Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

темах 020005 Електрохімія Автореферат дисертації на здобуття наукового ступеня кандидата хім

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ

Інститут загальної та неорганічної хімії

ім. В.І.Вернадського

     

Тураш Микола Миколайович

УДК 541.13: 541.12

Часова  і  просторова  самоорганізація

в електрохімічних  системах

02.00.05  - Електрохімія

Автореферат дисертації

на здобуття наукового ступеня кандидата хімічних наук

      

Київ -  1999

Дисертацією є рукопис

Робота виконана на кафедрі фізичної та органічної хімії в Чернівецькому державному університеті ім. Ю. Федьковича

Науковий керівник:

Доктор фізико-математичних наук, професор Нечипорук Василь Васильович, кафедра фізичної та органічної хімії Чернівецького держуніверситету, професор

Офіційні опоненти:

доктор хімічних наук, Колбасов Геннадій Якович, Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, завідуючий відділом

доктор хімічних наук, професор Кузьминський Євген Васильович, Рада з питань науки та науко-технічної політики при Президентові України, керівник секретаріату

Провідна установа:

Харківський державний університет,  Науково-дослідний інститут хімії,
м. Харків  

Захист відбудеться “ 16 вересня 1999 року о 12 годині на засіданні спеціалізованної вченої ради Д 26.218.01 Інституту загальної та неорганічної хімії ім. В.І. Вернадського НАН України за адресою: 252680, Київ-142, проспект академіка Палладіна, 32/34,  конференц-зал.

З дисертацією можна ознайомитися у бібліотеці Інституту загальної та неорганічної хімії ім. В.І. Вернадського НАН України.

Автореферат розіслано  “ 16     липня   1999 року

Вчений секретар

спеціалізованної ради     Панов Е.В.

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

 Актуальність теми. Для розв'язання багатьох теоретичних і прикладних проблем фізичної хімії велике значення має вивчення еволюції систем далеко від термодинамічної рівноваги. Характерною особливістю протікання процесів в області нелінійної залежності потоків від термодинамічних сил є те, що при критичних значеннях термодинамічних сил може відбутися ріст флуктуацій інтенсивних величин, що зумовлює стрибкоподібну перебудову нерівноважної системи, різку зміну динамічних характеристик і утворення впорядкованих дисипативних структур.

Електрохімічні системи завдяки значним потенціальним можливостям до самоорганізації (різноманітність фізичних та хімічних явищ, мобільність до каталітичних дій, наявність механізмів як додатніх, так і від'ємних зворотніх зв'язків) проявляють високу здатність до утворення різних типів дисипативних систем, що класифікуються як часові, просторові та просторово-часові.

В основі сучасних уявлень про появу часових дисипативних структур (автоколивання) лежать взаємозв'язки транспортних процесів з електрохімічними перетвореннями на електроді та характеристики зовнішнього ланцюга, які впливають на режим протікання процесу.

Що ж до просторової самоорганізації, то найбільшу увагу привертає порушення механічної рівноваги циркуляційними комірками, що з'являються, перехід ламінарного руху в турбулентний та ефект Марангоні у випадку електрохімічної системи рідкий електрод-рідкий електроліт. Останній зумовлений впливом на поверхневий натяг неоднорідності електричного потенціалу та концентрації реагуючих речовин.

Розкриття закономірностей самоорганізації є основою наукового підходу не лише при розв'язанні прикладних проблем інтенсифікації та оптимізації управління фізико-хімічними перетвореннями, але й при створенні принципово нових технологічних розв'язків.

 Мета роботи: знайти критерії та умови часового і просторового дисипативного структурування в електрохімічних системах з рідким електролітом та одним рідким електродом. Для досягнення поставленої мети необхідно було вирішити такі задачі:

- розробити модель електрокаталітичного відновлення металів при наявності двох типів адсорбованих речовин;

- визначити критичні числа появи часових дисипативних структур в електрохімічних системах;

- знайти умови дисипативного структурування у системах з ефектом Марангоні, дослідити вплив ефекту Релея на нестійкість Марангоні, розрахувати критичні числа Марангоні з урахуванням залежності поверхневого натягу від потенціалу та концентрації;

- методом кінцевих різниць з'ясувати вплив чисел Грасгофа на концентраційні профілі та форму конвективних потоків в області самоорганізації електрохімічних систем.

 Наукова новизна отриманих результатів. Запропонована модель електрокаталітичного відновлення металів при наявності двох типів адсорбованих речовин і визначені критичні числа появи часових дисипативних структур. Знайдені умови появи дисипативних структур в електрохімічних системах рідкий електрод-рідкий електроліт в залежності від закономірностей кінетики процесу, умов його проведення, а також співвідношення товщин шарів електроду та електроліту. Обчислені критичні числа Марангоні з урахуванням залежності поверхневого натягу не лише від потенціалу, а й від концентрації. Методом кінцевих різниць досліджено вплив чисел Грасгофа на форму конвективних потоків і показано поступову зміну механізму переносу від дифузійного до конвективного.

 Практичне значення отриманих результатів. Розглянуті моделі дисипативного структурування носять фундаментальний характер. На сьогодні для отримання якісних рівномірних гальванічних покрить суттєвим є наявність перемішування. Застосування природнього перемішування (природної конвекції) може значно зменшити енергетичні витрати і прискорити (порівняно з системою без перемішування) транспортні процеси в електрохімічних виробництвах.  

 Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана на кафедрі фізичної та органічної хімії Чернівецького держуніверситету згідно планової науково-дослідної бюджетної теми № 0194U028036 “Біфуркаційні явища, поверхнево-електродна та гідродинамічна нестійкість в електрохімічних системах”.

 Особистий внесок здобувача полягає в постановці задач, їх розв'язанні і поясненні отриманих результатів. Основні положення дисертації опубліковані автором спільно з науковим керівником.

 Апробація результатів дисертації. Результати досліджень, наведені в роботі, частково були оприлюднені у матеріалах V Української республіканської конференції по електрохімії, м.Ужгород (1990), в Інституті фізичної хімії Польської Академії Наук , м. Варшава (1993, 1994 р.) та доповідались на ІІ Українському електрохімічному з'їзді, м. Дніпропетровськ (1999).

 Публікації. Матеріали, які лягли в основу дисертаційної роботи, опубліковані у шести статтях наукових журналів та одних тезах наукової конференції.

Структура та обўєм дисертації. Дисертація складається з вступу, чотирьох розділів, висновків та списку використаних джерел (102 найменування). Робота викладена на 109 сторінках машинопису і містить 26 рисунків і 3 таблиці.

ЗМІСТ РОБОТИ

Перший розділ дисертації присвячений літературному огляду пошуку умов появи та функціювання часових і просторових дисипативних структур в електрохімічних системах.

В рідинах і газах у полі земного тяжіння при наявності просторової неоднорідності при певних умовах спостерігається механічна рівновага. Якщо неоднорідність досить велика, то рівновага  стає нестійкою і в результаті зростання збурень інтенсивних величин змінюється конвективним рухом. В електрохімічних системах поява електрогідродинамічної нестійкості можлива при достатньо високих напругах або струмах, коли вони перевищують граничні. Електро-хімічні системи з рідкими металічними електродами можуть проявляти нестійкість, зумовлену порушенням однорідного розподілу поверхневого натягу (ефект Марангоні).

Експериментально ефект Марангоні проявляється у появі незвичайних піків електричного струму на зростаючій вітці вольт-амперної кривої. В електрохімічній системі рідкий електрод-рідкий електроліт за допомогою поверхневого натягу встановлюється позитивний зворотній зв'язок між гідродинамічним рухом розчину та інтенсивністю дифузійного процесу. Невеликий випадковий рух в об'ємі зменшує товщину дифузійного шару, прискорюючи дифузійний перенос. Поверхневий електрохімічний потенціал зростає, а з ним і поверхневий натяг, що приводить до руху поверхні, який передається в об'єм електроліту. Циклічний процес самоприскорення ефективний, якщо при цьому пригнічуються збурення, які викликані неоднорідністю температури, густини розчину і які приводять до конвекції. Ця особливість механізму самоприскорення пояснює раптову появу і зникнення полярографічних максимумів струму.

Огляд літературних даних по часовій самоорганізації дозволяє зробити ряд узагальнюючих висновків. В багатьох електрохімічних процесах, які проявляють осцилюючу поведінку, нестійкість з'являється як результат тісної взаємодії транспортних і поверхневих процесів, важливою кінетичною характеристикою яких є наявність області негативного імпедансу. Справедливим є твердження, що сама кінетика електродних гетерогенних процесів може приводити до електрохімічних осциляцій. Однак спарення електродних процесів із звичайно сповільненими дифузійними процесами істотньо полегшує появу осциляцій та їх нестабільностей. Походження негативного фарадеєвського імпедансу може бути різноманітним і не було встановлено однозначно для багатьох систем. Найпростіше з точки зору механізму пояснення було запропоновано для класу систем, названних Войтовичем катодними осциляторами. В цих системах негативний імпеданс був приписаний кулонівському відштовхуванню або між електродом і каталізатором, або між електродом і самою електроактивною речовиною. В катодних осциляторах з інгібіруванням електродної поверхні поява негативного імпедансу пов'язана з адсорбцією інгібуючих органічних речовин в Фарадеєвській області. В анодних процесах електророзчинення металів характеристики негативного імпедансу звичайно пов'язані з нестійкістю пасивуючих плівок. Третій клас по класифікації Войтовича - анодні процеси окислення водню чи простих органічних сполук на інертних електродах. Тут важливе значення в дестабілізації системи відіграє пасивація чи стравлення інтермедіатів реакції на електроді. Літературні експериментальні дані по коливаннях струму та потенціалу в різних електрохімічних системах систематизовано у таблицю.

У другому розділі наведені результати досліджень осциляцій в електрохімічних системах. Запропонована нами модель базується на  реальному припущенні про наявність поряд з незайнятою, двох інших типів катодної поверхні: однієї - , зайнятої адсорбованним каталізатором А- (галогенідом чи галогенподібним іоном) і другої - , на якій каталізатор зв'язаний комплексом з іоном відновленої речовини (наприклад Меz+).

Вважаючи, що швидкості усіх електрохімічних реакцій змінюються за законом Тафеля, що рівновага в реакції утворення встановлюється швидко і, приймаючи наближення дифузійного шару постійної товщини, ми отримали систему з трьох рівнянь: рівняння балансу для поверхні, зайнятої адсорбованим аніоном; рівняння балансу заряду для процесу електролізу та рівняння часової еволюції для електроактивної речовини на поверхні.

 Ми провели по можливості детальне дослідження поведінки траекторії системи в околицях станів рівноваги в залежності від значень параметрів системи, визначивши тип стаціонарного стану і на його основі побудували ряд біфуркаційних діаграм на площині безрозмірних змінних швидкості u та потенціалу v.

На діаграмі (рис.1а)-1d)), яка представляє різні типи стаціонарних станів ust як функції тафелевської постійної комплексоутворення с видно, що система знаходиться у стійкому стаціонарному стані до значення c<1.4. При с=1.4 проходить біфуркація сідло-вузол (SN). Це означає, що напрямок однієї із траекторій стану рівноваги змінюється на протилежний і стійкий вузол стає сідлом. Стійкий фокус (нижня вітка) залишається  і  в системі з'являється область  бістабільності  (рис.1с)).

При подальшому збільшені параметру с ця область звужується і зникає, а при певному його значенні з'являється стаціонарний стан типу сідло-фокус з нестійкою сепаратрисною поверхнею. У відповідності з теорією, сусідство областей  стійкості  і нестійкості вказує на існування в системі розв'язку, при якому реальна частина комплексних значень стає рівною нулю, що є необхідною і достатньою умовою появи періодичного розв'язку (граничного циклу).

На рис.2а)-2d) представлені різні біфуркаційні діаграми в залежності від коефіцієнта переносу b катодної реакції. Збільшення “b” дестабілізує єдиний стійкий стаціонарний стан системи, ініціюючи статичну біфуркацію до різноманітних стаціонарних станів і появи бістабільності в системі (рис.2а)-2с)). Подальший ріст b приводить до біфуркації Хопфа (рис.2d)).

Нами проведено числове інтегрування системи рівнянь з метою підтвердження правильності розрахунків, а також часових профілів зміни незалежних параметрів u, q і густини струму і. При інтегруванні нами використовувалась FORTRAN версія алгоритму Гіра числового інтегрування “жорстких” диференціальних рівнянь. Характер часової зміни незалежних змінних зображений на рис.3. Як неважко замітити, коливання не гармонічні.

На рис.4а)-4d) наведені графіки залежності основних характеристик коливного режиму від відстані параметра r до точки біфуркації rбіф. Із збільшенням цієї відстані період осциляції струму падає (рис.4d)), а амплітуда, досягнувши максимуму, в подальшому зменшується (рис.4c)).

Концепція нашої моделі електрокаталізу, базована на наявності двох типів адсорбованих речовин (і відповідно двох різних типів локальних покрить), придатна   для  пояснення  осциляцій  струму  в  ході  електрокаталітичного відновлення і непогано узгоджується з експериментальними даними для осцилятора (In/SCN), обширно представленими і обговореними в роботі Купера.

У третьому розділі подано аналіз дослідження впливу специфіки електродної реакції і характеристик вольтамперної кривої на границю гідродинамічної стійкості в електрохімічній системі з одним рідким електродом. Закономірності впливу кінетики  та зовнішніх умов на появу конвективних структур представлені на нейтральних кривих (рис. 5). Якщо вольт-амперна крива не містить падаючої ділянки, то величина

,

де n-коефіцієнт кінематичної в'язкості, І-струм, С-концентрація, Rom-зовнішній опір, Е-напруга, n-коефіцієнт переносу, F-постійна Фарадея, D-коефіцієент дифузії; додатня і для виникнення структур необхідно, щоб поверхневий натяг  зростав зі  збільшенням потенціалу. Для формування структур сприятливішим виявляється проведення процесу у гальваностатичних умовах (Q = 0), оскільки із збільшенням Q критичне число Марангоні зростає.

Діапазон струмів, при яких в системі існує нестійкість, визначається двома факторами. По-перше, при наближенні до стану рівноваги зменшується стаціонарний градієнт концентрації і при деякому критичному значенні струму величина Мас стає меншою критичного значення. Система стабілізується. При значенні заряду електрода ~10 мкКл/см2, товщини шару електроліту 1 см, концентрації електроактивного компоненту 10-3 М і відношення товщини шару електроліту до товщини шару електрода h2/h1 більше 0.01, знаходимо, що нестійкість виникає уже при густинах струму на рівні 10-10 мА/см2. По-друге, при досягненні стану потенціалу нульового заряду значення числа Марангоні починає зменшуватися. Приймаючи, що швидкість катодної реакції істотньо перевищує швидкість анодної, отримуємо при h=1 см, с0=10-3 М і струмах, близьких до граничного, що стабілізація проходить при зарядах поверхні 10-5 мкКл/см2. Таким чином, у гальваностатичних умовах нестійкість може реалізуватися при струмах від нуля до значень, що відповідають поляризації при потенціалі нульового заряду.

Збільшення концентрації фонового електроліту в розчині веде до зниження омічного опору і, як наслідок, до зменшення величини числа Марангоні. При певній достатньо великій концентрації фонового електроліту структури зникають. Збільшення товщини шару електроліту та концентрації електроактивного компоненту веде до збільшення діапазону потенціалів структурування і розширення області хвильових чисел, які характеризують нестійкі моди.

Якщо вольт-амперна характеристика не містить падаючої ділянки, то структури виникають лише при додатніх значеннях числа Марангоні. Оскільки для катодної реакції величина dccт/dz>0, то для Q>0 структури можуть виникнути тільки при ¶t/¶E<0 (t - поверхневий натяг), тобто при потенціалах додатньої вітки електрокапілярної кривої. Утворення структур спостерігається при тих процесах, рівноважний потенціал яких є позитивніше потенціалу нульового заряду, що узгоджується з результатом, отриманим раніше для випадку великих глибин електроліта і рідкого металічного електрода.

Розглянуто електрохімічну систему з рідким електродом, коли поверхневий натяг залежить не лише від потенціалу, а і від концентрації. Із зменшенням товщини шару електроліту відбувається стабілізація системи за рахунок вўязкого тертя (Табл.1). В області чисто дифузійної кінетики система стійка відносно дестабілізації внаслідок ефекту Марангоні. В потенціостатичному режимі необхідною умовою появи нестійкості є зменшення поверхневого натягу t при збільшенні концентрації електроактивного компоненту С1, що реалізується для більшості водних розчинів солей.

Таблиця 1. Залежність критичних чисел Марангоні Makr від співвідношення між товщинами шару електроліту h2 та електроду h1

h2\h1

kkr

Makr

Гальваностатичний режим  

0.1

1.0

5.0

10.0

2.5

2.0

1.7

1.7

917

192

163

163

Потенціостатичний режим

0.1

1.0

5.0

10.0

3.0

2.3

2.1

2.1

1447

334

304

304

В гальваностатичному режимі, на відміну від потенціостатичного. нестійкість може бути харатерною і для розчинів солей з ¶t/¶C1>0. Однак, при цьому рівноважний потенціал повинен бути позитивнішим за потенціал нульового заряду і, крім того, заряд електроду при рівноважному потенціалі повинен перевищувати певне критичне значення. Дестабілізація настає в момент досягнення зарядом електроду критичного значення, а не в інтервалі густини струму від 0 до її значення при потенціалі нульового заряду, як вказувалося раніше. Таким чином, врахування залежності поверхневого натягу від концентрації вносить якісні зміни у поведінку електрохімічної комірки як в потенціо- , так і в гальваностатичному режимах, а також в області чисто дифузійної кінетики.

Вивчено вплив ефекту Релея на критичні числа  Марангоні в електрохімічній системі з рідким електродом. Залежність числа Марангоні від числа Релея зображена на рис.6. Вище кривої знаходиться область нестійкості. Перетин кривої з вісями координат характеризує випадок, коли відсутня дія дестабілізуючого механізму Релея (Rakr=0) або Марангоні (Makr=0). В першому випадку критичне число Марангоні дорівнює Makr=163, в другому - критичне число Релея дорівнює Rakr=915. У випадку тонких шарів електроліту нейтральна крива переходить у пряму, яка паралельна осі ординат. Тоді границя стійкості повўязана лише з ефектом Марангоні.

У потенціостатичному режимі із збільшенням Q стійкість підвищується, тобто система більш стабільна, ніж у гальваностатичному режимі. В області чисто дифузійної кінетики (Q®Ґ) лінія стійкості проходить перпендикулярно осі ординат, тобто ефект Марангоні відсутній і нестійкість зумовлена лише  гравітаційним механізмом. Це пов’язано з тим, що коли дифузія лімітує електродний процес, на міжфазній поверхні відсутні флуктуації концентрації, а оскільки t=t(c1(0),E), то відсутні і збурення поверхневого натягу. Ефект Марангоні в цьому випадку відсутній.

У четвертому розділі вивчено стійкість механічної рівноваги електрохімічної системи з постійними фізико-хімічними характеристиками по відношенню до збурень кінцевої амплітуди.

Розглянуто термічно однорідну обмежену електрохімічну систему Me|Mez+,Xz-|Me в гравітаційному та електричному полях, вважаючи, що фізичні властивості електроліту сталі, активні металічні поверхні електродів рівнодоступні під час електролізу, електроліт повністю дисоційований на іони Mez+ i Xz-, нейтральний розчинник практично не дисоціює.

Порогові значення чисел Релея знайдено класичним варіаційним методом. Отримано такі результати.

1. Перше наближення:

а) гальваностатичний режим (Rkr)+=1445 ;

б) потенціостатичний режим - (Rkr)+= 1555.

2. Друге наближення:

а) гальваностатичний режим - (Rkr)+= 1346.60;

б) потенціостатичний режим - (Rkr)+=1496.64.

3. Третє наближення:

а) гальваностатичний режим - (Rkr)+= 1296.37;

б) потенціостатичний режим -( Rkr)+= 1443.56.

4. Четверте наближення:

а) гальваностатичний режим - (Rkr)+= 1296.37;

б) потенціостатичний режим - (Rkr)+= 1443.56.

Як видно, результати третього і четвертого наближень практично співпадають. Ці результати досить близькі до експериментальних як у гальваностатичних - (Rkr)+=1351, так і в потенціостатичних - (Rkr)+= 1540 умовах (і досить відрізняються від (Rkr)= 1708, яке слідує з моделі з концентраційними граничними умовами першого роду). Гідродинамічні дисипативні структури внаслідок гравітаційної нестійкості виникають в електрохімічних системах Me|Mez+,Xz-|Me з сталими фізичними характеристиками при потенціалах і відповідних струмах, при яких лімітуючої дифузії ще не досягається.

Проведено дослідження розвинутої конвекції, а також стаціонарних і нестаціонарних надкритичних рухів на основі методу кінцевих різниць. Ці дослідження проведені для широких інтервалів чисел Грасгофа з метою вивчення їх впливу на такі інтегральні характеристики потоку, як розподіл густини струму вздовж електродів, концентрації профілів і форми конвективних структур.

Розглянуто двомірну модельну електролітичну комірку, що складається з плоскопаралельних, горизонтальних і ідеально неполяризованих електродів, розміщених в розчині бінарного електроліту. Система кінцева у вертикальному (X) і горизонтальному (Y) напрямках і необмежена у Z-напрямку. Рух рідини проходить в XY-площині і потік рідини в z-напрямку відсутній.

Для розв'язку математичної моделі запропонованої задачі використовували метод кінцевих різниць. Обчислення проводились по ітераційному методу Гаусса-Зейделя з подальшою нижньою релаксацією. У відповідності з цим методом, числовий розв'язок на часовому кроці n+1 був отриманий з розв'язку на попередньому часовому кроці n.

На рис. 7-8 зображені концентраційні профілі стаціонарних станів і лінія струму для різних чисел Грасгофа Gr. Для невеликих значень  Gr повільний рух слабо викривлює розподіл концентрації по висоті (ізоконцентрати горизонтальні), що вказує на перевагу дифузійного механізму масопереносу.

Із збільшенням числа Gr рух стає інтенсивнішим, лінії струму зростають за величиною, їх форма дещо змінюється і стає овальнішою. Лінійний розподіл концентрації між електродами стає нелінійним і ізолінії концентрацій викривлюються у вертикальному напрямку. Ці результати показують, що із збільшенням Gr електрохімічний процес веде до зміни динамічного режиму розчину. Інкремент градієнту густини ініціює рух електроліту і його циркуляцію проти годинникової стрілки. У ході викривлення горизонтального стаціонарного розподілу концентрації вклад конвективного переносу, у порівнянні з дифузійним, зростає.

Розподіл    густини   концентраційного  потоку вздовж поверхні анода зображено на Рис. 9. Неоднаковий розподіл потоку (і, відповідно електричного струму) по поверхні є результатом зростаючої інтенсивності кругової циркуляції електроліту в комірці. Оскільки рух  проходить проти годинникової стрілки, то до правої частини аноду підходять свіжі порції електроліту з об'єму, що є причиною більшої густини струму порівняно з тими областями електродної поверхні (розміщеними зліва), де в об'єм рухаються збіднілі порції розчину. Для систем з рідким електродом, як відмічалось раніше, це веде до появи ефекту Марангоні.

ВИСНОВКИ

1. Запропонована динамічна модель електрокаталітичного відновлення металів, у якій для врахування гетерогенних процесів на електроді в якості змінних системи розглядаються ділянки поверхні, зайняті адсорбованим каталізатором, а також його проміжного комплексу з відновлюваним іоном металу. Побудовано діаграми лінійної стійкості, на яких локалізовані біфуркації типу сідло-вузол і Хопфа на площині контрольованих параметрів. Визначено форму і амплітуду осциляцій у залежності від віддалення від критичної точки.

2. Модель електрокаталітичного відновлення носить загальний характер, оскільки вона не прив'язана до певного молекулярного механізму, що лежить в його основі і включає елементарні процеси, типові для електрохімічних систем - гетерогенні процеси на міжфазній границі в сукупності з масопереносом з об'єму розчину.

3. Отримано умови появи конвективних структур в електрохімічних системах, які проявляють ефект Марангоні, у залежності від закономірностей кінетики процесу, умов його проведення, а також співвідношення товщин шарів електроду та електроліту. Локалізовано області електрокапілярної кривої, де можлива поява конвекції. Показано, що діапазон нестійкості стаціонарних станів звужується зі зменшенням концентрації електроактивного іону і товщини шару електроліту.

4. Визначено критичні величини модифікованих чисел Марангоні, коли неоднорідність поверхневого натягу зумовлена не тільки неоднорідністю електродного потенціалу, але й концентрації. Показано, що врахування цієї залежності вносить якісні зміни у динамічну поведінку системи і порогові значення параметрів нестійкості порівняно із випадком залежності поверхневого натягу лише від потенціалу. Досліджена залежність стійкості системи по відношенню до спектру збурень різної довжини хвилі для різних співвідношень товщини шарів електроліту і рідкого електроду.

5. Сформульована задача і вивчене питання стійкості рівноваги плоского горизонтального шару системи рідкий електрод-рідкий електроліт з урахуванням як сил поверхневого натягу, так і гравітаційних сил. В припущенні монотонності збурень для стану нейтральної стійкості проведено кількісний аналіз вкладу ефекту Релея в нестійкість Марангоні. Визначені безрозмірні критичні числа Марангоні і Релея дозволяють встановити критичний градієнт концентрації, що приводить до появи конвекції.

6. В рамках класичного варіаційного підходу досліджено гравітаційну нестабільність механічної рівноваги в ізотермічних електрохімічних системах Me|Mez+,Xz-|Me, коли концентрація електроліту на катоді задовільняє граничним умовам першого роду. Розраховано критичні числа Релея для потенціо- та гальваностатичного режимів електролізу і показано, що в межах четвертого наближення їх значення майже не змінюються і мало відрізняються від експериментальних.

7. Методом кінцевих різниць проведено числове вивчення стаціонарних і перехідних конвективних рухів електрохімічної системи з гравітаційною нестійкістю. Досліджено вплив чисел Грасгофа на форму конвективних потоків, концентраційних профілів та деякі інтегральні характеристики потоку (число Нуссельта) біля поверхні аноду. Показано поступову зміну механізму масопереносу від дифузійного до конвективного, інтенсивність якого зростає із збільшенням надкритичності.

ОСНОВНІ РЕЗУЛЬТАТИ РОБОТИ ВИКЛАДЕНО У ПУБЛІКАЦІЯХ

1. Нечипорук В.В., Тураш Н.Н., Эльгурт И.Л. Влияние кинетики и условий проведения электрохимической реакции на эффект Марангони в системе с жидким электродом// Электрохимия.- 1991.- т.27.- С.124-127.

2. Нечипорук В.В., Тураш Н.Н., Эльгурт И.Л. Анализ эффекта Марангони в системе жидкий электрод - раствор электролита// V Украинская республиканская конференция по электрохимии. Тезисы докладов, Ужгород, 18-20 сентября 1990 г., С.62-63.

3. Баб'юк Д.П., Нечипорук В.В., Петренко О.Є., Тураш М.М. Ефект Марангоні в електрохімічних системах внаслідок збурень потенціалу електроду та концентрації електроліту на міжфазній поверхні// Укр. хім. журнал.- 1997.- т.63.- №1.- С.28-31.

4. В.Н. Капранов, В.В. Нечипорук, Т.М. Олійник, М.М. Тураш. Вплив термодифузії на гідродинамічне дисипативне структурування// Інтегральні перетворення та їх застосування до крайових задач.- НАН України: Інститут математики.- 1997.- Вип. 16.- С.127-133.

5. Капранов В.Н., Лопушанська О.І., Нечипорук В.В., Олійник Т.М., Тураш М.М. Гравітаційна нестійкість в термічно однорідних системах з концентраційною поляризацією.// Інтегральні перетворення та їх застосування до крайових задач.- НАН України: Інститут математики.- 1997.- Вип. 14.- С.115-123.

6. Nechiporuk V.V., Petrenko O.Ye., Korzhik V.P.,Babiuk D.P.,Turash N.N. Numerical Study of Steady-State Convective Motions and Concentration Profiles in an Electrochemical Cell with the Benard Type Instability// Polish J. Chem.- 1997.- V.71.- P.213-220.

7. Н.Н. Тураш, В.В. Нечипорук. Неустойчивость и осцилляции в модели электрокаталитического восстановления с учетом внешнего сопротивления цепи и массопереноса// Вопросы химии и химической технологии,  Спец. выпуск. Электрохимия.- 1999, №1.- С.340-342.

 

АНОТАЦІЯ

Тураш М.М. Часова та просторова самоорганізація в електрохімічних системах. Рукопис. Дисертація на здобуття наукового ступеня  кандидата хімічних наук. Спеціальність 00.02.05 - електрохімія. Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Київ, 1999.

Запропонована динамічна модель електрокаталітичного відновлення металів. В цій моделі за рахунок гетерогенних процесів на електроді, частини поверхні, покриті адсорбованим каталізатором, а також його комплексу з відновленим іоном металу, розглядаються, як змінні системи. Побудована діаграма стійкості. Визначені форма і амплітуда коливань в залежності від відстані до критичної точки. Отримано умови утворення дисипативних структур в електрохімічних системах, які проявляють ефект Марангоні. Вивчено вплив числа Грасгофа на форму конвективних потоків, концентраційні профілі та число Нуссельта біля поверхні анода.

 Ключові слова. електрод, коливання, часова самоорганізація, електрохімічна система, дисипативні структури, конвекція, ефект Марангоні, число Грасгофа.

Тураш Н.Н. Временная и пространственная самоорганизация в электрохимических системах. Рукопись. Диссертация на соискание ученой степени  кандидата химических наук. Специальность 00.02.05 - электрохимия. Институт общей и неорганической химии им. В.И. Вернадского НАН Украины, Киев, 1999.

Предложена динамическая модель электрокаталитического восстановления металов на жидком электроде. В этой модели за счет гетерогенных процессов на электроде, части поверхности, покрытые адсорбированным катализатором, а также его комплексом с восстановленым ионом металла, рассматриваются, как переменные системы. Построены диаграммы линейной устойчивости, на которых локализованы бифуркации типа седло-узел и Хопфа. Определены форма и амплитуда осцилляций в зависимости от удаления до критической точки. Модель электрокаталитического восстановления носит общий характер, поскольку она не привязана к определенному молекулярному механизму, лежащему в его основе и включает элементарные процессы, типичные для электрохимических систем - гетерогенные процессы на межфазной границе в сочетании с массопереносом из объема раствора.

Рассмотрена электрохимическая система, содержащая один жидкий электрод. Такая система способна проявлять неустойчивость Марангони. Определены условия появления конвективных структур в  зависимости от закономерностей кинетики процесса, условий его проведения, а также соотношения слоев электрода и электролита. Локализованы области электрокапиллярной кривой, где возможно появление конвекции. С уменьшением концентрации электроактивного компонента и толщины слоя электролита область неустойчивости стационарных состояний сужается. Увеличение концентрации фонового электролита ведет к уменьшению  внешнего сопротивления и при определенной достаточно большой его концентрации структуры исчезают. Определены критические модифицированные числа Марангони, когда неоднородность поверхностного натяжения обусловлена неоднородностью электродного потенциала и концентрации. Полученные результаты позволяют заключить, что учет этой зависимости вносит качественные изменения в динамическое поведение системы и пороговые значения параметров неустойчивости по сравнению со случаем зависимости поверхностного натяжения только от потенциала. Сформулирована задача и изучена устойчивость равновесия плоского горизонтального слоя системы жидкий электрод-жидкий электролит, обусловленная гравитационным механизмом Релея и эффектом Марангони. Получены зависимости критических чисел Марангони от критических чисел Релея для гальвано- и потенциостатического режимов. В потенциостатическом режиме система более устойчива, чем в гальваностатическом; в области чисто диффузионной кинетики неустойчивость возможна только вследствие механизма Релея.

Исследовано гравитационную нестабильность механического равновесия в изотермических электрохимических системах Me|Mez+,Xz-|Me, когда концентрация электролита на катоде удовлетворяет граничные условия первого рода. Классическим вариационным методом определены критические числа Релея для потенцио- и гальвано-статического режимов электролиза и показано, що при четвертом приближении их значения почти не изменяются и мало отличаются от экспериментальных.

Проведено численное изучение стационарных и переходных конвективных движений электрохимической системы с гравитационной неустойчивостью методом конечных разностей. Исследовано влияние чисел Грасгоффа на форму конвективных потоков, концентрационных профилей число Нуссельта у поверхстности анода. При увеличение чисел Грасгоффа массоперенос постепенно переходит от диффузионного до конвективного, интенсивность которого растет с увеличением надкритичности.

 Ключевые слова: электрод, колебания, временная самоорганизация, электрохимическая система, диссипативные структуры, конвекция, эффект Марангони, число Грасгоффа.

Turash N.N. Temporary and Spatial Selforganization in Electrochemical Systems. Manuscript. Thesis for a scientific degree of Candidate of Chemical Sciencies. Speciality 00.02.05- electrochemistry. V.I.Vernadskii Institute of General and Inorganic Chemistry ofUkrainian National Academy of Science, Kyiv, 1999.

The dymanic model of electrocatalytic reduction of metals is suggested. In this model for account of heterogeneous processes on the elctrode, the surface parts covered with adsorbed catalyst and also with its complex with a reduced metal ion are considered as replaced systems.  The resistance diagram is constructed. The form and the amplitude of oscillation in relation to the distance of the critical point are determined.  The conditions of advent of spatial dissipative structures in electrochemical systems are obtained, which display the Marangoni effect. The influence of the Gragoff number on the form of convectional flows, concentrational profiles and the Nusselt number near the anode's surface  have been investigated.

Key words: electrode, oscillation, temporal selforganization, electrochemical system, dissipative structures, convection, the Marangoni effect, the Grasgoff number.   




1. Формирование навыков здорового образа жизни
2. Лабораторная работа 12 Работа и создание шаблонов Задание по работе Скопировать рисунки и вы
3. Рентгендиагностика очагового туберкулеза
4. оборудование необходимое в каждом офисе.
5. В тени пирамид и храмов
6. Соотношение понятий воспитывающая среда и воспитательное пространство
7. Господи Ти бачиш як зовнішні і внутрішні вороги України а найбільше ~ невидимий ворог спасіння нашого дух
8. В конце 1997 г в Боливии был принят Документ о гражданском согласии
9. Техника безопасности при проведении взрывных работ
10. koobru Владимир Довгань Я был нищим ~ стал богатым
11. тематизацию и анализ фактов с целью выведения обобщений г процесс создания теоретических концепций на осн
12. Методы дисконтирования
13. РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И
14. тематичних наук Донецьк 2001 Дисертацiєю є рукопис
15. Нормирование и оплата труда на автомобильном транспорте
16. Раскройте различия в характеристике монополии в теориях Дж
17. vi Inforedesign TUW Первая история ' о соединении точек
18. Направления диверсификации деятельности ООО ЖАРГАЛ
19. Воздействие человеческого общества на природу тайги и смешанных лесов До вмешательства человека эти зоны
20. Реферат- Сосна обыкновенная (сосна лесная)