Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Санкт-Петербургский парадокс
Санкт-Петербургский парадокс парадокс, иллюстрирующий расхождение математического ожидания выигрыша с его «здравой» оценкой людьми.
Формулировка парадокса
Рассматривается следующая задача. Вступая в игру, игрок платит некоторую сумму, а затем подбрасывает монету (вероятность каждого исхода 50 %), пока не выпадет орёл. При выпадении орла игра заканчивается, а игрок получает выигрыш, рассчитанный по следующим правилам. Если орёл выпал при первом броске, игрок получает 20, при втором броске 21 и так далее: при n-ном броске 2n-1. Другими словами, выигрыш возрастает от броска к броску вдвое, пробегая по степеням двойки 1, 2, 4, 8, 16, 32 и так далее.
Нужно определить, какой размер вступительного взноса делает такую игру справедливой, то есть найти математическое ожидание выигрыша игрока. Парадокс заключается в том, что вычисленное значение этого справедливого взноса равно бесконечности, то есть выше любого возможного выигрыша.
Разрешение через функцию полезности
Рассматривая выпуклую функцию предельной полезности (часто логарифмическую), мы снова достигаем конечность её математического ожидания.
Так, если считать, что для игрока важно увеличение не на некоторое кол-во денег, а в некоторое кол-во раз, то он оценивает выигрыш с точки зрения логарифмической функции полезности: он хочет максимизировать , где X выигрыш, а вклад в игру. При этом в классической постановке парадокса мат. ожидание полезности становится конечным:
Откуда легко получить справедливую стоимость игры: х=4
Это решение можно усовершенствовать, рассматривая полезность выигрыша с точки зрения увеличения уже имеющегося капитала игрока w (миллиардеру прирост в $ 1000 не так желателен, как нищему), однако это лишь немного изменяет ответ.
История возникновения
Парадокс был впервые опубликован Даниилом Бернулли в «Комментариях Санкт-Петербургской Академии». Ранее ситуация была описана племянником Даниила, Николаем I Бернулли, в его переписке с французским математиком Пьером Монмором (Pierre Rémond de Montmort).
Иногда авторство парадокса приписывают Леонарду Эйлеру, а название связывают с тем, что Эйлер длительное время жил и работал в Петербурге.
Парадокс Алле
Парадокс Алле термин, относящийся к теории рисков в сфере экономики и теории принятия решений. Назван по имени лауреата Нобелевской премии французского экономиста Мориса Алле (фр. Maurice Félix Charles Allais) и основан на его исследованиях.
Термин появился после выхода в свет статьи «Рациональное поведение человека перед лицом риска. Критика постулатов и аксиом американской школы».
Парадокс демонстрирует неприменимость теории максимизации ожидаемой полезности в реальных условиях риска и неопределённости. Автор корректно, с позиций математики, объясняет суть парадокса. Парадокс демонстрирует, что реальный агент, ведущий себя рационально, предпочитает не поведение получения максимальной ожидаемой полезности, а поведение достижения абсолютной надежности.
Эксперимент Алле
Сам Алле провёл психологический эксперимент, описанный ниже, и получил парадоксальные результаты.
Индивидам предлагают выбор по одному решению из двух пар рискованных решений.
В первом случае в ситуации A есть 100 % уверенность в получении выигрыша в 1 млн франков, а в ситуации B имеется 10 % вероятность выигрыша в 5 млн франков, 89 % в 1 млн франков и 1 % не выиграть ничего.
Во втором случае тем же индивидам предлагается сделать выбор между ситуацией C и D. В ситуации C имеется 10 % вероятности выигрыша в 5 млн франков и 90 % не выиграть ничего, а в ситуации D 11 % составляет вероятность выигрыша в 1 млн франков и 89 % не выиграть ничего.
Алле установил, что значительное большинство индивидов в этих условиях предпочтет выбор ситуации A в первой паре и ситуации C во второй. Этот результат воспринимался как парадоксальный. В рамках существовавшей гипотезы индивид, отдавший предпочтение выбору А в первой паре, должен выбрать ситуацию Д во второй паре, а остановивший выбор на В должен во второй паре отдать предпочтение выбору С. Алле математически точно объяснил этот парадокс. Его основной вывод гласил, что рационально действующий агент предпочитает абсолютную надежность.
Два выбора
Парадокс можно сформулировать в виде выбора между двумя вариантами, в каждом из которых с некоторой вероятностью достаётся та или иная сумма денег:
Здесь X неизвестная выбирающему сумма.
Какой выбор будет более разумным? Результат останется прежним, если «неизвестная сумма» X это 100 миллионов? Если это «ничего»?
Математическое ожидание в первом варианте равно , а во втором: , поэтому математически второй вариант B выгоднее независимо от значения X. Но люди боятся нулевого исхода в варианте B и поэтому чаще выбирают A. Однако если х=0, то психологический барьер устраняется, и большинство уходит от варианта A.