Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

По этим свойствам они разительно отличаются от металлов

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 15.5.2024

 1  Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном — «дырки». Внешне этот процесс хаотического перемещения воспринимается как перемещение положительного заряда. При помещении кристалла в электрическое поле возникает упорядоченное движение «дырок» — дырочный ток проводимости.
      В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.  энергетические уровни валентных электронов при расщеплении образуют валентную зону. Разрешённые энергетические уровни, свободные от электронов в невозбуждённом состоянии атома, расщепляясь, образуют одну или несколько свободных зон. Нижнюю из свободных зон называют зоной проводимости.

Важными параметрами материала являются валентная зона и зона проводимости. От их взаимного расположения и от степени их заполнения электронами зависят электрические, оптические и другие свойства твёрдых тел.

Между разрешёнными зонами находятся запрещённые зоны, т. е. области значений энергий, которыми не могут обладать электроны в идеальном кристалле.

Для полупроводников наибольшее значение имеет запрещённая зона, разделяющая валентную зону и зону проводимости. Она характеризуется шириной запрещённой зоны Э, т. е. разностью энергий дна зоны проводимости и потолка валентной зоны.


     На проводимость полупроводников большое влияние оказывают примеси. П
римеси бывают донорные и акцепторные. Донорная примесь — это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются липшие электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n — 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.
     Акцепторная примесь — это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Проводимость будет «дырочной», а полупроводник называют полупроводником р-типа. Например, для кремния акцепторной примесью является индий с валентностью п = 3. Каждый атом индия приведет к образованию лишней «дырки».
    
Принцип действия большинства полупроводниковых приборов основан на свойствах р—n-перехода. При приведении в контакт двух полупроводниковых приборов р-типа и л-типа в месте контакта начинается диффузия электронов из n-области в р-область, а «дырок» — наоборот, из р- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой, который будет препятствовать дальнейшей диффузии электронов и «дырок».

электропроводность собственных полупроводников

Полупроводник называют собственным, в случае, когда влияние примесей для него пренибрежимо мало. Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости (в отличие от проводников) и ведёт себя как диэлектрик. В свою очередь различают два типа собственных полупроводников:

невырожденный собственный полупроводник

вырожденный собственный полупроводник

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц соотношением:

σ=1ρ=q(Nnμn+Npμp)

ρ — удельное сопротивление,

μn — подвижность электронов,

μp — подвижность дырок,

Nn,p — концентрация носителей,

q — элементарный электрический заряд (1,602×10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула имеет вид:

σ=1ρ=qN(μn+μp)

2 электро́нно-ды́рочный перехо́д(n – p – переход), переход между двумя частями полупроводника, одна из которых имеет электронную (n), а другая – дырочную (p) электрические проводимости (соответственно n – и p – области). Поскольку концентрация дырок в р – области значительно выше, чем в n – области, дырки изр – области стремятся перейти в n – область; точно так же электроны из n – области устремляются в р – область. В результате взаимной диффузии зарядов на границе между двумя частями полупроводника образуется двойной слой пространственного заряда – отрицательные заряды в р – области и положительные заряды в n- области. Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через переход.

Чтобы пройти через электронно-дырочный переход, основным носителям заряда (электронам в n – области и дыркам в р – области) приходится преодолевать контактное поле – потенциальный барьер. Если в р – области приложен положительный потенциал, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается и основные носители легче преодолевают барьер – через переход начинает протекать ток. И наоборот, положительный потенциал, приложенный к n – области, повышает потенциальный барьер – и переход для потока основных носителей заряда оказывается закрытым. Таким образом, ток через электронно-дырочный переход зависит от приложенного напряжения. На этом свойстве электронно-дырочного перехода основана работа полупроводниковых диодов (n – p – переход), транзисторов (n – p – n – переход), тиристоров (р – n – p – n – переход), фотодиодов и фототранзисторов, светодиодов и других полупроводниковых приборов.

В современных полупроводниковых приборах помимо контактов с электронно-дырочным переходом применяются также контакты между металлом и полупроводником. Процессы в таких переходах зависят от так называемой работы выхода электронов, т. е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов может выйти из данного тела. Рассмотрим процессы в различных металлополупроводниковых переходах.

Рисунок 1 - Контакт металла с полупроводником n-типа

Если в контакте металла с полупроводником n-типа (рис. 1) работа выхода электронов из металла AM меньше, чем работа выхода из полупроводника An, то будет преобладать выход электронов из металла в полупроводник. Поэтому в слое полупроводника около границы накапливаются основные носители заряда (электроны), и этот слой становится обогащенным, т. е. в нем увеличивается концентрация электронов. Сопротивление этого слоя будет малым при любой полярности приложенного напряжения, и, следовательно, такой переход не обладает выпрямляющими свойствами. Его называют невыпрямляющим (омическим) контактом. Подобный же невыпрямляющий диод получается в контакте металла с полупроводником p-типа (рис. 2), если работа выхода электронов из полупроводника меньше, чем из металла.

Рисунок - 2 Контакт металла с полупроводником p-типа

В этом случае из полупроводника в металл уходит больше электронов, чем в обратном направлении, и в приграничном слое полупроводника также образуется область, обогащенная основными носителями (дырками), имеющая малое сопротивление. Оба типа невыпрямляющих контактов широко используются в полупроводниковых приборах при устройстве выводов от n- и p-областей. Для этой цели подбирают соответствующие металлы.

Рисунок 3 - Контакт металла с полупроводником n-типа

Иными свойствами обладает переход, показанный на рис. 3. Если в контакте металла с полупроводником n-типа An<AM, то электроны будут переходить главным образом из полупроводника в металл и в приграничном слое полупроводника образуется область, обедненная основными носителями, и поэтому имеющая большое сопротивление. Здесь создается довольно высокий потенциальный барьер, высота которого будет существенно меняться в зависимости от полярности приложенного напряжения. Такой переход обладает выпрямляющими свойствами. Подобные переходы в свое время исследовал немецкий ученый В. Шотки и теперь барьеры в таких переходах именуютсябарьерами Шотки, а диоды с этим барьером - диодами Шотки. В диодах Шотки (в металле, куда приходят электроны из полупроводника) отсутствуют процессы накопления и рассасывания зарядов неосновных носителей, характерные для p-n-переходов. Поэтому диоды Шотки обладают значительно более высоким быстродействием, нежели обычные диоды, так как накопление и рассасывание зарядов - процессы инерционные, т. е. требуют времени.

Аналогичными свойствами обладает контакт металла с полупроводником типа p при AM<An.

3 Полупроводниковый резистор — полупроводниковый прибор с двумя выводами, в котором используется зависимостьэлектрического сопротивления полупроводника от температуры, освещенности, напряжения и других параметров. В полупроводниковых резисторах применяют полупроводник, равномерно легированный примесями. В зависимости от типа примесей удаётся получить различные зависимости сопротивления от внешнего воздействия.

Классификация и условные обозначения полупроводниковых резисторов.

Тип резисторов

Условное обозначение

Линейные резисторы

Варисторы

Тензорезисторы

Терморезисторы

Фоторезисторы

Первые две группы полупроводниковых резисторов в соответствии с этой классификацией — линейные резисторы и варисторы — имеют электрические характеристики, слабо зависящие от внешних факторов: температуры окружающей среды, вибрации, влажности,освещённости и др. Для остальных групп полупроводниковых резисторов, наоборот, характерна сильная зависимость их электрических характеристик от внешних факторов. Так, характеристики терморезисторов существенно зависят от температуры, характеристики фоторезисторов — от освещённости, характеристики тензорезисторов — от механических напряжений.

Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивлениекоторого изменяется в зависимости от его деформации Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов., Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерениясилыдавлениявесамеханических напряженийкрутящих моментов и пр.

Принцип действия хорошо проиллюстрирован на картинке за одним небольшим замечанием — в реальности изменения сопротивления весьма малы и требуют прецизионных усилителей или АЦП. Он заключается в изменении электрического сопротивления проводников и полупроводников при их механической деформации.

Конструктивно современные тензорезисторы представляют собой чувствительный элемент в виде петлеобразной решетки, который крепится с подложкой с помощью клея. Чувствительные элементы обычно изготавливаются из тонкой проволоки, фольги, а также могут быть образованы напылением в вакууме полупроводниковой пленки. В качестве подложки обычно используют ткань, бумагу, пленку и др. Для присоединения чувствительного элемента в электрическую цепь в тензорезисторе имеются выводные концы или контактные площадки. На исследуемый объект тензорезисторы крепятся с помощью связующего (клея)со стороны подложки.

Тензорезисторы используются в качестве первичных преобразователей при измерениях механических величин (силы, крутящего момента, перемещения, давления и пр.).

4п олупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.

Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.

[править]Основные характеристики и параметры диодов

Диод ДГ-Ц25. 1959 г.

Вольт-амперная характеристика

Постоянный обратный ток диода

Постоянное обратное напряжение диода

Постоянный прямой ток диода

Диапазон частот диода

Дифференциальное сопротивление

Ёмкость

Пробивное напряжение

Максимально допустимая мощность

Максимально допустимый постоянный прямой ток диода

Классификация диодов

Типы диодов по назначению

Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.

Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.

Детекторные диоды предназначены для детектирования сигнала

Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.

Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.

Параметрические

Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.

Умножительные

Настроечные

Генераторные

Типы диодов по частотному диапазону

Низкочастотные

Высокочастотные

СВЧ

Типы диодов по размеру перехода

Плоскостные

Точечные

Тип диода

Условное обозначение

Характеристика

Выпрямительный

Диод Шотки

Стабилитрон

Стабистор

Варикап

Туннельный диод

Обращенный диод

первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:

Г или 1 — германий или его соединения;

К или 2 — кремний или его соединения;

А или 3 — соединения галлия (например, арсенид галлия);

И или 4 — соединения индия (например, фосфид индия);

второй элемент — буквенный индекс, определяющий подкласс приборов;

Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;

Ц — выпрямительных столбов и блоков;

В — варикапов;

И — туннельных диодов;

А — сверхвысокочастотных диодов;

С — стабилитронов, в том числе стабисторов и ограничителей;

Л — излучающие оптоэлектронные приборы;

О — оптопары;

Н — диодные тиристоры;

третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);

четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;

пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.




1. Тора и дерех эрец Активная жизнь в этом мире
2. Про захист населення і територій від надзвичайних ситуацій техногенного та природного характер
3. на тему- Методы и средства формирования дерева целей Выполнил- ст
4. ДОКУМЕНТАЦИОННОЕ ОБЕСПЕЧЕНИЕ УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к практическому занятию
5. ВВЕДЕНИЕ17
6. Технология приготовления йогурта
7. Финансы домашних хозяйств как элемент финансовой системы.html
8. Карпообразные.html
9. Тема- Учитель сучасної школи 2 год
10. Якуты
11. Неклассические логики стр
12.  2013 г протокол УТВЕРЖДЕНО приказом от 2013 г
13. огонёк герань В углу иконостас с иконами застланный расшитым полотенцем
14. Воронеж 7 ноября 2013 г
15. всего лишь версия но и она показывает что во всеобщем шапкозакидательском угаре потерялось самое важное- с
16. партио часть дело добровольный союз граждан связанный идеологической общностью стремящийся к обладани
17. О возможности актуализации методологического опыта русских историков-неокантианцев.html
18. КТЭ Расчетная работа 1 Расчёт температуры эмалируемой проволоки концентра
19. яких наслідків Якщо мова іде про тяжке захворювання яке приковує хворого до ліжка то тут уже не уникнути ві
20. Архипелага ГУЛАГ