Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 3, 6), A2(2, 2, 1), A3(1, 0, 1),
A4 (4, 6, 3). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 1, 3) и т. B (0, 3, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 4, 7),
B (1, 5, 4), C (2, 7, 10).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(4, 2, 6), A2(2, 3, 0),
A3(10, 5, 8), A4 (5, 2, 4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 3, 4) и т. B (2, 6, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (4, 2, 0),
B (1, 1, 5), C (2, 1, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(7, 2, 4), A2(7, 1, 2), A3(3, 3, 1),
A4 (4, 2, 1). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 1, 5) и т. B (2, 1, 3).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 4, 3),
B (1, 3, 8), C (6, 6, 4).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 1, 4), A2(1, 5, 2),
A3(7, 3, 2), A4 (6, 3, 6). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (3, 2, 4) и т. B (1, 4, 5).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 1, 8),
B (2, 4, 1), C (1, 4, 4).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 5, 2), A2(6, 0, 3),
A3(3, 6, 3), A4 (10, 6, 7). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (2, 2, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 2, 3),
B (0, 1, 2), C (3, 4, 5).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(0, 1, 1), A2(2, 3, 5),
A3(1, 5, 9), A4 (1, 6, 3). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 3, 4) и т. B (3, 1, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, 6),
B (12, 3, 3), C (9, 3, 6).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(5, 2, 0), A2(2, 5, 0), A3(1, 2, 4),
A4 (1, 1, 1). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 1, 1) и т. B (1, 2, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, 1),
B (5, 5, 2), C (4, 1, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 1, 2), A2(1, 2, 1), A3(5, 0, 6),
A4 (10, 9, 7). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (3, 2, 1) и т. B (2, 3, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 2, 3),
B (3, 4, 6), C (1, 1, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 0, 4), A2(1, 7, 1),
A3(4, 8, 4), A4 (1, 4, 6). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 2, 1) и т. B (1, 1, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (4, 2, 0),
B (1, 2, 4), C (3, 2, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(14, 4, 5), A2(5, 3, 2),
A3(2, 6, 3), A4 (2, 2, 1). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 1, 0) и т. B (5, 2, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (5, 3, 1),
B (5, 2, 0), C (6, 4, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 2, 0), A2(3, 0, 3), A3(5, 2, 6),
A4 (8, 4, 9). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 2, 1) и т. B (2, 2, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 7, 5),
B (0, 1, 2), C (2, 3, 0).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 1, 2), A2(1, 2, 1), A3(3, 2, 1),
A4 (4, 2, 5). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (6, 7, 4) и т. B (2, 0, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (2, 4, 6),
B (0, 2, 4), C (6, 8, 10).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 1, 2), A2(1, 1, 3), A3(2, 2, 4),
A4 (1, 0, 2). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 0, 1) и т. B (2, 2, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, 1),
B (1, 5, 2), C (4, 1, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 3, 1), A2(4, 1, 2), A3(6, 3, 7),
A4 (7, 5, 3). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (2, 6, 8).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 2, 1),
B (4, 2, 5), C (8, 2, 2).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 1, 1), A2(2, 3, 1), A3(3, 2, 1),
A4 (5, 9, 8). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 2, 1) и т. B (2, 1, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 0, 4),
B (3, 6, 1), C (5, 10, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 5, 7), A2(3, 6, 3), A3(2, 7, 3),
A4 (4, 8, 12). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 2, 1) и т. B (4, 2, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 6, 9),
B (0, 3, 6), C (9, 12, 15).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(3, 4, 7), A2(1, 5, 4),
A3(5, 2, 0), A4 (2, 5, 4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (4, 7, 5) и т. B (2, 0, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 2, 4),
B (8, 2, 2), C (6, 2, 4).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 2, 3), A2(4, 1, 0),
A3(2, 1, 2), A4 (3, 4, 5). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (4, 3, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, 1),
B (5, 1, 2), C (4, 1, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(4, 1, 3), A2(2, 1, 0), A3(0, 5, 1),
A4 (3, 2, 6). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 2, 3) и т. B (2, 4, 3).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (4, 3, 0),
B (0, 1, 3), C (2, 4, 2).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, -1, 1), A2(-2, 0, 3), A3(2, 1, -1),
A4 (2, -2, -4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (4, 3, 1) и т. B (-3, 3, 5).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (7, 0, 2),
B (7, 1, 3), C (8, -1, 2).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 2, 0), A2(1, 1, 2), A3(0, 1, 1),
A4 (3, 0, 1). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (9, 2, 5) и т. B (1, 3, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (2, 3, 2),
B (1, 3, 1), C (3, 7, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 0, 2), A2(1, 2, 1), A3(2, 2, 1),
A4 (2, 1, 0). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 1, 0) и т. B (8, 11, 6).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 2, 3),
B (0, 1, 2), C (3, 4, 5).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 2, 3), A2(1, 0, 1), A3(2, 1, 6),
A4 (0, 5, 4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 3, 7) и т. B (2, 1, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, 6),
B (9, 3, 6), C (12, 3, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(3, 10, -1), A2(-2, 3, -5), A3(-6, 0, -3),
A4 (1, -1, 2). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 3, 7) и т. B (4, 2, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, 1),
B (2, 1, 4), C (2, 3, 0).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 2, 4), A2(1, 2, 4),
A3(3, 0, 1), A4 (7, 3, 1). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (8, 1, 6) и т. B (1, 1, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, 6),
B (9, 3, 6), C (12, 3, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(0, 3, 1), A2(4, 1, 2), A3(2, 1, 5),
A4 (3, 1, 4). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 3) и т. B (1, 3, 8).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (7, 2, 2),
B (0, 0, 3), C (2, 5, 7).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 3, 0), A2(4, 1, 2), A3(3, 0, 1),
A4 (4, 3, 5). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (1, 2, 1) и т. B (2, 1, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (2, 1, 1),
B (2, 3, 2), C (0, 0, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(-2, -1, -1), A2(0, 3, 2), A3(3, 1, -4),
A4 (-4, 7, 3). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (9, 4, 9) и т. B (6, 2, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, 6),
B (0, 2, 4), C (7, 3, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(-3, -5, 6), A2(2, 1, -4), A3(0, -3, -1),
A4 (-5, 2, -8). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (4, 7, 6) и т. B (3, 0, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 1, 4),
B (7, 3, 2), C (7, 3, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 4, 3), A2(5, 6, 0), A3(1, 3, 3),
A4 (10, 8, 7). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (0, 2, 1) и т. B (2, 4, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (4, 2, 7),
B (1, 3, 4), C (4, 1, 3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число .
Найти:
а) при каких значениях и векторы компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам .
№ 4. Даны векторы: и число .
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути ;
г) проекцию вектора на вектор ;
д) площадь треугольника, построенного на векторах , если начало вектора помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 1, 2), A2(2, 1, 2), A3(1, 1, 4),
A4 (6, 3, 8). Найти:
а) ; б) площадь грани A1 A2 A3; в) ;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором , если
и заданы разложением по взаимно перпендикулярным ортам и .
№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если .
№ 9. Задан вектор силы и координаты точек: т. A (2, 1, 1) и т. B (10, 9, 7).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (1, 3, 6),
B (1, 3, 4), C (5, 7, 0).