нижний штамп
upper die верхний штамп
forming operation операция штампования
dimension измерение, размеры
required необходимый
increase увеличение
open-die forging ковка в открытом штампе (подкладном)
hammering ковка, колотить
within внутри, в пределах
to enclose заключать
rod прут, стержень
bar прут, брусок
involved включенный
tolerance допуск
upsetting высадка, выдавливание
blow удар
coining чеканка
imprint отпечаток
clamp зажим
to hit ударять
Drawing consists of pulling metal through a die. One type is wire drawing. The diameter reduction that can be achieved in one die is limited, but several dies in series can be used to get the desired reduction.
Sheet metal forming
Sheet metal forming (штамповка листового металла) is widely used when parts of certain shape and size are needed. It includes forging, bending and shearing. One characteristic of sheet metal forming is that the thickness of the sheet changes little in processing. The metal is stretched just beyond its yield point (2 to 4 percent strain) in order to retain the new shape. Bending can be done by pressing between two dies. Shearing is a cutting operation similar to that used for cloth.
Each of these processes may be used alone, but often all three are used on one part. For example, to make the roof of an automobile from a flat sheet, the edges are gripped and the piece pulled in tension over a lower die. Next an upper die is pressed over the top, finishing the forming operation (штамповку), and finally the edges are sheared off to give the final dimensions.
Forging.
Forging is the shaping of a piece of metal by pushing with open or closed dies. It is usually done hot in order to reduce the required force and increase the metals plasticity.
Open-die forging is usually done by hammering a part between two flat faces. It is used to make parts that are too big to be formed in a closed die or in cases where only a few parts are to be made. The earliest forging machines lifted a large hammer that was then dropped on the workpiece, but now air or steam hammers are used, since they allow greater control over the force and the rate of forming. The part is shaped by moving or turning it between blows.
Closed-die forging is the shaping of hot metal within the walls of two dies that come together to enclose the workpiece on all sides. The process starts with a rod or bar cut to the length needed to fill the die. Since large, complex shapes and large strains are involved, several dies may be used to go from the initial bar to the final shape. With closed dies, parts can be made to close tolerances so that little finish machining is required.
Two closed-die forging operations are given special names. They are upsetting and coining. Coining takes its name from the final stage of forming metal coins, where the desired imprint is formed on a metal disk that is pressed in a closed die. Coining involves small strains and is done cold. Upsetting involves a flow of the metal back upon itself. An example of this process is the pushing of a short length of a rod through a hole, clamping the rod, and then hitting the exposed length with a die to form the head of a nail or bolt.
TEXT 11. STEEL
Vocabulary
alloy сплав
carbon углерод
stiff жесткий
to corrode разъедать, ржаветь
rusty ржавый
stainless нержавеющий
to resist сопротивляться
considerably значительно, гораздо
tough крепкий, жесткий, прочный, выносливый
forging ковка
welding сварка
brittle хрупкий, ломкий
cutting tools режущие инструменты
surgical instruments хирургические инструменты
blade лезвие
spring пружина
inclusion включение
to affect влиять
manganese марганец
silicon кремний
rust-proof нержавеющий
nitrogen азот
tungsten вольфрам
The most important metal in industry is iron and its alloy steel. Steel is an alloy of iron and carbon. It is strong and stiff, but corrodes easily through rusting, although stainless and other special steels resist corrosion. The amount of carbon in steel influences its properties considerably. Steels of low carbon content (mild steels) are quite ductile and are used in the manufacture of sheet iron, wire, and pipes. Medium-carbon steels containing from 0.2 to 0.4 per cent carbon are tougher and stronger and are used as structural steels. Both mild and medium-carbon steels are suitable for forging and welding. High-carbon steels contain from 0.4 to 1.5 per cent carbon, are hard and brittle and are used in cutting tools, surgical instruments, razor blades and springs. Tool steel, also called silver steel, contains about 1 per cent carbon and is strengthened and toughened by quenching and tempering.
The inclusion of other elements affects the properties of the steel: manganese gives extra strength and toughness. Steel containing 4 per cent silicon is used for transformer cores or electromagnets because it has large grains acting like small magnets. The addition of chromium gives extra strength and corrosion resistance, so we can get rust-proof steels. Heating in the presence of carbon or nitrogen-rich materials is used to form a hard surface on steel (case-hardening). High-speed steels, which are extremely important in machine-tools, contain chromium and tungsten plus smaller amounts of vanadium, molybdenum and other metals.
2. General understanding:
1. What is steel?
2. What are the main properties of steel?
3. What are the drawbacks of steel?
4. What kinds of steel do you know? Where are they used?
5. What gives the addition of manganese, silicon and chromium to steel?
6. What can be made of mild steels (medium-carbon steels, high-carbon steels)?
7. What kind of steels can be forged and welded?
8. How can we get rust-proof (stainless) steel?
9. What is used to form a hard surface on steel?
10. What are high-speed steels alloyed with?
3. Find the following words and word combinations in the text:
1. сплав железа и углерода
2. прочный и жесткий
3. легко коррозирует
4. нержавеющая сталь
5. низкое содержание углерода
6. ковкость
7. листовое железо, проволока, трубы
8. конструкционные стали
9. пригодны для ковки и сварки
10. твердый и хрупкий
11. режущие инструменты
12. хирургические инструменты
13. инструментальная сталь
14. упрочнять
15. добавление марганца (кремния, хрома, вольфрама, молибдена, ванадия)
TEXT 12. METHODS OF STEEL HEAT TREATMENT
Vocabulary
to immerse погружать
to apply применять
intermediate промежуточный
oxide film оксидная пленка
annealing отжиг, отпуск
cracking растрескивание
Quenching is a heat treatment when metal at a high temperature is rapidly cooled by immersion in water or oil. Quenching makes steel harder and more brittle, with small grains structure.
Tempering is a heat treatment applied to steel and certain alloys. Hardened steel after quenching from a high temperature is too hard and brittle for many applications and is also brittle. Tempering, that is re-heating to an intermediate temperature and cooling slowly, reduces this hardness and brittleness. Tempering temperatures depend on the composition of the steel but are frequently between 100 and 650 °C. Higher temperatures usually give a softer, tougher product. The colour of the oxide film produced on the surface of the heated metal often serves as the indicator of its temperature.
Annealing is a heat treatment in which a material at high temperature is cooled slowly. After cooling the metal again becomes malleable and ductile (capable of being bent many times without cracking).
All these methods of steel heat treatment are used to obtain steels with certain mechanical properties for certain needs.
2. General understanding:
1. What can be done to obtain harder steel?
2. What makes steel more soft and tough?
3. What makes steel more malleable and ductile?
4. What can serve as the indicator of metal temperature while heating it?
5. What temperature range is used for tempering?
6. What are the methods of steel heat treatment used for?
3. Translate into English the following words and word combinations:
температура нормализации
мелкозернистая структура
быстрое охлаждение
закалённая сталь
состав стали
окисная плёнка
индикатор температуры
медленное охлаждение
TEXT 13. FERROUS METALS
In studying engineering processes an engineer who is to build a machine must select suitable materials for each machine member. One must know the characteristics of engineering materials. These are as follows: strength, stiffness, ductility, toughness, elasticity, fatigue resistance, shock resistance, corrosion resistance, wear resistance, hardness resistance, frictional qualities, machinability, casting and forging properties. They depend upon the chemical composition and the physical structure of the material.
From the point of tonnage produced and used, iron is the world's most common metal, followed in turn by copper, zinc, lead and aluminium.
Cast iron is a general term applied to iron-carbon alloys containing more than 1.7 per cent of carbon. Cast iron without the addition of alloying elements is weak in tension and shear, strong in compression and has low resistance to impact. It is obtained from the cupola furnace where pig iron is re-melted in contact with coke. Grey cast iron has the carbon present in the free or graphite state and is soft, easily machined, and only moderately brittle. White.cast iron has most of the carbon in the combined state and is therefore hard and brittle. Malleable cast iron is made by heating white iron castings for a period of several days in ! airtight pots filled with an oxide of iron.
Steel is a ferrous material with a carbon content from 0.1% to 1.0%. Semisteel is a name to a metal made by melting 20 to 40% of steel scrap with cast iron in the cupola. Steel castings are more expensive but stronger and tougher.
Wrought iron is quite ductile and can be easily rolled, drawn, forged and welded. It has high resistance to corrosion. The carbon content is generally less than 0.1% and the material must contain not-less than 1% of slag.
Cast steel normally contains about 0.5% of carbon, and is used to replace cast iron when castings of considerable strength are required. Forged steel is steel that Has been hammered, drawn, pressed or rolled in the process of manufacturing of a particular part.
изучение машиностроительных процессов
подходящие материалы
деталь машины
зависит от химического состава материала
самый распространенный в мире металл
за которым следует…
сплав железа и углерода
чугун термин, применяемый к…
серый чугун
сталь это железосодержащий металл
сопротивление коррозии
кованое железо
TEXT 14. NON-FERROUS METALS AND NON-METALLIC MATERIALS
Alloy steels are those in which some alloying element in addition to the carbon is present in some appreciable quantity. The principal alloying elements used in steel are nickel, chromium, vanadium, molybdenum, manganese, and to lesser extent, copper, tungsten, cobalt, beryllium and boron.
Among non-ferrous metals copper is the most important. Because of its high electric conductivity about 60% of all the copper produced is used in electrical work. Three chief groups of copper alloys used in machine design are brasses (copper-zinc alloys), bronzes (copper-tin alloys), and nickel-copper alloys.
Aluminium is one of the lightest metals used for machine construction. It is commonly used alloyed with copper, silicon or magnesium, the world's lightest structural metal.
Intensive chemical research has created a large number of nonnietallic synthetic materials grouped under the general term of plastics, e.g. bakelite, plexiglass, textile fibres, synthetic rubber and several protective coatings.
Heat-treatment is the process of controlled heating and cooling of metals to change their structural arrangement and to ensure certain desirable properties.
Annealing consists of heating the metal to a temperature slightly above the critical temperature and then cooling slowly to produce an even grain structure, reduce the hardness, and increase the ductility.
Normalizing is a form of annealing in which the material is cooled in the air.
Quenching or rapid cooling from above the critical temperature by immersion in cold water or some other cooling medium, is a hardening treatment.
Tempering consists of reheating the quenched metal to restore ductility to some extent and reduce the briltleness.
TEXT 15. COPPER
Copper was used in prehistoric limes for making weapons and tools and later was alloyed with tin to form bronze, which was the most important metal of the Greeks and Romans. It was replaced for these purposes by iron and steel. Various grades of copper are used for engineering purposes. The great development of the electric industries has resulted in such extensive uses of the metal that it now ranks next to iron in importance.
The copper alloys are more widely employed. The alloying of copper with other elements increases the strength of the metal in some cases and improves the anticorrosive and antifriction properties in others. Copper alloys comprise two main groups brasses and bronzes. Alloys of copper and zinc are called brasses. Alloys of copper with a number of elements including tin, aluminium, manganese, iron and beryllium are called bronzes.
доисторические времена
инструменты
смешивать (о сплаве)
для этих целей
машиностроительные цели
быстрое развитие электропромышленности
стоит на втором месте по важности
медные сплавы
широко используются
повышает прочность металла
улучшает антикоррозийные качества
TEXT 16. ALUMINIUM
Aluminium, which is sometimes called aluminum, is the typical metal in the third group in the periodic classification of the elements. Aluminium is the most abundant of the metals and the most widely distributed. It is found in feldspars, micas, kaolin, clay, bauxite, cryolite, alunite, corundum and certain gems. Compounds of aluminium have been known for many years and they were recognized as being derived from a metal that had not been isolated.
Aluminium has a very low density, 2.7; it is used in construction when a metal is required and weight is an important consideration, it is ductile, malleable, and can be rolled. Its tensile strength is low in comparison with that of iron; it cannot be machined and polished readily and does not yield good castings. These defects can be overcome by alloying it with other metals. Alloys of copper and aluminium which contain from 5 to 10 per cent of the latter arc called aluminium bronzes. They have a fine yellow colour resembling gold and are used in making imitation jewelry and statuary.
On account of its low electrical resistance, aluminium is used in certain cases in wires and cables as conductors.
периодическая система элементов
самый широко распространенный
самый изобильный из металлов
его можно найти в некоторых драгоценных металлах
очень низкая плотность
вес имеет важное значение
по сравнению с железом
эти недостатки могут быть устранены
цвет похожий на золото
имитация ювелирных изделий
электрическое сопротивление
как проводник
UNIT 4. EQUIPMENT. MECHANISMS.
TEXT 1. MECHANICAL PROPERTIES OF MATERIALS
Vocabulary
bar брусок, прут
completely полностью, совершенно
compression сжатие
creep ползучесть
cross-sectional area площадь поперечного сечения
cyclic stress циклическое напряжение
decrease уменьшение
elastic deformation упругая деформация
elastic limit предел упругости
exceed превышать
external forces внешние силы
fatigue усталость металла
fracture перелом, излом
loosen ослаблять, расшатывать
permanent deformation постоянная деформация
remaining оставшийся
shear срез
simultaneously одновременно
to stretch растягивать
technique методы
tension напряженность
to propagate распространять(ся)
to bend гнуть, согнуть
to extend расширять, продолжаться
to meet the needs отвечать требованиям
to occur происходить .
to respond отвечать реагировать
to suffer страдать
torsion кручение
twisting закручивание, изгиб
volume объем, количество
rupture разрыв
Materials Science and Technology is the study of materials and how they can be fabricated to meet the needs of modern technology. Using the laboratory techniques and knowledge of physics, chemistry, and metallurgy, scientists are finding new ways of using metals, plastics and other materials.
Engineers must know how materials respond to external forces, such as tension, compression, torsion, bending, and shear. All materials respond to these forces by elastic deformation. That is, the materials return their original size and form when the external force disappears. The materials may also have permanent deformation or they may fracture. The results of external forces are creep and fatigue.
Compression is a pressure causing a decrease in volume. When a material is subjected to a bending, shearing, or torsion (twisting) force, both tensile and compressive forces are simultaneously at work. When a metal bar is bent, one side of it is stretched and subjected to a tensional force, and the other side is compressed.
Tension is a pulling force; for example, the force in a cable holding a weight. Under tension, a material usually stretches, returning to its original length if the force does not exceed the material's elastic limit. Under larger tensions, the material does not return completely to its original condition, and under greater forces the material ruptures.
Fatigue is the growth of cracks under stress. It occurs when a mechanical part is subjected to a repeated or cyclic stress, such as vibration. Even when the maximum stress never exceeds the elastic limit, failure of the material can occur even after a short time. No deformation is seen during fatigue, but small localized cracks develop and propagate through the material until the remaining cross-seetional area cannot support the maximum stress of the cyclic force. Knowledge of tensile stress, elastic limits, and the resistance of materials to creep and fatigue are of basic importance in engineering.
Creep is a slow, permanent deformation that results from a steady force acting on a material. Materials at high temperatures usually suffer from this deformation. The gradual loosening of bolts and the deformation of components of machines and engines are all the examples of creep. In many cases the slow deformation stops because deformation eliminates the force causing the creep. Creep extended over a long time finally leads to the rupture of the material.
2. General understanding:
1. What are the external forces causing the elastic deformation of materials? Describe those forces that change the form and size of materials.
2. What are the results of external forces?
3. What kinds of deformation are the combinations of tension and compression?
4. What is the result of tension? What happens if the elastic limit of material is exceeded under tension?
5. What do we call fatigue? When does it occur? What are the results of fatigue?
6. What do we call creep? When does this type of permanent deformation take place? What are the results of creep?
3. Find the following in the text:
отвечать требованиям современной технологии
используя лабораторные методы
новые способы использования металлов
сжатие, растяжение, изгиб, кручение, срез
возвращать первоначальный размер и форму
внешняя сила
постоянная деформация
уменьшение объёма
растягивающие и сжимающие силы
превышать предел упругости материала
повторяющиеся циклические напряжения
разрушение материала
развитие и распространение мелких трещин
сопротивление материалов ползучести и усталости
4. Translate into English the following sentences:
1. Упругая деформация это реакция всех материалов на внешние силы, такие, как растяжение, сжатие, скручивание, изгиб и срез.
2. Усталость и ползучесть материалов являются результатом внешних сил.
3. Внешние силы вызывают постоянную деформацию и разрушение материала.
4. Растягивающие и сжимающие силы работают одновременно, когда мы изгибаем или скручиваем материал.
5. Растяжение материала выше предела его упругости даёт постоянную деформацию или разрушение.
6. Когда деталь работает долгое время под циклическими напряжениями в ней появляются небольшие растущие трещины из-за усталости металла.
7. Ползучесть это медленное изменение размера детали под напряжением.
TEXT 2. METALWORKING AND METAL PROPERTIES
Vocabulary
feature черта, особенность
to provide обеспечивать
improvement улучшение
property свойство
eliminate ликвидировать, исключать
porosity пористость
directional направленный
to segregate разделять
casting отливка
elongated удлиненный
to weaken ослабевать, ослаблять
transverse поперечный
flow течение, поток
finished отделанный
thinning утончение
fracture разрушение
strain hardening деформационное упрочнение
brass латунь
beverage напиток
can консервная банка
to exhibit проявлять
inner внутренний
flaws недостатки, дефекты кристаллической решетки
inclusion включение
trapped зд. Заключенный
refining очищать, очистка
to avoid избегать
to undergo подвергаться
tensile ductility пластичность при растяжении
An imgportant feature of hot working is that it provides the improvement of mechanical properties of metals. Hot-working (hot-rolling or hot-forging) eliminates porosity, directionality, and segregation that are usually present in metals. Hot-worked products have better ductility and toughness than the unworked casting. During the forging of a bar, the grains of the metal become greatly elongated in the direction of flow. As a result, the toughness of the metal is greatly improved in this direction and weakened in directions transverse to the flow. Good forging makes the flow lines in the finished part oriented so as to lie in the_direction of maximum stress when the part is placed in service.
The ability of a metal to resist thinning and fracture during cold-working operations plays an important role in alloy selection. In operations that involve stretching, the best alloys are those which grow stronger with strain (are strain hardening) for example, the copper-zinc alloy, brass, used for cartridges and the aluminum-magnesium alloys in beverage cans, which exhibit greater strain hardening.
Fracture of the workpiece during formingtcan result from inner flaws in the metal. These flaws often consist of nonmetallic inclusions such as oxides or sulf ides that are trapped in the metal during refining. Such inclusions can be avoided by proper manufacturing procedures.
The ability of different metals to undergo strain varies. The change of the shape after one forming operation is often limited by the tensile ductility of the metal. Metals such as copper and aluminum are more ductile in such operations than other metals.
1. General understanding:
1. What process improves the mechanical properties of metals?
2. What new properties have hot-worked products?
3. How does the forging of a bar affect the grains of the metal? What is the result of this?
4. How are the flow lines in the forged metal oriented and how does it affect the strength of the forged part?
5. What are the best strain-hardening alloys? Where can we use them?
6. What are the inner flaws in the metal?
7. Can a metal fracture because of the inner flaw?
8. What limits the change of the shape during forming operations?
2. Find the following in the text:
важная особенность горячей обработки
улучшение механических свойств металла
необработанная отливка
направление максимального напряжения
способность сопротивляться утончению и разрушению
проявлять большее деформационное упрочнение
разрушение детали при штамповке
внутренние дефекты в металле
неметаллические включения
способность металлов подвергаться деформации
ограничивается пластичностью металла при растяжении
3. Translate into English:
1. Горячая обработка металла улучшает его механические свойства и устраняет пористость и внутренние дефекты.
2. Удлинение зёрен в направлении текучести приковке значительно улучшает прочность металла в этом направлении и уменьшает его прочность в поперечном.
3. Хорошая проковка ориентирует линии текучести в направлении максимального напряжения,,
4. Деформационное упрочнение металла при холодной обработке очень важно для получения металлов с улучшенными свойствами.
5. Внутренние дефекты металлаэто неметаллические включения типа окислов или сульфидов.
6. Изменение формы при штамповании металлических деталей ограничивается пластичностью металла при растяжении.
TEXT 3. NEW BUILDING MATERIALS
Vocabulary
beam балка
to bend сгибать
rods арматура
hooked ends загнутые концы
compression сжатие
tension растяжение
reinforced concrete железобетон
prestressed concrete предварительно-напряженный бетон
nut гайка
screw болт
When a horizontal beam is supported at each end (1) but not in the middle, it bends. The bending is caused by the beam's own weight and by the weight of anything that it has to support. When it bends, the bottom surface is normally in tension; (2) it is pulled in the direction of its length. If the total load is too heavy, the beam will break, and if it is a concrete beam, its chief weakness is in the lower surface, which is in tension.
Steel rods may be placed inside concrete beams while the mixture is still wet, and if these rods have hooked ends, they will grip the concrete (3) and tend to prevent stretching. The steel and concrete together make a good combination to resist compression and tension, and such material is known as reinforced concrete or ferro-concrete.
If the concrete is in the form of a beam which is to be used in a horizontal position, these rods can be placed inside it, but they need not go through the middle. Most of the tension will be along the lower surface, and therefore that is the best place for the rods.
Because concrete does not resist tension well,(4) a system is now in use in which it is not stretched. This is not as difficult to arrange as it seems to be. The concrete beanris compressed along its length by means of steel rods inside it; these rods remain in the beam and therefore the concrete is always compressed unless some greater force tries to pull it apart. As long as the beam is not lengthened more than it is already compressed, the concrete will never be in tension.
Suppose, for example, that the compression in the concrete (caused by the steel rods) is 1,000 pounds per square inch and that the force pulling the beam lengthways (5) when it is in position is 700 pounds per square inch. In that case the concrete is still compressed by a force equal to 300 pounds per square inch, and so it is not in tension at all.(6)
Such material is called prestressed concrete. Holes are often left in the beam when it is made; then the steel rods are placed in the holes and fixed at one end. Nuts on screws at the other end are turned to compress the concrete, or the beam may be compressed by powerful machinery.
There is another method of preventing tension from arising in a beam. If it is arched, and if its ends press against a firm abutment, any pressure on its top surface will tend to compress it instead of putting the lower edge in tension. This is therefore a good system to use with a concrete beam.
The steel rods which pass through an arch may themselves be straight, so that in the middle of the arch they are near the lower surface. If the beam is straight, the same kind of result may be obtained by allowing the rods to be curved or bent, so that they pass along the lower surfaces in the middle of the beam.
Prestressed concrete can be used where ordinary concrete would fail.(7) High buildings are now made with this material and its use has greatly increased. Smaller houses in the city gradually give place to big blocks owing to the great demand for land. In northern countries, where the weather is a constant nuisance to the citizens, even the streets may be roofed over.(8)
Concrete is a bad conductor of heat; moreover, it does not catch fire.(9) These are two great advantages in a building, and especially in a high building. Even if the furniture or the wooden floors are set on fire, and the surfaces of the concrete walls are heated, the interior parts of the walls do not become very hot for the concrete does not conduct heat. The danger of fire in dwelling places is therefore decreasing, and the use of electricity instead of gas and oil for lighting and heating helps in this matter.
ПРИМЕЧАНИЯ:
(1) is supported at each end имеет опоры на концах
(2) in tension в состоянии растяжения
(3) will grip the concrete схватят бетон
(4) does not resist tension well довольно плохо сопротивляется растяжению
(5) pulling the beam lengthways растягивающая балку в продольном направлении
(6) it is not in tension at all совсем без растяжения
(7) where ordinary concrete would fail где обычный бетон разрушится
(8) even the streets may be roofed over даже целые улицы могут быть перекрыты
(9) to catch fire загораться
to support |
supporting |
is supported |
to stretch |
stretching |
is stretched |
to pull |
pulling |
is pulled |
to tension |
tensioning |
is tensioned |
to place |
placing |
is placed |
To compress |
compressing |
is compressed |
to lengthen |
lengthening |
is lengthened |
to prestress |
prestressing |
is prestressed |
to fix |
fixing |
is fixed |
To prevent |
preventing |
is prevented |
to heat |
heating |
is heated |
3. Translate into Russian:
own weight, hooked end, chief weakness, along its length, interior part, dwelling-places
4. General understanding:
1. Why is it called reinforced concrete? 2. What is prestressed concrete? 3. What is concrete? 4. Why does concrete not catch fire?
TEXT 4. MACHINE-TOOLS
Vocabulary
machine-tools станки
electrically driven с электроприводом
shape форма
workpiece деталь
accurate точный
development развитие
to allow позволять, разрешать
interchangeable взаимозаменяемый
facility приспособление
relative относительный
amount количество
fluid жидкость
to lubricate смазывать
spark erosion электроискровая обработка
discharge разряд
by means of посредством
beam луч
drilling сверление
flexible гибкий
range ассортимент, диапазон
Machine-tools are used to shape metals and other materials. The material to be shaped is called the workpiece. Most machine-tools are now electrically driven. Machine-tools with electrical drive are faster and more accurate than hand tools: they were an important element in the development of mass-production processes, as they allowed individual parts to be made in large numbers so as to be interchangeable.
All machine-tools have facilities for holding both the workpiece and the tool, and for accurately controlling the movement of the cutting tool relative to the workpiece. Most machining operations generate large amounts of heat, and use cooling fluids (usually a mixture of water and oils) for cooling and lubrication.
Machine-tools usually work materials mechanically but other machining methods have been developed lately. They include chemical machining, spark erosion to machine very hard materials to any shape by means of a continuous high-voltage spark (discharge) between an electrode and a workpiece. Other machining methods include drilling using ultrasound, and cutting by means of a laser beam. Numerical control of machine-tools and flexible manufacturing systems have made it possible for complete systems of machine-tools to be used flexibly for the manufacture of a range of products.
TEXT 5. LATHE
Vocabulary
lathe токарный станок
circular cross-section круглое поперечное сечение
surface поверхность
stationary неподвижный, стационарный
sideways в сторону
variety разнообразие, разновидность
depth глубина
headstock передняя бабка
spindle шпиндель
chuck зажим, патрон
faceplate планшайба
lathe bed станина станка
to enable давать возможность
tolerance допуск
Lathe is still the most important machine-tool. It produces parts of circular cross-section by turning the workpiece on its axis and cutting its surface with a sharp stationary tool. The tool may be moved sideways to produce a cylindrical part and moved towards the workpiece to control the depth of cut. Nowadays all lathes are power-driven by electric motors. That allows continuous rotation of the workpiece at a variety of speeds. The modern lathe is driven by means of a headstock supporting a hollow spindle on accurate bearings and carrying either a chuck or a faceplate, to which the workpiece is clamped. The movement of the tool, both along the lathe bed and at right angle to it, can be accurately controlled, so enabling a part to be machined to close tolerances. Modern lathes are often under numerical control.
2. General understanding:
1. What are machine-tools used for?
2. How are most machine-tools driven nowadays?
3. What facilities have all machine-tools?
4. How are the cutting tool and the workpiece cooled during machining?
5. What other machining methods have been developed lately?
6. What systems are used now for the manufacture of a range of products without the use of manual labour?
7. What parts can be made with lathes?
8. How can the cutting tool be moved on a lathe?
9. How is the workpiece clamped in a lathe?
10. Can we change the speeds of workpiece rotation in a lathe?
11. What is numerical control of machine tools used for?
3. Find English equivalents in the text:
обрабатываемый материал
электропривод
более точный
отдельные детали
процесс массового производства
приспособления для держания резца и детали
операции по механической обработке детали
высоковольтный разряд
сверление ультразвуком
резание с помощью лазерного луча
гибкие производственные системы
детали круглого сечения
поворачивать деталь вокруг её оси
двигать в сторону, двигать по направлению к детали
глубина резания
непрерывное вращение детали
движение резца вдоль станины
4. Translate into English:
1. Токарный станок позволяет производить детали круглого сечения.
2. Деталь зажимается в патроне или на планшайбе токарного станка.
3. Резец может двигаться как вдоль станины, так и под прямым углом к ней.
4. Современные токарные станки часто имеют цифровое управление.
TEXT 6. MILLING MACHINE
Vocabulary
milling machine фрезерный станок
series серия, ряд
cutting edge режущий край, острие
circumference окружность
to feed подавать
longitudinal продольный
horizontal горизонтальный
vertical вертикальный
versatile универсальный
flat плоский
contoured контурный
angle угол
slot прорезь, паз
gear teeth зубы шестерни
drill дрель, сверло, сверлить
hole отверстие
to enlarge увеличивать
thread резьба
portable портативный
unit единица, целое, узел
previously ранее
to slide скользить
stroke ход
lateral боковой
displacement смещение
straight прямой
idle на холостом ходу
workshop цех, мастерская
to mount крепить
holder держатель
to execute выполнять
simultaneous одновременный
multiple многочисленный
grinder шлифовальный станок
wheel круг, колесо
bonded скрепленный
to remove удалять
pass проход
fine точный
conventional обычный
device устройство, прибор
fragile хрупкий
In a milling machine the cutter (фреза) is a circular device with a series of cutting edges on its circumference. The workpiece is held on a table that controls the feed against the cutter. The table has three possible movements: longitudinal, horizontal, and vertical; in some cases it can also rotate. Milling machines are the most versatile of all machine tools. Flat or contoured surfaces may be machined with excellent finish and accuracy. Angles, slots, gear teeth and cuts can be made by using various shapes of cutters.
Drilling and Boring Machines
To drill a hole usually hole-making machine-tools are used. They can drill a hole according to some specification, they can enlarge it, or they can cut threads for a screw or to create an accurate size or a smooth finish of a hole.
Drilling machines (сверлильные станки) are different in size and function, from portable drills to radial drilling machines, multispindie units, automatic production machines, and deep-hole-drilling machines.
Boring (расточка) is a process that enlarges holes previously drilled, usually with a rotating single-point cutter held on a boring bar and fed against a stationary workpiece.
Shapers and Planers
The shaper (поперечно-строгальный станок) is used mainly to produce different flat surfaces. The tool slides against the stationary workpiece and cuts on one stroke, returns to its starting position, and then cuts on the next stroke after a slight lateral displacement. In general, the shaper can make any surface having straight-line elements. It uses only one cutting-tool and is relatively slow, because the return stroke is idle. That is why the shaper is seldom found on a mass production line. It is, however, valuable for tool production and for workshops where flexibility is important and relative slowness is unimportant.
The planer (продольно-строгальный станок) is the largest of the reciprocating machine tools. It differs from the shaper, which moves a tool past a fixed workpiece because the planer moves the workpiece to expose a new section to the tool. Like the shaper, the planer is intended to produce vertical, horizontal, or diagonal cuts. It is also possible to mount several tools at one time in any or all tool holders of a planer to execute multiple simultaneous cuts.
Grinders
Grinders (шлифовальные станки) remove metal by a rotating abrasive wheel. The wheel is composed of many small grains of abrasive, bonded together, with each grain acting as a miniature cutting tool. The process gives very smooth and accurate finishes. Only a small amount of material is removed at each pass of the wheel, so grinding machines require fine wheel regulation. The pressure of the wheel against the workpiece is usually very light, so that grinding can be carried out on fragile materials that cannot be machined by other conventional devices.
2. General understanding:
1. What is the shape of a cutter in a milling machine?
2. What moves in a milling machine, a table or a cutter?
3. What possible movements has the table of a milling machine?
4. What kind of surfaces and shapes may be machined by a milling machine?
5. What can we use a drilling machine for?
6. What kinds of drilling machines exist?
7. What is rotated while boring, a cutter or a work-piece?
8. Describe the work of a shaper (planer).
9. What must be done to execute multiple simultaneous cuts on a planer?
10. What is the working tool in a grinder?
11. Can we obtain a very smooth surface after grinding and why?
12. Can we grind fragile materials and why?
3. Translate into English:
1. Токарный станок всё ещё остаётся самым важным станком.
2. Все современные токарные станки оборудованы электроприводами.
3. Движение инструмента контролируется с высокой точностью.
4. Электропривод позволяет обрабатывать заготовку на различных скоростях.
TEXT 7. DIES
Vocabulary
chip стружка
sharp острый
friction трение
content содержание
range диапазон
inexpensive недорогой
to permit позволять, разрешать
common обычный
tungsten вольфрам
ingredient ингредиент
diamond алмаз
tips наконечники
ceramic керамический
truing правка, наводка, заточка
die матрица, штамп
matrix матрица
to employ применять
to pierce протыкать, прокалывать
to punch пробивать отверстие
matching сочетающийся, парный
coarse грубый
wire проволока
to draw тащить, волочить
thread резьба
hardened закаленный
to lubricate смазывать
to screw привинчивать
nut гайка
outside наружный, внешний
inside внутри, внутренний
Dies are tools used for the shaping solid materials, especially those employed in the pressworking of cold metals.
In presswork, dies are used in pairs. The smaller die, or punch, fits inside the larger die, called the matrix or, simply, the die. The metal to be formed, usually a sheet, is placed over the matrix on the press. The punch is mounted on the press and moves down by hydraulic or mechanical force.
A number of different forms of dies are employed for different operations. The simplest are piercing dies (пробивной штамп), used for punching holes. Bending and folding dies are designed to make singleor compound bends. A combination die is designed to perform more than one of the above operations in one stroke of the press. A progressive die permits successive forming operations with the same die.
In coining, metal is forced to flow into two matching dies, each of which bears a engraved design.
Wiredrawing Dies
In the manufacture of wire, a drawplate (волочильная доска) is usually employed. This tool is a metal plate containing a number of holes, successively less in diameter and known as wire dies. Apiece of metal is pulled through the largest die to make a coarse wire. This wire is then drawn through the smaller hole, and then the next, until the wire is reduced to the desired measurement. Wiredrawing dies are made from extremely hard materials, such as tungsten carbide or diamonds.
Thread-Cutting Dies
For cutting threads on bolts or on the outside of pipes, a thread-cutting die (резьбонарезная плашка) is used. It is usually made of hardened steel in the form of a round plate with a hole in the centre. The hole has a thread. To cut an outside thread, the die is lubricated with oil and simply screwed onto an unthreaded bolt or piece of pipe, the same way a nut is screwed onto a bolt. The corresponding tool for cutting an inside thread, such as that inside a nut, is called a tap (метчик).
2. Find English equivalents in the text:
удалять металлическую стружку
острый режущий край
содержание углерода
режущая способность
сталь для скоростного резания
правка шлифовальных кругов
гидравлическое или механическое давление
различные формы штампов
3. Translate the following sentences into Russian:
1. Все резцы и фрезы должны иметь острую режущую кромку.
2. Во время резания режущий инструмент и деталь имеют высокую температуру и должны охлаждаться.
3. Углеродистые стали часто используются для изготовления резцов потому, что они недорогие.
4. Быстрорежущие стали содержат вольфрам, хром и ванадий.
5. Алмазы используются для резания абразивных материалов и чистовой обработки поверхности твёрдых материалов.
6. Для различных операций используют различные штампы.
7. Волочильные доски для проволоки делаются из очень твёрдых материалов.
8. Резьбонарезные плашки и метчики используются для нарезки резьбы снаружи и внутри.
TEXT 8. WELDING
Vocabulary
to join соединять
pressure welding сварка давлением
heat welding сварка нагреванием
instead вместо, взамен
bolting скрепление болтами
riveting клепка
basic основной
to manufacture изготовлять
to depend зависеть от
purpose цель
available имеющийся в наличии
equipment оборудование
source источник
gas welding газосварка
arc welding электродуговая сварка
resistance welding контактная сварка
laser welding лазерная сварка
electron-beam welding электронно-лучевая сварка
flame пламя
edge край
simultaneously одновременно
filler наполнитель
wire проволока
rod прут, стержень
to melt плавить(ся)
joint соединение, стык
advantage преимущество
to require требовать нуждаться
surface поверхность
coated покрытый
flux флюс
fusible плавкий
to shield заслонять, защищать
touching касание
tip кончик
Welding is a process when metal parts are joined together by the application of heat, pressure, or a combination of both. The processes of welding can be divided into two main groups:
Nowadays welding is used instead of bolting and riveting in the construction of many types of structures, including bridges, buildings, and ships. It is also a basic process in the manufacture of machinery and in the motor and aircraft industries. It is necessary almost in all productions where metals are used.
The welding process depends greatly on the properties of the metals, the purpose of their application and the available equipment. Welding processes are classified according to the sources of heat and pressure used.
The welding processes widely employed today include gas welding, arc welding, and resistance welding. Other joining processes are laser welding, and electron-beam welding.
Gas Welding
Gas welding is a non-pressure process using heat from a gas flame. The flame is applied directly to the metal edges to be joined and simultaneously to a filler metal in the form of wire or rod, called the welding rod, which is melted to the joint. Gas welding has the advantage of using equipment that is portable and does not require an electric power source. The surfaces to be welded and the welding rod are coated with flux, a fusible material that shields the material from air, which would result in a defective weld.
Arc Welding
Arc-welding is the most important welding process for joining steels. It requires a continuous supply of either direct or alternating electrical current. This current is used to create an electric arc, which generates enough heat to melt metal and create a weld.
Arc welding has several advantages over other welding methods. Arc welding is faster because the concentration of heat is high. Also, fluxes are not necessary in certain methods of arc welding. The most widely used arc-welding processes are shielded metal arc, gas-tungsten arc, gas-metal arc, and submerged arc.
Shielded Metal Arc
In shielded metal-arc welding, a metallic electrode, which conducts electricity, is coated with flux and connected to a source of electric current. The metal to be welded is connected to the other end of the same source of current. An electric arc is formed by touching the tip of the electrode to the metal and then drawing it away.
The intense heat of the arc melts both parts to be welded and the point of the metal electrode, which supplies filler metal for the weld. This process is used mainly for welding steels.
1. General understanding:
1. How can a process of welding be defined?
2. What are the two main groups of processes of welding?
3. How can we join metal parts together?
4. What is welding used for nowadays?
5. Where is welding necessary?
6. What do the welding processes of today include?
7. What are the principles of gas welding?
8. What kinds of welding can be used for joining steels?
9. What does arc welding require?
10. What is the difference between the arc welding and shielded-metal welding?
2. Find the following words and word combinations in the text:
сварка давлением
тепловая сварка
болтовое (клепаное) соединение
процесс сварки
зависеть от свойств металлов
имеющееся оборудование
сварочный электрод
плавкий материал
дефектный сварной шов
непрерывная подача электрического тока
электрическая дуга
источник электрического тока
TEXT 9. BASIC PRINCIPLES OF WELDING
A weld can be defined as a coalescence of metals produced by heating to a suitable temperature with or without the application of pressure, and with or without the use of a filler material.
In fusion welding a heat source generates sufficient heat to create and maintain a molten pool of metal of the required size. The heat may be supplied by electricity or by a gas flame. Electric resistance welding can be considered fusion welding because some molten metal is formed.
Solid-phase processes produce welds without melting the base material and without the addition of a filler metal. Pressure is always employed, and generally some heat is provided. Frictional heat is developed in ultrasonic and friction joining, and furnace heating is usually employed in diffusion bonding.
The electric arc used in welding is a high-current, low-voltage discharge generally in the range 10-2,000 amperes at 10-50 volts. An arc column is complex but, broadly speaking, consists of a cathode that emits electrons, a gas plasma for current conduction, and an anode region that becomes comparatively hotter than the cathode due to electron bombardment. Therefore, the electrode, if consumable, is made positive and, if non-consumable, is made negative. A direct current (dc) arc is usually used, but alternating current (ac) arcs can be employed.
Total energy input in all welding processes exceeds that which is required to produce a joint, because not all the heat generated can be effectively utilized. Efficiencies vary from 60 to 90 percent, depending on the process; some special processes deviate widely from this figure. Heat is lost by conduction through the base metal and by radiation to the surroundings.
Weld-metal composition and the conditions under which it freezes (solidifies) significantly affect the ability of the joint to meet service requirements. In arc welding, the weld metal comprises filler material plus the base metal that has melted. After the arc passes, rapid cooling of the weld metal occurs. A one-pass weld has a cast structure with columnar grains extending from the edge of the molten pool to the centre of the weld. In a multipass weld, this cast structure maybe modified, depending on the particular metal that is being welded.
The base metal adjacent to the weld, or the heat-affected zone, is subjected to a range of temperature cycles, and its change in structure is directly related to the peak temperature at any given point, the time of exposure, and the cooling rates. The types of base metal are too numerous to discuss here, but they can be grouped in three classes: (1) materials unaffected by welding heat, (2) materials hardened by structural change, (3) materials hardened by precipitation processes.
Welding produces stresses in materials. These forces are induced by contraction of the weld metal and by expansion and then contraction of the heat-affected zone. The unheated metal imposes a restraint on the above, and as contraction predominates, the weld metal cannot contract freely, and a stress is built up in the joint. This is generally known as residual stress, and for some critical applications must be removed by heat treatment of the whole fabrication. Residual stress is unavoidable in all welded structures, and if it is not controlled bowing or distortion of the weldment will take place.
SUPPLEMENTARY READING
TEXT 1. ATOMIC POWER
In 1942 Fermi (1901-1954), a scientist, built a new kind of heat-engine at Chicago Univercity.
Fermi's heat-engine is now galled a nuclear reactor, but he called it a pile. Long before, at the beginning of the age of electricity, Volta had made a sort of electric battery and had called it a pile. So Fermi borrowed this word to give a name to his strange apparatus, which was the first of its kind (1) in the history of the world.
He used uranium in his reactor, and natural uranium contains about 1 per cent of U235. The nucleus of U235 splits easily enough; and indeed that is probably the reason why this kind of atom is rare. Probably it was not rare millions of years ago, but as it splits so easily, most of these atoms have already split and few remain. The nucleus of U288 is much more stable, and it is comparatively difficult to split it. That is the reason why so many atoms of this kind still remain.
Fermi wanted to generate heat by the fission (breaking) of uranium atoms, and he wanted a chain reaction to start. Then the fission of one nucleus would emit neutrons, which would hit and break other nuclei, which would set free more neutrons, and so on. But Fermi had many problems before him.(3)
Neutrons which are shot out of a nucleus by fission travel very fast about 5,000 to 10,000 miles per second. Neutrons moving as fast as this dc not usually produce any further fission. They are going so fast that they just shoot through (4) another nucleus if they hit it. To make them useful, their speed must be reduced.
If there are any impurities in the uranium, these will eat up (5) neutrons without helping the reaction at all. The neutrons are absorbed by the material which is not uranium. Therefore uranium in a reactor must be as pure as possible.
A third matter for consideration is the space between the nuclei of any substance.
When the nuclei are supposed to be the size of (6) tennis-balls, the distance from one to the next is 3 or 4 miles. If we try to hit one of these with a bullel (neutron) without aiming, there is little chance of success if there are only a few tennis-balls. But suppose that there are millions of tennis-balls reaching as far as the eye can see up into the sky (all of them 3 miles apait). Then if we fire a fast bullet that can travel for ever, it will hit a tennis-ball in the end. It will go on, through the empty spaces for a time, but at last it will hit one. And the more tennis-balls there are, the greater is the chance (7) that the bullet will hit one.
The same argument applies to a piece of uranium. If it is small, there is little chance that a neutron will hit a nucleus before it flies out of the uranium into the air outside. As the piece of uranium is made bigger, the chances that a neutron will hit a nucleus increase. If the piece is very big, it becomes almost certain that the neutron will hit a nucleus before escaping; and if the material is suitable (U135) and the speed of the neutron is suitable, we have a reactor which will continue to work properly if it is under control. If it is not under control, the uranium will explode in a fraction of a second: (8) but it will not do this unless the piece is big enough.
Fermi built his pile slowly, and watched with instruments how many neutrons were flying about inside it. The number increased as the size of the reactor increased, Fermi was careful, he did not want the whole thing to explode.
If U235 is separated out from natural uranium (a very difficult process indeed) and gathered together, nothing will happen at first, if some method is used to slow down the neutrons, they will break the nuclei, but they will not break a sufficient number of them. But as the piece of U135 gets bigger and bigger, the neutrons have less chance to escape before they hit a nucleus. A time will come, as the piece is added lo, when the number of being produced is greater than the number being used up: the is increasing. It increases in a fraction of a second at this critical size, and the uranium explodes. But as long as it remains below this size, it is safe.
Fermi knew that the neutrons must be slowed down, because they are useless when they travel very fast. He made them travel more slowly fry letting them pass through graphite. Graphite is quite a common substance, the central part of a pencil is made from it. The uranium for the reactor was placed in graphite bricks, and when the neutrons came out through the graphite, they were moving fairly slowly.
The nucleus of U238 is split when it is struck by these slow neutrons, and this was what Fermi wanted. Any substance which is used for slowing down the neutrons in a reactor is called a moderator. Graphite is a good moderator, and so is heavy water. Graphite is common, but heavy water is hard to get and more expensive.
Fermi wanted to control his reactor. If the neutrons got out of control,(9) the heat would be so great that the whole thing would be destroyed, and the radiation effects would be very dangerous. How could he control the number of neutrons which were set free?
Fermi used cadmium rods. Cadmium absorbs neutrons easily, and lie arranged the rods in such a way that they could be lowered into the reactor when he liked. As soon as it began to get too hot, he lowered the rods. Then they absorbed millions of free neutrons flying about inside, so that fewer remained to his other nuclei. The chain reaction was controlled and so the heat produced was limited to the proper amount.
Scientists have turned their attention to (10) the use of nuclear energy for peaceful purposes. The nuclear reactor at Сalder Hall in England was used as a part of a power station.
The chain reaction at Calder .Hall produces heat. Pipes containing gas surround the core of the reactor, and the heated gas is led away to the heat-exchanger.
In the heat-exchanger, the hot gas heats water which passes near it in miles of pipes. The water in these pipes is turned into steam which drives turbines in the usual way. The turbines are connected to generators which produce current.
It will be noticed (II) that the reactor docs not heat the water directly, but indirectly through (carbon dioxide) gas. The water itself is not allowed to go near the reactor, because every tiling inside a reactor becomes radioactive; and radioactive steam in the turbines is far too dangerous. But the gas does not go into the turbines: it returns to the reactor after its heat has been transferred to the water.
Radiation from a nuclear reactor is highly dangerous, and every care must be taken (12) to prevent large doses of it from affecting scientists and other workers. All of us always receive some radiation from outer space on our bodies; but the amount is limited, and the effects seem to be negligible. But more intense radiation may be fatal.
The dangers are caused by alpha-particles, beta-particles, gamma-rays, and free neutrons. They are all dangerous because they remove electrons from the atoms in the body. Thus they upset the linkage of the molecules, and so the molecules break up. This interrupts the ordinary working of the cells of the body.
All apparatus which produces nuclear radiation should be shielded in concrete, lead or steel. No one should eat or smoke near such areas of radiation. Detecting instruments should be carried in the pockets, so that the presence of violent nuclear radiation may at once be known. No waste material from the reactor must be left lying where people may approach it; it should be buried in the earth or dropped into the deep seas, preferably surrounded by concrete. It should not be put into the sea in any container which may float or may be moved by the waves and the tides.
The workers are regularly examined to find out if they have been; affected by the radiation. They wear protective clothing. Much of the work of running the reactor is done by remote control: that is to say, the apparatus is controlled from a distance (by switches and knobs), and so the personnel do not go near it. Such necessary movements as the raising and lowering of cadmium rods is done by machinery controlled from far away.
A Geiger counter is an instrument for counting the radiations in any place, it is not a complicated instrument. It consists of fl tube containing gas, and through the tube runs a wire. This wire is insulated from the metal tube, so that normally ho current can pays from one to the other. Either the wire or the tube is given a positive voltage.
Normally nothing happens. But if electrified particles (alpha-particles or electrons) enter the counter, they knock off electrons (13) from some of the atoms in the tube and these allow a current to be carried between the wire and the tube. This current, which flows for a very short time, can be made to move a pointer or make a sound, so that the presence of radioactivity is known. The greater the degree of radiation, the more often does the current flow; a Geiger counter in intense radiation clicks away very fast (14) indeed.
The main use of nuclear power at present is to generate electricity in power stations. It already drives ships, submarines, and it is very suitable for this purpose because it does not burn the oxygen in the air. Submarines make voyages under the ice and icebreakers over the ice.
It is unlikely that a reactor will be used for driving motorcars. A reactor is necessarily big itself, and the essential shielding adds to its size and weight. For small vehicles it is therefore unsuitable. Nevertheless, smaller kinds of reactors might be used for such purposes in the future, and it may be that a new way of using this source of energy will be found, which does not need the heating of water at all.
ПРИМЕЧАНИЯ:
(1) the first of its kind - первый в своем роде (3) had many problems before him - столкнулся с множеством проблем (4) shoot through - простреливаются
(5) will eat up - поглотят (6) When the nuclei arc supposed to be the size of ... = если предположить, что ядра имеют размер...
(7) the more tennis-balls there are, the greater is the chance - чем больше будет теннисных мячей, тем больше будет шансов на то
(8) in a fraction of a second - в долю секунды
(9) to get out of control - выходить из-под контроля
(10) turned their attention to-обратили свое внимание на
(11) It will be noticed - следует отметить
(12) every care must be taken - следует принять все меры
(13) knock off electrons - выбивают электроны
TEXT 2. METALS AS BUILDING MATERIALS
The history of building in iron and steel is hardly more than a hundred years old. The construction of the first railways has giver, considerable impetus to cast and wrought iron production. The commonest quality of steel for building construction is that known as mild steel (m. s.). Several qualities of high tensile steel are widely used everywhere. They vary both in their chemical composition and their mechanical properties.
The elements used for most steel structures are the hot-rolled sections, produced in a great variety by the rolling mills.
Aluminium is the most important of the light metals used in the building industry. Magnesium is still lighter, but it has not yet become a building material. It is used only as an alloying metal in conjunction, with aluminium. The major characteristics of aluminium in which the architect is interested are its durability and its light weight.
Glass is now generally employed in the construction of industrial buildings, office blocks and schools. In recent years it has eclipsed all other materials for heat and sound insulation purposes. Plastics are a new building material. Nearly all the plastics are compounds of such simple elements as carbon, hydrogen, oxygen and sometimes nitrogen. The characteristics of the various plastics depend upon the way in which these elements are combined. Plastics are used where the older materials are not satisfactory, or for the development of entirely new uses.
TEXT 3. OCCURRENCE OF METALS
Iron was used in the earliest times of which we have any historical records. The art of making weapons from iron was known to the Egyptians and Hindoos.
The metal is widely distributed in nature in the form of silicates, oxides, and the sulphide, FeS. The chief ores of the metal are hematite, Ре2Оз, limonite, 2Fe2O3. 3H2O, magnetite, Fe3O4, and siderite, FeCO3. Iron occurs in plants and animals as a constituent of complex organic compounds. It is present in the hemoglobin of the blood and is involved in this condition in the absorption of oxygen in the lungs.
The naturally occurring materials containing compounds of the metals which may be economically extracted are called ores. The definite chemical compound of the metal in the ore is termed a mineral. The name gangue is applied to the constituents of the ore other than the mineral containing the metal to be extracted.
Iron is obtained by reducing its ores with carbon. The ores contain, in addition to the oxides and carbonate of the metal, small amounts of combined sulphur, phosphorus, and manganese and are mixed with more or less sand and clay. The metals from lithium down to manganese are obtained by electrolysis of melted compounds that conduct лп electric current.
The science which treats of the methods used to obtain the metals in free condition from compounds that occur in nature is called metallurgy.
TEXT 4. PROPERTIES OF METALS
The metals resemble one another in their general chemical behaviour with other substances, but they differ markedly in activity.
The uses to which metals are put are based upon their physical or chemical properties. The metals vary greatly in density. The lightest is lithium, which has the density of 0.534 and is, therefore, about one-half as heavy as water. The heaviest is osmium (D. 22.48) which is closely related to platinum (D. 21.45) in physical and chemical properties. The so-called light metals, of which sodium, potassium, magnesium and aluminium are examples, have a density less than 4; iron, lead, tin, silver, etc. are known as heavy metals.
The metals also vary in hardness, from potassium, which can be molded like wax, to chromium, which will cut glass. The metals and other substances differ in the extent to which they can resist a strain that tends to bring about a permanent change in their form. All substances offer more or less resistance to the flow of an electric current through them. With any given substance, the resistance is determined by its dimensions and the temperature.
The solids obtained when two or more metals are mixed in the molten condition and allowed to solidify are called alloys. Each constituent of an alloy is called a component. Alloys may be binary (two-component), ternary (three-component), etc. The ability of various metals to form alloys differs greatly.
TEXT 5. MECHANICAL PROPERTIES OF MATERIALS
Vocabulary
ability способность
amount количество
absorb поглощать
amount количество
application применение
brittle хрупкий, ломкий
car body кузов автомобиля
constituent компонент
crack трещина
creep resistance устойчивость к ползучести
definition определение
density плотность
ductility ковкость, эластичность
failure повреждение
gradual постепенный
permanent постоянный
rigid жесткий
to sink тонуть
square root квадратный корень
stiffness жесткость
strain нагрузка, напряжение, деформация
strength прочность
stress давление, напряжение
tensile strength прочность на разрыв
toughness прочность, стойкость
yield strength прочность текучести
Young modulus модуль Юнга
Density (specific weight) is the amount of mass in a unit volume. It is measured in kilograms per cubic metre. The density of water is 1000 kg/ m3 but most materials have a higher density and sink in water. Aluminium alloys, with typical densities around 2800 kg/ m3 are considerably less dense than steels, which have typical densities around 7800 kg/ m3. Density is important in any application where the material must not be heavy.
Stiffness (rigidity) is a measure of the resistance to deformation such as stretching or bending. The Young modulus is a measure of the resistance to simple stretching or compression. It is the ratio of the applied force per unit area (stress) to the fractional elastic deformation (strain). Stiffness is important when a rigid structure is to be made.
Strength is the force per unit area (stress) that a material can support without failing. The units are the same as those of stiffness, MN/m2, but in this case the deformation is irreversible. The yield strength is the stress at which a material first deforms plastically. For a metal the yield strength may be less than the fracture strength, which is the stress at which it breaks. Many .materials have a higher strength in compression than in tension.
Ductility is the ability of a material to deform without breaking. One of the great advantages of metals is their ability to be formed into the shape that is needed, such as car body parts. Materials that are not ductile are brittle. Ductile materials can absorb energy by deformation but brittle materials cannot.
Toughness is the resistance of a material to breaking when there is a crack in it. For a material of given toughness, the stress at which it will fail is inversely proportional to the square root of the size of the largest defect present. Toughness is different from strength: the toughest steels, for example, are different from the ones with highest tensile strength. Brittle materials have low toughness: glass can be broken along a chosen line by first scratching it with a diamond. Composites can be designed to have considerably greater toughness than their constituent materials. The example of a very tough composite is fiberglass that is very flexible and strong.
Creep resistance is the resistance to a gradual permanent change of shape, and it becomes especially important at higher temperatures. A successful research has been made in materials for machine parts that operate at high temperatures and under high tensile forces without gradually extending, for example the parts of plane engines.
TEXT 6. OTHER TYPES OF WELDING
Vocabulary
gas-tungsten сварка оплавлением вольфрамовым электродом в среде инертного газа
inert инертный
edge край
bare голый
rate зд. Скорость
gas-metal arc аргоно-дуговая сварка
considerably значительно, гораздо
surrounding окружающий
carbon dioxide углекислый газ
droplet капелька
liquid жидкость, жидкий
beneath под, ниже, внизу
layer слой
weld seam сварной шов
resistance сопротивление
clamp зажим, зажимать
sheet лист
fusible плавкий
granular плавкий
semi-automatic полуавтоматическая
to create создавать
to submerge погружать
Non-consumable Electrode Arc welding
As a non-consumable electrodes tungsten or carbon electrodes can be used. In gas-tungsten arc welding a tungsten electrode is used in place of the metal electrode used in shielded metal-arc welding. A chemically inert gas, such as argon, helium, or carbon dioxide is used to shield the metal from oxidation. The heat from the arc formed between the electrode and the metal melts the edges of the metal. Metal for the weld may be added by placing a bare wire in the arc or the point of the weld. This process can be used with nearly all metals and produces a high-quality weld. However, the rate of welding is considerably slower than in other processes.
Gas-Metal Arc
In gas-metal welding, a bare electrode is shielded from the air by surrounding it with argon or carbon dioxide gas and sometimes by coating the electrode with flux. The electrode is fed into the electric arc, and melts off in droplets that enter the liquid metal of the weld seam. Most metals can be joined by this process. Submerged Arc
Submerged-arc welding is similar to gas-metal arc welding, but in this process no gas is used to shield the weld. Instead of that, the arc and tip of the wire are submerged beneath a layer of granular, fusible material that covers the weld seam. This process is also called electroslag welding. It is very efficient but can be used only with steels.
Resistance Welding
In resistance welding, heat is obtained from the resistance of metal to the flow of an electric current. Electrodes are clamped on each side of the parts to be welded, the parts are subjected to great pressure, and a heavy current is applied for a short period of time. The point where the two metals touch creates resistance to the flow of current. This resistance causes heat, which melts the metals and creates the weld. Resistance welding is widely employed in many fields of sheet metal or wire manufacturing and is often used for welds made by automatic or semi-automatic machines especially in automobile industry.
Приложение 1
Темы групповых или индивидуальных творческих заданий/проектов2
Критерии оценки:
Приложение 2
Темы докладов, сообщений
Критерии оценки:
- Оценка «отлично» ставится, если студент владеет тематикой общения, использование языковых явлений и речевых средств, отсутствие грамматических ошибок, влияющих на понимание речи, эмоциональность, спонтанность ответов, правильное оформление, использование разнообразных источников информации при подготовке доклада, тема раскрыта полностью.
- Оценка «хорошо» ставится, если есть несколько неточностей в грамматическом оформлении предложений, некоторое отклонение от поставленной задачи общения, например, аргументация высказывания или убеждения, которое отличается от обычного высказывания употреблением иных речевых средств, есть недочеты в оформлении, тема раскрыта.
- Оценка «удовлетворительно» ставится, если студент слабо владеет технологией общения, что проявляется в отсутствии спонтанности речевого высказывания, самостоятельности и активности в диалоге, наличие грамматических ошибок в высказываниях, создающих трудности в восприятии текста, имеются ошибки в оформлении, тема не полностью раскрыта, нет разнообразия в источниках информации.
- Оценка «неудовлетворительно» - неумение самостоятельно начать и поддержать разговор, слабая реакция на вопросы учителя, узкий лексический кругозор, простые фразы и невладение навыками аргументировать свою точку зрения, тема нераскрыта, неправильное оформление работы.
Приложение 3
Темы эссе
Критерии оценки:
- Оценка «отлично» ставится, если отсутствуют грамматические ошибки, прозрачность и логика изложения мыслей, умелое использование грамматических явлений, владение лексическим материалом, использование разнообразных речевых средств, соблюдение правил письменного этикета, оформление работы, применение фантазии.
- Оценка «хорошо» ставится, если 2-3 грамматические ошибки, незначительное нарушение правил письменного речевого этикета в виде неверного расположения обращения к адресату, даты или формул приветствия, прощания, не влияющих на логику изложения и понимания написанного
- Оценка «удовлетворительно» ставится, если 4-5 грамматические ошибки, слабо используется изученная лексика, слишком кратко излагается содержание текста, практически отсутствует собственная точка зрения на суть проблемы.
- Оценка «неудовлетворительно» ставится, если более 5 грамматических ошибок, неумение использовать разные виды предложений, примитивность изложения мыслей, узкий диапазон лексики, слишком краткое изложение текста.
Приложение 4
Клише и фразы, используемые для аннотирования текста
The text / article under review ...(gives us a sort of information about...)
The article deals with the problem ...
At the beginning (of the text) the author describes... (dwells on explainstouches upon analyses...; comments ... ; characterizes ... ; underlines ... ; reveals ... ; gives account of...)
The article begins with the description oja review of...,
the analysis of...
The article opens with ...
Then (after that, further on, next) the author passes on to gives a detailed (thorough) analysis (description), goes on to say that...
To finish with, the author describes ...
At the end of the article the author draws the conclusion that...; the author sums it all up (by saying ...)
In conclusion the author...
Список использованных источников
3.Кабакчи, В.В. Практика английского языка: Сборник упражнений по переводу / В.В. Кабачкин. С-Пб.: 1999.
4. Карпова, Т.А. Английский для колледжей : учебное пособие / Т.А. Карпова М.: Дашков и К, 2009. 320с.
5.Кривых, Л.Д., Рябичкина, Г.В., Смирнова, О.Б. Технический перевод: учебно-методическое пособие / Л.Д. Кривых, Г.В. Рябичкина, Г.В. Смирнова. М.:. Форум, 2009. 184с.
6.Малютин Э.А., Шитов Ю.И. Английский язык для программистов: Тексты и упражнения / Э.А. Малютин, Ю.И. Шитов М.: Память, 1992. 96 с.
7.Радовель В.А. Английский язык. Основы компьютерной грамотности: Учебное пособие / В.А. Радовель Ростов н/Д: Феникс, 2005. 224 с.
Интернет источники
2