У вас вопросы?
У нас ответы:) SamZan.net

Лабораторная работа 141 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ В ЖИДКОСТИ ПРИ РАЗЛИЧНЫХ ТЕМПЕРА

Работа добавлена на сайт samzan.net: 2016-03-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 12.4.2025

Лабораторная работа № 141

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ

В ЖИДКОСТИ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ

Цель работы:

  •  определение температурной зависимости коэффициента внутреннего трения глицерина методом падающего груза (метод Стокса).

Теоретическое введение

Вязкость (внутреннее трение)- это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.

Движущуюся жидкость рассматривают как совокупность непрерывных плотно прилегающих друг к другу слоёв (рис. 1), каждый из которых движется с постоянной скоростью. Слои могут иметь различную толщину и скользят относительно друг друга, не перемешиваясь между собой.

Молекулы жидкости из более быстрого слоя передают часть своего импульса молекулам из соседнего более медленного слоя. Такое течение жидкости называется ламинарным.

Если один слой движется со скорость , а другой – со скоростью , а расстояние между слоями , то величина  характеризует изменение скорости движения жидкости в направлении перпендикулярном движению. Это градиент скорости в заданном направлении. Ньютон установил, что сила внутреннего трения, действующая между двумя слоями, пропорциональна площади их соприкосновения S и градиенту скорости:

.     (1)

Закон Ньютона для жидкости справедлив при не больших скоростях движения слоёв.

Коэффициент пропорциональности  зависит от природы жидкости и называется коэффициентом внутреннего трения, коэффициентом динамической вязкости или вязкостью.

Если один из рассматриваемых слоёв неподвижный (), то сила внутреннего трения  пропорциональна скорости движения другого слоя  и . Тогда:

.     (2)

Следовательно, сила внутреннего трения пропорциональна относительной скорости движения слоёв и площади соприкасающихся поверхностей.

Сила внутреннего трения и, соответственно, вязкость жидкости зависит от температуры. Существует множество моделей явлений переноса в жидкости. По одной из них перенос импульса молекулой жидкости от одного слоя к другому происходит за счёт перехода её из одного временного положения равновесия в другое. Энергия, необходимая для такого перехода называется энергией активации Е. В соответствии с этой моделью переноса импульса молекулами в жидкости, коэффициент внутреннего трения жидкости и  энергия активации связаны соотношением:

,     (3)

где: А – постоянная величина; k –постоянная Больцмана; T – абсолютная температура. Уравнение (3) называется уравнением Андраде. С увеличением температуры коэффициент внутреннего трения жидкости (в отличие от газов) уменьшается.

При движении тела в жидкости на него также действует сила трения со стороны жидкости. Если жидкость неподвижна, а скорость движения тела не велика, то движение тела не оказывает влияния на достаточно удалённые слои жидкости. Взаимодействие происходит только со слоем, непосредственно соприкасающимся с телом. Тогда сила сопротивления (трения) среды пропорциональна скорости движения тела:

,     (4)

где коэффициент r зависит от вязкости среды и площади соприкосновения поверхности S тела с жидкостью:

r ~ηS,       (5)

где  ηкоэффициент внутреннего трения жидкости (динамическая вязкость жидкости) Коэффициент сопротивления среды, зависит от вязкости среды  и площади слоя жидкости S, соприкасающегося с телом.

Дж. Стокс эмпирически установил, что для тел сферической формы радиуса R коэффициент сопротивления равен . Следовательно, сила сопротивления среды равна:

.     (6)

Формулу Стокса можно представить в виде:

.     (7)

Из сравнения (2) и (7) можно заключить, что в формуле Стокса также как в соотношении (2), сила трения пропорциональна площади поверхности шара и скорости движения шара относительно неподвижной жидкости. Величину  можно интерпретировать как среднее расстояние от центра шара до первого слоя неподвижной жидкости. Следовательно, формулу Стокса можно применить в методике определения вязкости жидкости.

При равномерном движении шарика в вязкой жидкости (рис. 2) уравнение второго закона Ньютона в проекции на  вертикальную ось запишется в виде:

F1F2- F3 = 0,     (8)

где: F1 = r1 gV – сила тяжести; F2 = r2 gVсила Архимеда;  - сила Стокса.

Учитывая объём шарика:

,      (9)

получим:

,   (10)

где: g – ускорение свободного падения: v = H/t - скорость движения шарика: d - диаметр шарика.

Описание установки и методики измерений

Фотография экспериментальной установки для измерения коэффициента внутреннего трения жидкости приведена на рис. 3.

Рис. 3. Фотография экспериментальной установки

На лицевой панели установки находятся:

  •  двухканальный измеритель температуры типа «2ТРМО»;
  •  тумблер измерителя температуры;
  •  тумблер электропитания установки «СЕТЬ»;
  •  тумблер включения нагревателя;
  •  регулятор температуры.

Схема экспериментальной установки для измерения коэффициента внутреннего трения жидкости приведена на рис.4.

Рис. 4 . Схема экспериментальной установки.

Цилиндрическая ёмкость 1 с жидкостью обогревается нихромовым нагревателем 5 соединённым с регулятором температуры жидкости 6 с ручкой регулирования 11, измеритель температуры 10. Металлический шарик 7 опускается в ёмкость 1 через патрубок 2 вмонтированный в пробку 8. Через пробку 8 введена термопара 9, которая может перемещаться по высоте ёмкости 1. В эту же пробку вмонтирована «корзина» для извлечения упавших шариков. Расстояние между метками 3 и 4 определяется по измерительной линейке 12.

Порядок выполнения работы

  1.  Изучите состав лабораторной установки и ознакомьтесь с размещением органов управления на рабочем месте.
  2.  Установите органы управления лабораторной установки в исходное состояние:
    •  Тумблер «СЕТЬ» установите в положение «ВЫКЛ».
    •  Тумблер «ВКЛЮЧЕНИЕ РЕГУЛЯТОРА t0С» установите в положение «ВЫКЛ».
    •  Тумблер «РЕГУЛЯТОРА t0С» установите в положение «ВЫКЛ».
    •  Поверните ручку «РЕГУЛЯТОРА t0С» против часовой стрелки (влево) до упора.
    •  Тумблер измерителя температуры «ВКЛ - t0» установите в положение «t0».
  3.  Подключите лабораторный модуль к электрической сети.

Внимание! Перед проведением экспериментов внимательно ознакомьтесь с порядком выполнения работы (пункты 4-17).

  1.  Включите электропитание установки - тумблер «СЕТЬ» установите в положение «ВКЛ».
  2.  Тумблер измерителя температуры «ВКЛ - t0» установите в положение «ВКЛ» при этом на индикаторе измерителя будет отображаться текущее значение температуры жидкости. Текущее значение температуры жидкости занесите в таблицу 1.
  3.  По шкале (измерительной линейке) определите расстояние Н между верхней и нижней метками (данными преподавателем). Результаты измерения занесите в таблицу 1.
  4.  С помощью микрометра трижды измерьте диаметр di  шарика. Определите среднее значение диаметра di  шарика, результат измерения занесите в таблицу 1.
  5.  Аккуратно через патрубок опустите шарик в ёмкость с жидкостью, при этом измерьте секундомером время t движения шарика от верхней метки до нижней метки при его падении в жидкости. Результаты измерения занесите в таблицу 1.
  6.  Повторите выполнение пунктов 6-8 еще для двух шариков. Текущее значение температуры для каждого эксперимента занесите в таблицу 1.
  7.  Тумблер «ВКЛЮЧЕНИЕ РЕГУЛЯТОРА t0С» установите в положение «ВКЛ».
  8.  Тумблер «РЕГУЛЯТОРА t0С» установите в положение «ВКЛ».
  9.  Поверните (со щелчком) ручку «РЕГУЛЯТОРА t0С» и установите ее в среднее положение. Через 10-15 секунд поверните ручку «РЕГУЛЯТОРА t0С» против часовой стрелки (влево) до упора (со щелчком).
  10.  Тумблер «РЕГУЛЯТОРА t0С» установите в положение «ВЫКЛ».
  11.  Тумблер «ВКЛЮЧЕНИЕ РЕГУЛЯТОРА t0С» установите в положение «ВЫКЛ».
  12.  По мере повышения температуры для произвольных 4-х ее текущих значений выполнить измерения согласно пунктам 6-9. Для каждого из выбранных значений температуры жидкости провести серию опытов из трех шариков. Результаты измерений занести в таблицу 1.

Внимание! Вследствие инерционности нагревателя и измерителя температуры для каждой серии экспериментов определяется среднее значение текущей температуры.

  1.  По окончании эксперимента установите органы управления лабораторного модуля в исходное состояние:
    •  Тумблер измерителя температуры «ВКЛ - t0» установите в положение «t0».
    •  Тумблер «СЕТЬ» установите в положение «ВЫКЛ»;
  2.  Отключите лабораторную установку от электрической сети.

Обработка результатов измерений

  1.  Используя соотношение , определите текущую температуру жидкости по шкале Кельвина. Результаты расчета температуры жидкости Тi занесите в таблицу 1.
  2.  По результатам измерений текущей температуры рассчитайте ее среднее значение tср, 0С в каждом отдельном опыте. Результаты расчета занесите в таблицу 1.
  3.  По результатам расчета текущей температуры по шкале Кельвина рассчитайте ее среднее значение Tср, К в каждом отдельном опыте. Результаты расчета занесите в таблицу 1.
  4.  Используя результаты измерений, рассчитайте значения коэффициентов внутреннего трения для каждой серии опытов по формуле:

,

где: g – ускорение свободного падения: v = H/t - скорость движения шарика: di - диаметр шарика. Результаты расчета занесите в таблицу 1.

  1.  Рассчитайте среднее значение коэффициента вязкости жидкости ηср в каждом отдельном опыте. По полученным результатам рассчитайте погрешность определения коэффициента вязкости жидкости воздуха за серию измерений. Расчет произведите как для прямых измерений.
  2.  Используя средние значения коэффициента вязкости, полученные для нескольких температур построить график зависимости . По наклону полученной прямой (как тангенс угла наклона) определите энергию активации Е в уравнении:

  1.  Сделайте выводы по графику и полученным результатам.

Таблица 1

№ п/п

Н, м

ti, 0С

Ti, К

tср, 0С

Tср, К

di, м

τ, с

V, м/c

η, Па .с

ηср, Па .с

1/Tср

1

2

3

4

5

Контрольные вопросы

  1.  Что такое коэффициент внутреннего трения (коэффициент вязкости)? Найдите его размерность в системе СИ и СГС.
  2.   Коэффициент вязкости глицерина при + 200С равен 5 Гּсм-1ּс-1. Как надо понимать это число 5?
  3.  Сформулируйте физический смысл градиента скорости и найдите его размерность.
  4.  Выведите расчетную формулу (10).
  5.  Почему силы трения, возникающие при движении шарика в жидкости, можно рассматривать как силы вязкости (трения) между слоями жидкости, а не силы трения между поверхностью шарика и жидкостью?

PAGE  7




1. Образование единого централизованного российского государства XIV-XVII вв
2. СТАТЬЯМИ 131 И 132 УГОЛОВНОГО КОДЕКСА РОССИЙСКОЙ ФЕДЕРАЦИИ в ред
3. служебного оружия
4. ЦА Влияние на политическую обстановку на севере Таджикистана весной 1997 года оказывали несколько факторов
5. Обязательственное право по ПСГ
6. тематичних чи інших формул; графічний за допомогою блоксхем або структурних схем; з використанн.html
7. Статья- Особенности формирования правового сознания россиян в современных условиях
8. АНАЛИЗ СТРУКТУРНОЙ СХЕМЫ ПРЕДСТАВЛЕННОЙ В ЗАДАНИИ
9. Статья учителя начальных классов высшей категории руководителя экологической группы Юный эколог МОУ С
10. тема заказа билетов и отправки багажа