Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Значения переменной x]0

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

Задачи по информатике

Глава I  Линейные программы

Раздел 1

Составить схему алгоритма и программу для вычисления значений функций Y и F для заданных значений переменной x и постоянных a и b. Значения переменной x>=0. Вывести на экран значения F, Y для соответствующих значений x.

Раздел 2

  1.  Вычислить произведение высот треугольника со сторонами a, b, c.
  1.  В прямоугольном треугольнике с катетами a и b найти углы и длину высоты, опущенной на гипотенузу.
  1.  Вычислить площадь поверхности и объем правильной пирамиды, в основании которой квадрат со стороной а и высота h.
  1.  Система из двух параллельных сопротивлений R1 и R2 соединена последовательно с сопротивлением R3. К цепи приложено напряжение V. Найти силу тока в каждом из сопротивлений.
  1.  Треугольник задан координатами (x1, y1), (x2, y2), (x3, y3) своих вершин. Вычислить радиус окружности, вписанной в треугольник.
  1.  Ромб задан координатами трех вершин (x1, y1), (x2, y2), (x3, y3). Вычислить площадь и периметр ромба.
  1.  Вычислить время падения тела с высоты H с начальной скоростью V0.
  1.  Дан треугольник со стороной a и прилежащими углами и . Вычислить площадь треугольника, найти остальные стороны и угол между ними.
  1.  Смешаны V1 литр воды температуры Т1 с V2 литрами воды температуры Т2. Написать программу вычисления объема и температуры воды.
  1.  Треугольник задан координатами (x1, y1), (x2, y2), (x3, y3) своих вершин. Найти периметр и площадь треугольника.
  1.  Тело брошено с начальной скоростью V0 под углом к горизонту. Найти время полета, расстояние от точки вылета до точки приземления, максимальную высоту подъема.
  1.  Известно, что точки с координатами (x1, y1), (x2, y2), (x3, y3) являются тремя вершинами некоторого параллелограмма. Найти координаты четвертой вершины.
  1.  Вычислить длину окружности, площадь круга, объем и площадь поверхности шара одного радиуса.
  1.  По длинам двух сторон треугольника и углу между ними найти длину третьей стороны и площадь треугольника.
  1.  Треугольник задан координатами (x1, y1), (x2, y2), (x3, y3) своих вершин. Вычислить радиус окружности, описанной около треугольника.

Глава II  Ветвления

Раздел 1

  1.  Даны уравнения прямых а1х+b1y=c1, a2x+b2y=c2, a3x+b3y=c3. Выяснить, какие из этих прямых параллельны, а какие - нет.
  1.  Даны различные действительные числа x, y, z, d. Найти min(max(x, y), max(x, z), max(z, d)).
  1.  Даны отрезки [a, b] и [c, d] и точка A с координатой х. Определить, принадлежит ли данная точка одному из этих отрезков, обоим или лежит вне их.
  1.  Определить, существует ли треугольник со сторонами a, b, c, и если существует, то является ли он равносторонним, равнобедренным или общего вида.
  1.  Известно, что из четырех чисел a1, a2, a3, a4 одно отлично от трех других, равных между собой. Присвоить номер этого числа переменной n
  1.  Даны уравнения прямых а1х+b1y=c1, a2x+b2y=c2, a3x+b3y=c3. Выяснить, какие из этих прямых перпендикулярны, а какие - нет.
  1.  Длины сторон треугольника равны a, b, c. Если треугольник равносторонний, то найти его площадь. Если треугольник равнобедренный, то найти периметр и угол между равными сторонами.
  1.  Решить биквадратное уравнение ax4 + bx2 + c = 0.
  1.  Проверьте, можно ли построить треугольник из отрезков с длинами a, b, c и, если можно, то какой – остроугольный, прямоугольный или тупоугольный.
  1.  Вершины треугольника имеют координаты (0, 0), (0, a), (b, 0). Определить, лежит ли точка с координатами (x, y) внутри треугольника.
  1.  Определите, пройдет ли кирпич с рёбрами a, b, c в прямоугольное отверстие со сторонами x и y. Просовывать кирпич в отверстие разрешается только так, чтобы каждое из его рёбер было параллельно или перпендикулярно каждой из сторон отверстия.
  1.  Значения заданных переменных a, b и c перераспределите таким образом, что a, b, c станут, соответственно, наименьшим, средним и наибольшим значениями.
  1.  Заданы площади круга и квадрата. Определите, поместится ли квадрат в круге.
  1.  Проверьте, можно ли построить параллелограмм из отрезков с длинами x, y, v, w.
  1.  Даны координаты (целые от 1 до 8) двух полей шахматной доски. Определить, может ли конь за один ход перейти с одного из этих полей на другое.

Раздел 2

 

 

Вариант 9

Вариант 10

Вариант 11

Вариант 12

Вариант 13

Вариант 14

Вариант 15

Глава III  Циклы

Раздел 1

Распечатать таблицу значений функции F для x, изменяющегося в интервале от x0 до xk с шагом h. Значения x0, xk, h вводятся пользователем.

 

Раздел 2

Для x, изменяющегося в интервале от x0 до xk с шагом h, вычислить значения бесконечной суммы S(x) с точностью =0.00001 и функции y(x).

S(x)

y(x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Глава IV  Одномерные массивы

Раздел 1

  1.  В массиве из 10 целых чисел поменять местами наибольший элемент и первый элемент.
  1.  В массиве из 10 целых чисел поменять местами наименьший элемент и последний элемент.
  1.  Найти среднее арифметическое элементов целого массива из 10 элементов и записать его на место максимального элемента.
  1.  В массиве из 10 целых чисел найти количество элементов, стоящих между максимальным и минимальным элементами.
  1.  В массиве из 10 целых чисел подсчитать сумму элементов, стоящих левее максимального.
  1.  В массиве из 10 целых чисел подсчитать сумму элементов, стоящих правее минимального.
  1.  В массиве из 10 целых чисел наибольший и наименьший элементы поменять местами.
  1.  В массиве из 10 целых чисел вычислить разность между наибольшим элементом и средним арифметическим всех элементов массива.
  1.  В массиве из 10 целых чисел найти произведение элементов, стоящих между максимальным и минимальным элементами.
  1.  В массиве из 10 целых чисел заменить все элементы, стоящие на четных местах, на минимальный элемент.
  1.  В массиве из 10 целых чисел заменить все элементы, стоящие на нечетных местах, на максимальный элемент.
  1.  В массиве из 10 целых чисел заменить все отрицательные элементы на минимальный элемент, а все положительные – на максимальный.
  1.  Дан массив из 10 целых чисел. Определить, что больше: среднее арифметическое максимального и минимального элементов, или среднее арифметическое всех элементов массива.
  1.  В массиве из 10 целых чисел подсчитать среднее геометрическое элементов, стоящих правее максимального.
  1.  В массиве из 10 целых чисел подсчитать среднее геометрическое элементов, стоящих левее минимального.

Раздел 2

  1.  Вычислить модули и скалярное произведение двух векторов a и b размерностью n=10.
  1.  Распечатать координаты вектора, равного сумме двух векторов a и b размерностью n=10 и найти его модуль.
  1.  Из двух векторов a и b размерностью n=10 составить третий вектор c таким образом, чтобы его первые пять компонент были равны компонентам вектора a, стоящим на четных местах, а вторые пять компонент – компонентам вектора b, стоящим на нечетных местах.
  1.  Для вектора a размерностью n=10 и произвольного числа x вычислить число y по формуле.

 

  1.  Для вектора a размерностью n=10 вычислить среднее значение M и среднеквадратическое отклонение S по формулам:
  1.  Для вектора a размерностью n=10 вычислить значение y по формуле
  1.  Для векторов a и b размерностью n=10 вычислить значение y по формуле
  1.  Вычислить косинус угла между векторами a и b размерностью n=10 по формуле

.

  1.  Для векторов a и b размерностью n=10 вычислить значение y по формуле
  1.  Распечатать координаты вектора, равного разности двух векторов a и b размерностью n=10 и найти его модуль.
  1.  Для вектора a размерностью n=10 и произвольного числа x вычислить число y по формуле

.

  1.  Для вектора a размерностью n=10 вычислить среднее значение M и средний модуль отклонения Q по формулам:

 

  1.  Для векторов a и b размерностью n=10 вычислить значение y по формуле

.

  1.  Для векторов a и b размерностью n=10 вычислить значение y по формуле

.

  1.  Из двух векторов a и b размерностью n=10 составить третий вектор c таким образом, чтобы его первые пять компонент были равны разности компонент векторов a и b, стоящих на четных местах, а вторые пять компонент – сумме компонент векторов a и b, стоящих на нечетных местах.

PAGE  1




1. реферат дисертації на здобуття наукового ступеня кандидата технічних наук ІваноФранків
2. Учет экспортных операций1
3. Rnging Some simply provide summries of the stte of Indigenous rights in given country which is beneficil for lerning bout specific Indigenous groups or regions while others dopt more criticl view
4. правового регулирования
5. Тема 9- Измерение результатов экономической деятельности 9
6. Notes section of the medi specificlly designed to rech lrge udience
7. Архетипи та універсалії української ментальності.html
8. Страхование жизни и его разновидности К страхованию жизни относят все виды страхования где в качестве об
9. Саратовская государственная юридическая академия 1
10. РЕФЕРАТ дисертації на здобуття наукового ступеня доктора медичних наук Київ2001
11. а но понятие алгоритма необязательно относится к компьютерным программам так например чётко описанный ре
12. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА)
13. на тему- Праздник ' 8 марта
14. Развитие социального PR в общеобразовательной школе
15. Борьба с иноземными завоевателями
16. конца света в современном массовом кино Конец света оказался одним из самых популярных сюжетов в сов
17. Саясат пен экономиканы~ байланысы
18. технологического обслуживания
19. 6. Объектная структура программы впервые была использована в языке имитационного моделирования сложных с
20. либо обязательств