Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1. Предмет и задачи химии. Место химии в системе естественных наук.
Курс общей химии для медиков отличается медико-биологической ориентацией при изучении этого курса необходимо уделить большое внимание врачу большего профиля, чтобы на основе современных достижений науки систематизировать знания важнейших обобщений химии. Научиться активно, применять эти знания для раскрытия физико-химической сущности, явлений происходящих в живом организме в норме и при патологическом состоянии, а так же при воздействии на организм факторов окружающей среды, химика и физика терапевтических средств. Общая химия фундаментальная дисциплина, входящая в учебный план подготовки врача. Она объединяет разделы неорганической, физической и аналитической химии, имеющих важнейшее значение для формирования естественно научного мышления специалистов медицинского профиля. Каждый раздел общей химии вооружает студента знаниями, которые ему необходимо при рассмотрении физико-химической сущности и механизма процессов, происходящих в организме человека молекулярном и клеточном уровне. Умение выполнять расчеты параметров этих процессов позволяет более глубоко понять функции отдельных систем организма в целом, а так же его взаимодействия с окружающей средой. Задачи лекционного курса заключается в следующем: освещение ключевых вопросов программы, материал лекции призван стимулировать к самостоятельной последующей работе. В условиях все большего внедрения достижений естественных наук в практическую медицину отчетливо прослеживается изменение приоритетов в преподавании химии в медицинских институтах, требующего в настоящее время не столько ознакомления с фактологической стороной, изучаемой дисциплины, сколько формирования целостного физико-химического подхода к изучению человеческого организма. В этой связи традиционные принципы преподавания химии оказываются малоэффективными.
2. Химическая термодинамика как теоретическая основа биоэнергетики. Термодинамика не дает ответа на вопрос, какова природа или механизм того или иного явления. Она исследует исключительно энергетическую сторону процессов. Химическая термодинамика изучает соотношение между химической и другими видами энергии и играет важную роль для решения биофизико-химических проблем. Она позволяет решить такие вопросы, как энергетический баланс химических и биохимических процессов, условия равновесия, осуществимость химической реакции и т.п. Химическая термодинамика позволяет судить о том, может ли данная химическая реакция, необходимая для какого-либо жизненного процесса, протекать или эта возможность принципиально исключена. Биоэнергетикой называется область науки, которая занимается изучением трансформации энергии в живых системах. Химическая термодинамика необходима для сознательного управления физико-химическими процессами, лежащими в основе обмена веществ в организме. Термодинамика изучает взаимные превращения различных видов энергии, связанные с переходом энергии между телами в форме теплоты и работы. Термодинамика базируется на двух основных законах, получивших название первого и второго начал термодинамики. Предметом изучения в термодинамике является энергия и законы взаимных превращений форм энергии при химических ре акциях, процессах растворения, испарения, кристаллизации.Системой называется тело или совокупность тел, мысленно (или фактически обособленных от окружающей среды. Остальная часть пространства со всем, что в ней находится, называется окружающей средой. Система называется гомогенной, если внутри нее нет поверхности раздела между частями системы, и гетерогенной, если такие поверхности раздела имеются. Все величины, характеризующие какое-либо свойство рассматриваемой системы, называются термодинамическими переменными или параметрами термодинамической системы. Свойства системы, определяемы термодинамическими параметрами первой группы, называют экстенсивными, а определяемые термодинамическими параметрами второй группы интенсивными. Процесс, связанный с изменением хотя бы одного из термодинамических параметров системы /температуры, давления, объема, концентрации/, называют термодинамическим. Термодинамический процесс, в течение, которого система проходит через ряд равновесных состояний, называется равновесным процессом.
Процесс, протекающий при постоянной температуре, называется изотермическим, при постоянном давлении - изобарическим, при постоянном объеме изохорическим.Если во время процесса система изолирована от внешней среды таким образом, что исключен теплообмен со средой, процесс называют адиабатическим.
17. Химическая кинетика, как основа для изучения скорости и механизма реакции. Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов (концентрации реагирующих веществ, температуры, давления, катализаторов и др.).
Изучение кинетики и механизма химических реакции имеет большое теоретическое и практическое значение как в химии, так в биологии. Как известно, химические реакции могут протекать с самыми различными скоростями. Некоторые реакции, сопровождающиеся взрывом, заканчиваются в тысячные доли секунды, другие же совершаются в течение минут, часов или даже многих лет, например геохимические процессы в земной коре.
Кинетика имеет большое практическое значение для проведения различных технологических процессов. Скорость этих процессов может быть изменена в желаемом направлении в зависимости от создаваемых условий.
Особенности течения биохимических процессов зависят от катализаторов; эффективность действия лекарственных веществ может быть связана со скоростью химических реакций, возникающих при этом в организме, и т. п. Скорость химической реакции характеризуется изменением концентрации реагирующих веществ в единицу времени.
Как известно, молекулы, находящиеся в той или иной системе, могут взаимодействовать только при столкновениях. Естественно, что реакция пойдет быстрее при большем числе столкновений, а последние в первую очередь будут зависеть от концентрации реагирующих веществ.
18. Реакции многостадийные,
одностадийные, гомогенные, гетерогенные.
В зависимости от механизма реакции бывают простые (идут в одну стадию) и сложные (многостадийные). Сложные реакции могут быть последовательными, параллельными, сопряженными, цепными и др.Последовательные реакции (А -> В -> С -> D ->…) идут через несколько различных промежуточных стадий, следующих одна за другой. Примерами последовательных реакций могут служить фотосинтез, биологическое окисление глюкозы,
Параллельные реакции происходят одновременно в нескольких направлениях, т.е. превращение вещества осуществляются через различные промежуточные стадии. Так при нагревании бертолетовой соли KCl+3KCl04<- 4KclO3->4KCl+6O2
Цепные реакции - процессы, в которых активные промежуточные соединения (как правило, содержащие не спаренные электроны) не исчезают в процессе образования конечных продуктов. Простейшим примером цепной реакции является синтез хлористого водорода. При рассмотрении вопроса о скорости реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной системе (гетерогенные реакции). Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда вещества, окружающие систему. Обычно система физически отграничена от среды.
Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы, гетерогенной система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.
19. Закон действующих масс для скорости реакции. Константа скорости реакции.
Необходимым условием того, чтобы между частицами (молекулами, ионами) исходных веществ произошло химическое взаимодействие, является их столкновение друг с другом (соударение). Точнее говоря, частицы должны сблизиться друг с другом настолько, чтобы атомы одной из них испытывали бы действие электрических полей, создаваемых атомами другой. Только при этом станут, возможны те переходы электронов и перегруппировки атомов, в результате которых образуются молекулы новых веществ продуктов реакции. Поэтому скорость реакции пропорциональна числу соударений, которые претерпевают молекулы реагирующих веществ. Скорость реакции А+В=С пропорциональна произведению концентрации вещества А на концентрацию вещества В. Обозначая концентрации веществ А и В соответственно через [А] и [В], можно написать V=k[A][B] где k коэффициент пропорциональности, называемый константой скорости данной реакции. Аналогично, для реакции 2А+В=С или то же самое А+А+В=С можно написать V=k[A][A][B]=k[A]2[B] Последнее уравнение показывает, что концентрация каждого вещества входит в выражение скорости реакции в степени, равной соответствующему коэффициенту в уравнении реакции. При постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции.Для того чтобы получить уравнение закона действия масс, представим уравнение химической реакции в общем виде: аА+bB+…=… Тогда закон действия масс можно записать в форме: v=k[A]a[B]b… Величина константы скорости k зависит от природы реагирующих веществ, от температуры и от присутствия катализаторов, но не зависит от концентраций веществ. Закон действия масс непосредственно справедлив для простых реакций. В случае сложных реакций, представляющих собой совокупность параллельно или последовательно протекающих процессов, закон приложим к любой из них в отдельности, но не к реакции в целом.
21. Порядок реакции. Уравнение кинетики 1-го и 2-го порядка. Период полупревращения.
Порядок определяется по применимости к ним тех или иных форм уравнений кинетики реакций. Порядок реакции равен молекулярности такой реакции, кинетическим уравнением которой она может быть представлена. По этому признаку реакции делятся на реакции первого, второго и третьего порядков; следует отметить, что порядок реакции чаше всего не совпадает с её молекулярностью. Примером может служить реакция гидролиза уксусноэтилового эфира или тростникового сахара в разбавленном водном растворе СН3СООС3Н5+Н3О -> СН8СООН+С3Н5ОН C12H22O11+H2O -> C6H12O6+C6H12O6 Реакции, в уравнение скорости которых входит концентрация реагирующего вещества в первой степени, называются реакциями первого порядка, а реакции, скорость которых пропорциональна произведению двух концентраций или квадрату концентрации, называется реакциями второго порядка. Скорость реакции первого порядка при определении ее по исчезновению исходного вещества определяется соотношением lnC = - Kt + B --- Это и есть уравнение кинетики для реакции первого порядка. Можно найти время, за которое концентрация исходного вещества уменьшится наполовину. Это время именуют периодом полупревращения т. Период полупревращения для реакции первого порядка не зависит от исходной концентрации вещества и за равные промежутки времени расходуется одна и та же его доля. В простейшем случае, когда концентрации исходных веществ равны, скорость реакции второго порядка может быть представлена как V=KC2 => Можно сделать вывод, что для реакции второго порядка период полупревращения зависит от начальной концентрации вещества. Отсюда следует, что для реакции более высоких порядков период полупревращения обратно пропорционален концентрации исходного вещества в степени на единицу меньше порядка реакции. Порядок реакций нередко бывает дробным. Это, в частности, отмечается для реакций, проходящих последовательно.
22. Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции.
При повышении температуры в значительной степени увеличивания скорость химических реакций. Это увеличение можно характеризовать при помощи температурного коэффициента скорости реакции, который представляет собой отношение констант скоростей при изменении температуры на 10°. По приближенному правилу (эмпирическое правило Вант Гоффа) повышение температуры на 10° вызывает увеличение скорости реакции примерно в 2 4 раза. Более точно зависимость скорости реакции от температуры выражается уравнением Аррениуса. Уравнение показывает, что логарифм отношения констант находится в линейной зависимости от величины, обратной температуре (1/Т). Экспериментальные исследования показывают, что, пользуясь уравнением Аррениуса, можно достаточно точно определить действительные изменения скорости реакций с изменением температуры. Таким образом, для химических процессов, протекающих в организме, выявляется так называемый «температурный оптимум», который для теплокровных животных лежит в интервале примерно 3642° С.
Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10 градусов. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций лежит в пределах от 2 до 4. Это на первый взгляд небольшое значение температурного коэффициента обусловливает, однако, большое возрастание скорости реакции при значительном повышении температуры. Например, если температурный коэффициент равен 2,9, то при возрастании температуры на 100 градусов скорость реакции увеличивается на 2,9'°, т. е, приблизительно в 50000 раз.
23. Уравнение Аррениуса. Энергия активации. Теория активных соударений.
Для определения скорости и направления реакции основным фактором является энергия активации. Скорость любой химической реакции зависит от числа столкновений реагирующих молекул в единицу времени, но если бы все столкновения сопровождались взаимодействием, то реакции протекали бы в очень короткие отрезки времени. Число эффективных столкновений, по сравнению с числом реальных столкновений, как правило, очень мало, что может быть отражено в уравнении. В 1889 г. С. Аррениус выдвинул теорию активации, объясняющую сущность химических реакций. Согласно этой теории при столкновениях во взаимодействие вступают только те молекулы, которые обладают определенным запасом энергии, необходимой для осуществления той или иной реакции. Эти молекулы называются активными молекулами. По-видимому, скорость химической реакции зависит от концентрации активных молекул. Это нашло свое отражение в исследованиях С. Аррениуса, который показал, что количество активных молекул может быть вычислено по уравнению При постоянной температуре число активных молекул в среднем сохраняется постоянным. Минимальный запас энергии, которым должны обладать молекулы для вступления в ту или иную реакцию, можно рассматривать как своеобразный энергетический барьер этой реакции. Энергия, которая должна быть сообщена неактивным молекулам для перехода их в активное состояние, называется энервией активации. Эту энергию обычно выражают в ккал/мольГ
27. Активация и ингибирование ферментов.
Нередко действие катализаторов связано с влиянием на них некоторых веществ, обладающих способностью угнетать их активность или, наоборот, стимулировать ее. Первая группа веществ называется ингибиторами, вторая активаторами. Активаторами являются, главным образом, окислы металлов и некоторые соли, а также различные элементы (С1, Вг, I, В и др.); гидриды Н25, НР, РН3 и др., окислы серы, селена, фосфора и т. д. Кроме того, различают вещества, которые, адсорбируясь на катализаторе, полностью прекращают его действие, вызывая к бы отравление катализатора. Эти вещества (мышьяк, синильная кислота, сулема и др.) называются каталитическими ядами.
25. Понятие о кинетики сложных реакций. Параллельный, последовательные, сопряженные и цепные реакции.
Примером параллельной реакции может служить также термическое разложение бертолетовой соли. Последовательными называются реакции, протекающие через ряд последовательных стадий по общей схеме А->В->С->D..., где буква обозначает отдельные стадии процесса. Сопряженные реакции. Эти реакции отвечают общей схеме: A+B->M, A+C->N При этом реакция (а) может протекать самостоятельно, тогда как реакция (б) протекает только при наличии реакции (а). Так, например, кислород не окисляет индиго в растворе, но при добавлении к раствору бензойного альдегида последний окисляется и вместе с этой реакцией происходит окисление индиго в изатин и синий раствор обесцвечивается. Общим для обеих реакций веществом А в данном примере является кислород, а бензальдегид служит индуктором (вещество В). Цепные реакции. Они имеют большое практическое значение, так как лежат в основе процессов полимеризации, крекинга нефти и др. Радикалы в современной науке определяются как нестойкие активные частицы, которые могут быть получены отщеплением от молекул атомов или групп атомов. Таким образом, радикалы характеризуются наличием в них не спаренных электронов, которые «при возникновении химической связи между соединяющимися атомами образуют общие пары. Так, например, два активных радикала метила СН3, вступая в химическое взаимодействие, легко соединяются с образованием этана НзС : СН3 (С2Н6) Устойчивость радикалов зависит от природы вещества и может выражаться в сотых долях секунды (радикалы типа метила) или иметь длительный срок существования [радикалы типа трифенил-метила С(С6Н5)з]- Продолжительность существования радикалов, по-видимому, зависит от степени ограниченности перемещения свободных электронов в пределах молекулы и чем степень меньше, тем короче срок существования радикалов. В качестве примера можно взять фотохимическую реакцию соединения хлора с водородом, протекающую при поглощении света.
26. Фермент как биологические катализаторы. Ферментативный катализ. Уравнение Михаэлисса Ментен и его анализ.
Ферменты являются катализаторами химических реакций, происходящих в организме. В настоящее время известно около 10 000 Г биохимических реакций, каждая из которых катализируется ферментами. Характерными особенностями ферментов являются чрезвычайно высокая эффективность. Эффективность ферментов объясняется, во-первых, концентрационным фактором - т.е. активной сорбцией ферментом субстрата, что эквивалентно увеличению его концентрации. Концентрационный фактор увеличивает скорость в тысячи раз. Во-вторых, ферменты проявляют ориентационный эффект, который увеличивает скорость реакции еще примерно в тысячу раз. Сущность ориентационного эффекта состоит в наличии стереоспецифического контакта активного центра фермента с субстратом. В-третьих, ферменты обладают полифункциональным эффектом, который имеет решающее значение. Этот эффект состоит в одновременном действии на молекулу субстрата нескольких атакующих групп фермента или в ряде последовательных воздействий на превращающуюся связь. Ферменты - это белки или их производные, которые благодаря особой трехмерной структуре выступают в качестве высокоспецифичных биохимических катализаторов. В целом клетка нуждается в разнообразных ферментах, каждый из которых катализирует строго определенную реакцию. Активный центр, т. е. та часть фермента, которая участвует в непосредственном взаимодействии с субстратом, включает лишь несколько аминокислотных остатков, причем эти остатки могут принадлежать участкам белковой цепи, взаимно удаленным друг от друга. Активный центр создается определенной конфигурацией белковой молекулы, образующей щель, в которую встраивается активируемый субстрат. Это объясняет специфичность ферментов. Характерной чертой ферментативного катализа является то, что скорость ферментативной реакции увеличивается до определенной постоянной величины.
28. Роль растворов в жизнедеятельности организмов. Вода как растворитель.
Для изучения биологических и медицинских дисциплин большой интерес представляет учение о растворах. Растворами называют однородные системы переменного состава. Химический состав и физические свойства одного раствора во всех частях его объема одинаковы. В отличие от простого смешивания веществ при растворении происходит взаимодействие между частицами, образующими раствор. Вещество, при растворении не [меняющее своего агрегатного состояния, называют растворителем; оно обычно присутствует в растворе в большем количестве. Растворы могут существовать в трех агрегатных состояниях твердом, жидком и газообразном (парообразном). Примерами твердых растворов могут служить некоторые сплавы металлов, например сплав золота и меди, а газообразных воздух. Процесс растворения обусловлен взаимодействием частиц растворяемого вещества и растворителя. Растворение твердых веществ в воде и диссоциацию молекул на ионы можно представить следующим образом: диполи воды, попадая в электрическое поле полярных молекул, ориентируются вокруг полярных групп или вокруг ионов, находящихся на периферии кристаллических решеток вещества. Притягивая к себе молекулу или ион, диполи воды ослабляют, а затем и разрывают межмолекулярные или ионные связи. В частности, вода уменьшает прочность ионной связи между ионами Nа+ и Сl или ионами Nа+ и Вг - При растворении часто происходит не только разрыв связей в растворяемом веществе, но и разрушение ассоциаций молекул растворителя. В образующемся растворе возникают новые ассоциации, как из молекул растворителя, так и растворенного вещества (особенно при больших его концентрациях), а также ассоциации из обоих видов молекул.
29. Изоэлектрическое состояние и изоэлектрическая точка амфолитов
Аминокислоты проявляют свойства и кислот, и оснований. Такие соединения представляют собой амфотерные электролиты или амфолиты. Существенно, что при растворении аминокислот в воде (а они в ней хорошо растворимы за счет полярных группировок NН2 и СООН) амино- и карбоксильная группа реагируют между собой с образованием биполярного иона (или амфиона). В таком виде аминокислоты и находятся в водном растворе. Аминокислоты обладают свойствами амфолитов. Их диссоциация, взятая на примере глицина, выражается суммарным уравнением. В случае биполярного иона аминокислоты, например, глицина, CN3+ - CH2COO-- , молекула электронейтральна. Такое состояние называется изоэлектрическим состоянием. То значение рН, при котором достигается изоэлектрическое состояние и при котором молекула не перемещается под воздействием внешнего электрического поля, называется изоэлектрической точкой.
30. Концентрация растворов и способы их выражения.
Концентрацией раствора называется количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя. Растворы с большой концентрацией растворенного вещества называются концентрированными, с малой разбавленными. Концентрацию растворов можно выражать по-разному. В химической практике наиболее употребительны следующие способы выражения концентраций: Числом единиц массы (например, числом граммов) растворенного вещества, содержащимся в 100 единицах массы (например, в 100 граммах) раствора (процентная концентрация по массе) Например, 15% раствор хлорида натрия это такой раствор, в 100 г которого содержится 15 г ЫаС1 и 85 г воды. Числом молей растворенного вещества, содержащихся в 1 л раствора. Концентрация, выраженная этим способом, называется мольно-объемной концентрацией или молярностью и обозначается буквой М. Так, 2М Н2304 обозначает раствор серной кислоты, в каждом литре которого содержится два моля, т. е. 196 г, Числом эквивалентов растворенного вещества, содержащихся в одном литре раствора. Концентрация, выраженная этим способом, называется эквивалентной концентрацией или нормальностью и обозначается буквой н. Так, 2 н. Н2SО4значает раствор серной кислоты, в каждом литре которого содержится два эквивалента, т. е. 98 г Н2504.Числом молей растворенного вещества, приходящихся на 1000 г растворителя. Концентрация, выраженная этим способом, называется мольно-массовой концентрацией или модальностью и обозначается буквой т. Так, 2т Н25О4 означает раствор серной кислоты, в котором на 1000 г воды приходится два моля Н25О4. Мольно-массовая концентрация раствора, в отличие от его молярности, не изменяется при изменении температуры. Отношением числа молей данного вещества к общему числу молей всех веществ, имеющихся, в растворе. Концентрация! выраженная этим способом, называется мольной долей данного вещества и обычно обозначается для растворителя N1, а для растворенных веществ N2, N3 и т.д. Объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.
31. Сольватная теория растворов.
При растворении многих веществ их молекулы (или ионы) связываются с молекулами растворителя, образуя соединения, называемые сольватами; этот процесс называется сольватацией. В частном случае, когда растворителем является вода, эти соединения называются гидратами, а самый процесс их образования гидратацией.
В зависимости от природы растворенного вещества, сольваты могут образовываться различными путями. Так, при растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения. В этом случае говорят об ион дипольном взаимодействии. Кроме того, может иметь место донорно-акцепторное взаимодействие. Здесь ионы растворенного вещества обычно выступают в качестве акцепторов, а молекулы растворителя в качестве доноров электронных пар. Ясно, что в таком взаимодействии могут участвовать растворители, молекулы которых обладают не поделенными электронными парами (например, вода, аммиак).
При растворении веществ с молекулярной структурой сольваты образуются вследствие диполь дипольного взаимодействия. Диполи растворенного вещества могут быть при этом постоянными (у веществ с полярными молекулами) или наведенными (у веществ с неполярными молекулами). Предположение о существовании в водных растворах гидратов было высказано и обосновано в восьмидесятых годах XIX века Менделеевым, который считал, что растворение не только физический, но и химический процесс, что вещества, растворяющиеся в воде, образуют с ней соединения. Об этом свидетельствует, прежде всего, изучение теплот растворения.
32. Растворимость газов в жидкостях. Кессонная болезнь.
Вещества со слабополярными молекулами, например жирны; кислоты, лучше растворяются в растворителях, молекулы которые также мало полярны (например, эфир) или неполярны бензолу Таким образом, взаимная растворимость жидкостей зависит от их химического строения; вода и ртуть практически не растворяют друг друга, вода и фенол обладают ограниченной растворимостью,
спирты в спиртах растворимы без ограничений, Чаще всего взаимная растворимость тем выше, чем ближе химическое строение смешиваемых веществ. Повышение температуры увеличивает растворимость в воде большинства жидкостей. Растворение газов в жидкостях называют также абсорбцией газов жидкостями. Концентрация большинства таких растворов невелика. Растворимость газа, выраженная в молях на 1000 г растворителя, при постоянной температуре прямо пропорциональна его давлению над раствором (закон Генри): C=Kp, где С моляльная концентрация газа в жидкости; p давление газа; К' коэффициент растворимости, равный количеству молей газа, растворяющегося в 1000 г растворителя при давлении газа 1 атм. Коэффициент К' зависит от природы газа, растворителя и температуры. Если над раствором имеется смесь газов, то каждый из них растворяется соответственно его Парциальному давлению. Это имеет большое значение в физиологических процессах переноса кислорода и двуокиси углерода кровью. В отличие от растворов твердых и жидких веществ с повышением температуры растворимость газов обычно уменьшается. Эту особенность используют, в частности, в лабораториях для удаления кипячением из воды газов, прежде всего СO2. В крови содержатся электролиты, белки, липоиды и другие вещества; их концентрация может меняться в известных пределах; оказывая некоторое влияние на растворимость в крови О2 и СO2. Необходимо указать, что изменение растворимости газов под влиянием перемены давления может обусловить тяжелую патологию человеческого организма. Резкое понижение атмосферного давления, например, при слишком быстром подъеме водолазов или кессонщиков с больших глубин, при разгерметизировании кабин или скафандров при высотных полетах приводит к «закипанию» крови вследствие выделения растворенных в ней газов; их пузырьки закупоривают мелкие сосудики в мозгу и других органах, что может привести к серьезным заболеваниям и гибели человека.Пузырьки газов закупоривают мелкие сосуды в различных тканях и органах, что приводит к тяжелому заболеванию или даже гибели человека. Подобная же патология может возникнуть и в результате резкого падения атмосферного давления при разгерметизировании скафандров летчиков и кабин самолетов при высотных полетах. Для лечения кессонной болезни больного помещают в барокамеру, где создают большое давление. Пузырьки газов вновь растворяются в крови; при последующем медленном (в течение нескольких суток) снижении давления в барокамере избыток газов удаляется из крови через легкие.
33. Растворимость жидкости и твердых тел в жидкостях. Гидраты и кристаллогидраты.
Рассмотрим растворимость твердых веществ в жидкостях и жидкостей в жидкостях и условия фазовых равновесий. При переходе из одного фазового состоянья в другое, в частности индивидуального вещества в раствор, меняется его структура и изменяются свойства,в частности энталыпия и объём. Если переход одной фазы, например твердого вещества в раствор, самопроизвольно протекает с поглощением теплоты то в соответствии с уравнением условием перехода растворения служит увеличение изменения энтропии. Самопроизвольное протекание процесса в этом случав возможно только тогда, когда энтропийный член по абсолютной величине больше изменения энтальпии. Так, при растворении кристалла в жидкости фазовый переход сопровождается поглощением теплоты, а взаимодействие частиц с растворителем /сольватация/ характеризуется выделением теплоты. Процесс растворения - переход твердой фазы в раствор идет в сторону увеличения беспорядка, а солватация - к упорядочению системы происходит уменьшение числа частиц. Однакг первый фактор д триста значительно больше второго - л -5га/.поэтому при растворении общее значение л 5 ,;гак правило, увеличивается. Самопроизвольный процесс фазового перехода кристалл - жидкость протекает, когда &§< О и образующийся при этом раствор остается ненасыщенным. Растворимость твердых веществ в жидкостях всегда ограничена. При растворений твердых веществ необходима энергия на разрушение кристаллической решетки. Поэтому, как правило, с повышением температуры растворимость твердых веществ повышается. В первом случае /бензол - толуол/, как уде указывалось выше, взаимная растворимость определяется только изменением. Во втором случае растворение возможно только при определенной температуре. Рассмотрим соотношение энтальпии и энтропии при фазовых переходах воды: кристалл /лед/=> жидкость => газ при температуре 273 К и 373 К. При смешении льда с водой при 273 К связь энтропии и энтальпии, рассчитывается. Изобарный потенциал обеих фаз /лед - вода/ при температуре О С /273 К/ в этой системе равен нулю, т.е. в системе никаких изменений не происходит. Исходя из этого уравнения, можно подсчитать изменение энтропии фазового перехода при любых температурах, зная энтальпию системы при заданной температуре.
35. Вязкость растворов. Аномальная вязкость растворов ВМС.
Вязкостью или внутренним трением называют меру сопротивления среды движению. Измерение вязкости - самый простой и доступный способ изучения свойств макромолекул. Он ценен тем, что позволяет определять молекулярную массу биополимеров. Коэффициент динамической вязкости или абсолютной вязкости количественно характеризует сопротивление жидкости смещению ее слоев. Вязкость раствора выражают несколькими величинами: удельная вязкость, приведенная вязкость, характеристическая вязкость. Относительная вязкость является мерой изменения вязкости раствора по сравнению с вязкостью чистого растворителя. Удельная вязкость отражает возрастание относительной вязкости по сравнению с единицей. Чтобы учесть влияние концентрации раствора, т.е. оценить, насколько велика удельная вязкость, отнесенная к единице концентрации растворенного вещества. В растворах высокомолекулярных веществ обнаруживается аномальная вязкость: она очень высока и в противоположность первой группе жидкостей уменьшается с увеличением давления на протекающую жидкость. Большая вязкость этих растворов зависит от степени сродства между молекулами: силы сцепления гидрофильных молекул белков и полисахаридов с молекулами воды очень высоки, и вязкость их даже в очень разбавленных растворах также будет высокой. Кроме того, большое значение имеет форма частиц, Если вытянутые частицы располагаются поперек потока, то они оказывают наибольшее сопротивление. При увеличении внешнего давления на жидкость эти частицы ориентируются вдоль потока, в результате вязкость раствора уменьшается.
34. Растворы ВМС. Набухание. Общая характеристика растворов ВМС.
К высокомолекулярным соединениям относят вещества с молекулярным весом от нескольких тысяч до нескольких миллионов. Эти соединения называют также полимерами. Они образуются результате поликонденсации или полимеризации небольших молекул (мономеров) аминокислот, моносахаридов, непредельных углеводородов, некоторых эфиров, непредельных кислот и т. В результате этих процессов возникают длинные цепочки из этомов углерода или углерода и кислорода, углерода и азота и т. В соответствующих растворителях многие высокомолекулярные соединения образуют растворы, обладающие рядом свойств коллоидных растворов: они медленно диффундируют, не проникают через диализационные мембраны, размер частиц соответствует коллоидным (I 100 ммк).
Однако в отличие от коллоидов высокомолекулярные соединения в растворах не имеют поверхности раздела; кроме того, они способны самопроизвольно растворяться в определенных жидкостях, не требуя для этого стабилизаторов или затраты внешней энергии. Растворы высокомолекулярных соединений очень устойчивы. Высокомолекулярные соединения имеют и специфические свойств они набухают; их растворы обладают высокой вязкостью и способностью легко желатинироваться. По современной классификации растворы высокомолекулярных соединений относят к гомогенным растворам, имеющим ряд свойств коллоидов, а также и специфические свойства. Легкость растворения высокомолекулярных веществ и устойчивость их растворов связаны с присутствием в их структуре большого количества так называемых лиофильных групп, т. е. групп, имеющих сродство к растворителям. Это свойство послужило основой для деления коллоидных растворов на лиофильные и лиофобные. Набухание - явление проникновения растворителя в полимерное вещество, сопровождаемое увеличением его объема и массы. Мерой набухания служит степень набухания. Набухание - самопроизвольный процесс, а, следовательно, приращение энергии Гиббса здесь отрицательно. Степень набухания полимера зависит от его природы и природы растворителя. Полимер лучше набухает в растворителе, который сильнее взаимодействует с его молекулами. Поэтому полярные полимеры (белки) набухают в полярных жидкостях (вода), неполярные (каучуки) - в неполярных средах (бензол). На набухание ВМС влияют также значение рН и присутствие электролитов.Влияние ионов на набухание ВМС связано с их способностью к дегидратации молекул ВМС. Известно, что жесткие основания и кислоты гидратируются сильнее, чем мягкие. Типичные жесткие основание и кислота - это фторид-анион и катион лития. Иодид-ион и катион цезия - характерные примеры сравнительно мягких однозарядных ионов.
36. Удельная, приведенная, относительная и характеристическая вязкость.
Увеличение вязкости связанное с изменением концентрации при растворении полимера, принято характеризовать удельной вязкостью. При вискозиметрическом методе определения молекулярного веса полимера вначале устанавливают n0, nc ; затем рассчитывают nуд для растворов различной концентрации и строят график зависимости приведенной вязкости от концентрации. Эта зависимость представляет прямую, которая при продолжении до пересечения с осью ординат отсекает отрезок, равный [n] =KМ. По этой величине можно определить молекулярный вес полимера. M=[n]/K
37. Вязкозиметрическое определение молекулярной массы полимеров.
Осмотическое давление в растворах собственно коллоидов и полимеров, как и в истинных растворах, пропорционально их концентрации. Однако в связи с малой весовой концентрацией (менее 1,0%) коллоидов количество частиц в растворе настолько мало, что осмотическое давление в растворах собственно коллоидов очень низкое. Осмотическое давление в растворах белков и других высокомолекулярных соединений, концентрация которых достигает 1012% и более, значительнее и оказывает существенное влияние на ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико, [составляя в норме всего около 0,04 атм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,78,1 атм. Осмотическое давление в растворах высокомолекулярных веществ в значительной степени зависит от температуры и рН, Повышение температуры в растворах высокополимеров увеличивает осмотическое давление в большей мере, чем следует из теоретического расчета. Это зависит от повышения степени диссоциации ионогенных групп белков и от дезагрегации белков на микро-Глобулы. Дополнительная гидратация микроглобул уменьшает количество свободного растворителя, что соответствует увеличению концентрации частиц в растворе. Как показал Михаэлис, степень диссоциации ионогенных групп гидрофильных коллоидов (амфолитов) минимальна в изозлектри-ческой точке, т. е. число частиц (ионы - молекулы) наименьшее при атом значении рН.
38. Вязкость крови и других биологических жидкостей.
Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выполняет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных
веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомолекулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. Несмотря на то, что в плазме крови содержится от 6 до 8% белков, коллоидо-осмотическое давление составляет примерно 0,5% (3040 см водного столба) от общего осмотического давления плазмы, причем около 80% онкотического давления обусловлено наиболее низкодисперсными белками альбуминами, а остальные 20% падают на другие белки плазмы. Существенным физиологическим моментом, связанным с важнейшими процессами, происходящими в организме, является поддержание состояния осмотического равновесия между кровью и тканевыми жидкостями, которое, будучи динамическим, обеспечивает постоянный обмен жидкости, низкомолекулярных питательных веществ и конечных продуктов обмена. Распределение воды и минеральных веществ между кровью и тканями и поддержание осмотического равновесия обеспечивается в основном нормальной концентрацией белков в плазме крови, а кровяное давление компенсируется коллоидно-осмотическим давлением. Безбелковая часть плазмы в результате гидростатического давления проникает в межклеточное пространство ткани, а в венозной части капилляров происходит обратный ток жидкости в сторону пониженного гидростатического давления по сравнению с коллоидоосмотическим давлением крови. Аналогичные процессы имеют место и в почках при образовании мочи. При понижении содержания белка в крови, т. е. при гипопротеинемиях, вследствие голодания, нарушений деятельности пищеварительного тракта или потери белка с мочой при заболеваниях почек, возникает разница в онкотическом давлении в тканевых жидкостях и в крови. Вода устремляется в сторону более высокого давления в ткани; возникают так называемые онкотические отеки подкожной клетчатки
39. Коллигативные свойства растворов.
Осмотическое давление растворов ВМС существенно отличается от рассчитываемого согласно уравнению Вант Гоффа п = сRТ, причем экспериментально полученная кривая лежит выше теоретической прямой. Это объясняется уже отмеченной относительной независимостью теплового движения отдельных участков полимерной молекулы. Иначе говоря, каждая макромолекула ведет себя как совокупность нескольких молекул меньшего размера, что и проявляется в увеличении осмотического давления. Очевидно, что для однотипно построенных молекул ВМС, количество таких автономных участков будет тем большим, чем больше молекулярная масса М. Для расчета осмотического давления предложено уравнение Галлера: п= ((RT)/M)c + Bc2 в котором с - концентрация раствора ВМС, г/л; М - его молярная масса, г/моль; B - коэффициент, учитывающий гибкость и форму молекулы ВМС в растворе. Число подвижных единиц в растворе учитывается дополнительным слагаемым Рс2. При небольших концентрациях полимера значение этого слагаемого невелико, и уравнение Галлера совпадает с уравнением Вант Гоффа. Из всех коллигативных свойств растворов ВМС осмометрический метод наиболее чувствителен при определении молекулярной массы полимеров. Измеряя осмотическое давление для растворов с разными концентрациями, получают графическую зависимость величины л/с от с, из которой и находят значение молекулярной массы полимера М и коэффициента B.
40. Относительное понижение давления насыщенного пара и закон Рауля. Идеальные растворы.
Растворы многими свойствами отличаются от чистых растворителей. Например, давление пара растворителя над раствором ниже, чем над чистым растворителем. Это понижение прямо пропорционально мольной доле растворенного нелетучего неэлектролита (закон Рауля). Математически закон Рауля можно представить так: д p= Kx, где р понижение давления пара; х мольная доля растворенного вещества; К константа, равная д р при х=1. Растворенное вещество, занимая часть объема раствора, покидает концентрацию частиц растворителя и соответственно этому уменьшает число их, переходящих в пар. Следствиями закона являются два свойства растворов: температура замерзания растворов ниже, а температура кипения их (если растворенное вещество нелетуче) выше, чем у чистых растворителей, причем повышение температуры кипения и понижение температуры замерзания растворов неэлектролитов прямо пропорциональны их моляльной концентрации. В результате1 водные растворы кипят при температуре выше 100° С и замерзают при температуре ниже 0° С.
41. Понижение температуры замерзания и повышение температуры кипения, зависимость их от концентрации раствора.
Определение величины, на которую повышается температура кипения растворов, называется эбулиометрией (эбулио кипение). Определение величины понижения температуры замерзания, т. е. разности между температурами замерзания чистого растворителя & раствора, называется криометрией (криос холод). Эти измерения, особенно криометрия, имеют большое практическое значение, поскольку понижение температуры замерзания д t пропорционально моляльной концентрации раствора: д t = КС, где С моляльная концентрация; К криоскопическая константа, равная д t при С=1. Величина К связана с теплотой плавления растворителя соотношением Вант Гоффа: K = (RT2)/ 1000 l2 ,где Т абсолютная температура плавления; а l теплота плавления 1 г льда растворителя. Эбулиометрия и криометрия используются для определения ряда констант веществ. Установив значение д t, можно рассчитать моляльную концентрацию раствора. По формуле п = CRT рассчитывают осмотическое давление исследуемого раствора.
42. Осмос и осмотическое давление. Закон Вант Гоффа
Процесс самопроизвольного проникновения растворителя через полупроницаемую мембрану и представляет собой осмос. Если бы мембрана оказалась подвижным поршнем, она бы смещалась в сторону более разбавленного раствора, однако можно остановить движение поршня, приложив некоторое давление извне. Это давление называют осмотическим. Осмотическое давление минимальное гидравлическое давление, которое нужно приложить к раствору, чтобы осмос прекратился. Можно вывести выражение для осмотического давления. Пусть в цилиндре объемом V находится водный раствор вещества А. У правой стенки цилиндра находится полупроницаемый поршень, который мы переместим влево так, чтобы справа остался 1 моль растворителя. Пусть объем его равен VH2O (молярный объем растворителя). Поршень преодолевал осмотическое давление п, и работа, затраченная на перемещение, равна A = - п VH2O . п=RTc Это выражение, связывающее величину осмотического давления с концентрацией, известно как закон Вант Гоффа.
43. Осмотическое давление в растворах биополимеров. Мембранное равновесие Доннане.
Осмотическое давление растворов высокомолекулярных соединений значительно увеличивается с ростом концентрации и может быть рассчитано по уравнению п= С/M RT + KC2 где С весовая концентрация полимера; М молекулярный вес; R газовая постоянная; Т абсолютная температура; Kконстанта, отражающая свойства растворителя и характеризующая отклонение осмотического давления раствора полимера от уравнения Вант Гоффа. Величина K возрастает с увеличением длины молекулы и разветвленности цепи полимера. Уравнение можно преобразовать в уравнение прямой, разделив обе части на С: п/C = (RT) / M + KC. Присутствие в организме солей белков, отделенных клеточной мембраной от растворов электролитов, приводит к перераспределению электролитов и соответственно влияет на осмотическое давление по обе стороны мембраны. Перераспределение электролитов подчиняется выведенному Доннаном уравнению мембранного равновесия. Представим себе клетку, находящуюся в растворе электролита, например NaС1. Внутри клетки находится соль белка, белковые ионы, которой не диффундируют через мембрану. При контакте клетки с раствором внутрь нее вследствие диффузии переходит некоторое количество отсутствующих там ионов С1-, обозначенное через х. За ионами С1~ перейдет такое же количество ионов Nа+, так как иначе в результате неравномерного распределения разноименно заряженных ионов возникает электрическое поле, препятствующее диффузии ионов С1~. В системе установится равновесие, при котором число ионов, проходящих через мембрану в ту и другую сторону, будет одинаково, а это возможно, если будут равны произведения их концентраций по обе стороны клеточной мембраны: х =(С2н) / (Св+2Сн ) (уравнение Доннана).
44. Роль осмоса и осмотическое давление в биологических системах.
Роль осмотических явлений в различных физиологических процессах чрезвычайно велика. Постоянство осмотического давления (изоосмия) тех или иных физиологических сред (плазма, внутриклеточная жидкость, моча и др.) представляет собой фундаментальное физико-химическое требование гомеостаза. Осмотическое Давление плазмы крови человека составляет около 8 атмосфер, у рыб = 15, у отдельных растений может достигать 100, а у прорастающих семян - до 400 атмосфер. Столь высокие значения осмотического давления достигаются за счет суммарного эффекта растворенных в биосредах низкомолекулярных веществ и ионов. В плазме, в частности, наиболее значимым компонентом является хлористый натрий. На долю высокомолекулярных компонентов - белков - приходится незначительная часть от общего давления, называемая онкотическим давлением. Величина онкотического давления крови, вызываемого альбуминами и глобулинами, составляет только 0.03-0.04 атм. Стенка капилляров проницаема для воды и низкомолекулярных веществ, но не для белков. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идет в обратном направлении, так как венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. На клеточное осмотическое давление влияет обмен веществ. При распаде больших молекул осмолярность повышается; при синтезе - снижается. Осмотические взаимоотношения ответственны за распределение воды в жидкостных пространствах организма. При нахождении клеток в сильно гипотоническом растворе они набухают и разрываются. Такой распад клеток крови называют гемолизом. Обратное явление, при котором клетка сжимается, находясь в гипертонической среде, представляет плазмолиз. Основную задачу осморегуляции выполняют почки. Осмотическое давление мочи в норме значительно выше, чем плазмы крови, что и обеспечивает активный транспорт из крови в почку. Осморегуляция осуществляется под контролем ферментативных систем. Нарушение их деятельности приводит к патологическим процессам. При внутривенных инъекциях, чтобы избежать нарушения осмотического баланса, следует использовать изотонические растворы. Изотоничен по отношению к крови физиологический раствор, содержащий 0.9% хлористого натрия. Строго говоря, истинным физиологическим раствором является раствор того же состава, что и плазма крови, содержащий катионы натрия, калия, магния, кальция и хлорид-, бикарбонат - и сульфат - анионы в определенном соотношении. В хирургии явлением осмоса пользуются, применяя гипертонические марлевые повязки (марлю пропитывают 10%-ным раствором хлорида натрия). При этом рана очищается от гноя и носителей инфекции. Гипертонические растворы вводят внутривенно при глаукоме, чтобы снизить внутриглазное давление из-за повышенного содержания влаги в передней камере глаза. Таким образом, понимание и контроль осмотических процессов, а также умение определять и рассчитывать осмотическое давление имеют существенное значение для биологов и медиков.
45. Плазмолиз и гемолиз.
Обилие воды в клетках и тканях необходимы для нормального течения многообразных физических и химических процессор гидратации и диссоциации веществ, реакций гидролиза, окисления и т. п. Каждая живая клетка имеет оболочку или поверхностный слой протоплазмы, обладающие свойством полупроницаемости. Так, оболочка эритроцитов непроницаема для ряда катионов (например, для К+ и Nа+), хотя она свободно пропускает анионы и воду. Помещая, животные и растительные клетки в дистиллированную воду, можно наблюдать перемещение воды внутрь клеток, что ведет к их набуханию, а затем к разрыву оболочек и вытеканию клеточного содержимого. Если в таком опыте использовать эритроциты, то вода окрасится гемоглобином в красный цвет. Подобное разрушение клеток путем разрыва их оболочек (или поверхностных слоев протоплазмы) называют лизисом, а в случае эритроцитов гемолизом. В крепких растворах солей отмечается, наоборот, сморщивание клеток (плазмолиз), обусловленное потерей воды, перемещающейся из них в более концентрированный внешний раствор. Процессы гемолиза и плазмолиза зависят от функционального состояния вещества клеток, в частности от изменения Проницаемости их оболочек. В результате этого оказалось, что если кои центрированные растворы солей и сахара вызывают стойкий плазмолиз, то плазмолиз в растворах мочевины и глицерина нос временный характер, а растворы спирта, эфира, хлороформа его вызывают. Последние вещества легко проникают через клеточные мембраны.
46. Растворы слабых и сильных электролитов. Степень и константа диссоциации слабых электролитов.
Электролитами называют вещества, которые в растворенном (или расплавленном) состоянии проводят электрический ток. Электропроводность является особым свойством растворов электролитов. В то время как другие свойства растворов диффузия, осмотическое давление и т.-п. зависят, прежде всего, от общего количества частиц растворенного вещества (молекул и ионов), электропроводность обусловлена только ионами электролита. Способность электролитов диссоциировать на ионы служит мерой силы данного электролита. Хорошо диссоциирующие электролиты называются сильными (NаСl Na2SО4, НС1, КОН и др.), а плохо диссоциирующие слабыми электролитами (СН3СООН, Н2СO3, NН4ОН и др.). В растворах электролитов осмотическое давление и температура кипения выше, а температура замерзания ниже, чем следовало бы ожидать исходя из их молярной концентрации. Причина этих отклонений заключается в диссоциации электролитов, в результате чего в растворах оказывается большее число кинетически активных частиц (сумма молекул и ионов), чем в эквимоляльных растворах неэлектролитов. Слабые электролиты в растворах диссоциируют неполностью. Например, уксусная кислота диссоциирует по уравнению СН3СООН =>СН3 СОО- +Н+ Согласно закону действия масс скорость диссоциации СН3СООН выражается уравнением V1= K1 [CH3COOH], а скорость обратной реакции (ассоциация ионов) V2= K2[CH3COO- ] [H+] В растворе быстро устанавливается равновесие между процессами диссоциации и ассоциации, т. е. V1=V2 . При разбавлении растворов слабых электролитов степень их диссоциации повышается. Это объясняется уменьшением скорости обратной реакции. Так, например, при разбавлении раствора уксусной кислоты вдвое концентрация содержащихся в нем молекул и ионов убывает в два раза, что уменьшает скорость прямой реакции диссоциации также в два раза, а скорость обратной реакции в четыре раза.
48. Электролиты в организме человека. Электролитический состав крови.
Коллоидные растворы клеток и биологических жидкостей находятся в соприкосновении с электролитами. Поэтому при введении в организм какого-либо электролита надо учитывать не только его концентрацию, но и заряд ионов. Так, физиологический раствор хлорида натрия нельзя заменить изотоничным раствором хлорида магния, поскольку в этой соли имеется двухзарядный ион магния, обладающий высоким коагулирующим действием. С явлением коагуляции эритроцитов вследствие уменьшения их дзета-потенциала врачи постоянно имеют дело в клинических лабораториях (метод определения СОЭ скорости оседания эритроцитов). Это явление объясняется тем, что при патологии в крови увеличивается содержание некоторых видов белков, место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. Заряд эритроцитов понижается, они быстрее объединяются и оседают. Организм обладает концентрационным гомеостазом, физиологический механизм регуляции которого связан во многом с функцией почек. Электролиты выполняют в организме важную роль: отвечают за осмолярность и величину ионной силы биосред, образуют биоэлектрический потенциал, катализируют процессы обмена веществ, стабилизируют определенные ткани (костная), служат в качестве энергетических депо (фосфаты), участвуют в свертывающей системе крови. Для практики полезно запомнить, что физиологическими растворами являются 1 / 6 моль/л растворы солей, молекулы которых полностью диссоциируют на 2 иона, и 1/3 моль/л растворы растворов неэлектролитов (например, 1/3 моль/л раствор глюкозы). Физико-химические параметры гомеостаза таких растворов, а следовательно и параметры гомеостаза плазмы - важнейшей биосреды человеческого организма составляют: п плазмы = 7.6 8.1атм. п онкотическое 0.03 0.04 атм, д Т зам. плазмы = 0.560С, I внутриклет = 0.35, Iплазмы= 0.15
49. Понятие о водно солевом обмене. Антагонизм и синегизм ионов.
Величина ионной силы биологических сред существенна для реализации разнообразных биохимических и физиологических процессов. Их оптимальные параметры достигаются лишь при постоянном и вполне определенном значении ионной силы. Это иллюстрируется хотя бы таким важным для живых систем обстоятельством, что диссоциация углекислоты заметным образом зависит от изменения концентрации хлорида натрия в ее водном растворе (а следовательно ее поведение в плазме отличается от свойств в чистой воде). Отсюда нетрудно сделать заключение, что постоянство концентраций электролитов в водных биосредах (водно-электролитный баланс) и определяемая этим постоянством величина ионной силы биосред - одно из требований гомеостаза. Концентрация ионов - регулятор распределения воды между внутриклеточным содержимым, межклеточным пространством и мочей. К примеру, если при болезни или в результате применения мочегонных препаратов происходит избыточное выделение мочи, то вместе с влагой (восполняемой с питьем) организм теряет и соли. Падение концентрации ионов в плазме крови приводит в итоге к падению осмотического давления. Напротив, при жажде в результате обезвоживания объем внутриклеточного пространства уменьшается из-за потери влаги. Тем самым увеличивается концентрация электролитов в тканях, и в результате осмотическое давление повышается. Нарушения водно-электролитного баланса связаны с комплексом причин, приводящих к избытку или недостатку воды и (или) электролитов. Нужно различать нарушения баланса (несоответствие между поступлением и выведением) и нарушение распределения между внеклеточным и внутриклеточным пространством. В зависимости от содержания жидкости в организме и осмотического давления плазмы различают шесть различных состояний, связанных с увеличением количества внеклеточной жидкости (гипергидратация) и ее уменьшением (дегидратация). Организм легче переносит гипергидратацию, чем дегидратацию. Увеличение внеклеточного пространства вдвое и более совместимо с жизнью, а при дегидратации быстрая потеря 20% жидкости смертельна. Близкие значения атомных и ионных радиусов, энтальпий ионизации, координационных чисел, склонность к образованию связей с одними и теми же элементами в молекулах биолигандов обусловливает эффекты замещения элементов в биологических системах. Такое замещение ионов может происходить как с усилением (синергизм), так и с подавлением активности (антагонизм) мещаемого элемента.
52. Диссоциация воды. Ионное производство воды. Водный показатель.
Чистая вода очень плохо проводит электрический ток, но все же обладает измеримой электропроводностью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы: H2O H++OH-. По величине электропроводности чистой воды можно вычислить концентрацию ионов водорода и гидроксид-ионов в воде. При 25 °С она равна 10~7 моль/л. Напишем это уравнение следующим образом [H+] [OH-] = [H2O] K Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул Н20 в воде практически равна общей концентрации воды, т. е. 55,55 моль/л {1 л содержит 1000 г. воды, т. е. 100:18,02 = 55,55 молей), В разбавленных водных растворах концентрацию воды можно считать такой же. Поэтому, заменив в последнем уравнении произведение [Н2О] К. новой константой Кн2о, будем иметь: [H+][OH-]=KH2O . Полученное уравнение показывает, что для воды и разбавленных водных, растворов при неизменной температуре произведение концентраций ионов водорода и гидроксид-ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды. Численное значение ее нетрудно получить, подставив в последнее уравнение концентрации ионов водорода и гидроксид-ионов. В чистой воде при 25 °С [Н+] = [ОН~] = 1 • 10~7 моль/л. Растворы, в которых концентрации ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами. В кислых растворах больше концентрация ионов водорода, в щелочных концентрация гидроксид-ионов. Но какова бы ни была реакция раствора, произведение концентраций ионов водорода я гидроксид-ионов остается постоянным. Если например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода повысилась до 10~3 моль.-л, то концентрация гидроксид-ионов понизится так, что произведение [Н+][ОН~] останется равным 10-14. Как степень кислотности, так и степень щелочности раствора можно количественно охарактеризовать концентрацией ионов водорода: нейтральный раствор Н+=10-7, кислый Н+>10-7, щелочной Н+<10-7. Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через рН: pH= - lg [H+].
53. Интервалы значения pH для различных жидкостей человеческого организма.
Постоянство концентрации водородных ионов является одной из существенных констант внутренней среды организмов. Так, рН крови человека составляет 7,36. Активность разнообразных биологических катализаторов (ферментов), а нередко и специфика происходящих в тканях биохимических процессов связаны с ограниченными зонами значеня рН. Например, пепсин желудочного сока активен при рН 1,5 2,1 каталаза крови при рН 7,0; тканевые катепсины при реакции среды, близкой к нейтральной, катализируют синтез белка, а pH кислой реакции его расщепляют. Смещение реакции среды в животном организме в кислую сторону называется ацидозом, а в щелочную алкалозом. Изменение реакции крови на несколько десятых долей рН приводит к серьёзным нарушениям жизнедеятельности. Определение концентрации водородных ионов в ряде случаев помогает судить о характере протекающих в организме физиологических и патологических процессов. В связи с этим приходится определять рН в различных биологических жидкостях, что иногда (например, при определении рН крови) представляет довольно сложную задачу. Определение реакции среды и знание концентрации водородных ионов в биологических объектах часто является необходимым в лабораторной практике. Эти определения бывают нужны, в частности, при создании желаемой реакции среды, необходимой для оптимальной жизнедеятельности микроорганизмов. При проведении многих биологических опытов in vitro, например, при работе с культурами тканей, при определении ферментативной активности препаратов и т. п. одним из основных условий является создание соответствующей реакции среды.
54. Буферные системы их классификация и механизм действия. Емкость буферных систем.
Буферными системами (буферами) называют растворы, обладающие свойством достаточно, стойко, сохранять постоянство - концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении. Буферные системы (смеси или растворы) по составу бывают двух основных типов: а) из слабой кислоты и ее соли, образованной сильным основанием; б) из слабого основания и его соли, образованной сильной кислотой. На практике часто применяют следующие буферные смеси: ацетатный буфер CH3COOH + CH3COONa, бикарбонатный буфер H2CO3+NaHCO3, аммиачный буфер NH4OH +NH4Cl, белковый буфер белок кислота + белок соль, фосфатный буфер NaH2PO4 + Na2 HPO4 Фосфатная буферная смесь состоит из двух солей, одна из которых является однометаллической, а вторая - двухметаллической солью фосфорной кислоты. Ацетатный буфер. Рассмотрим механизм буферного действия. При добавлении соляной кислоты к ацетатному буферу происходит взаимодействие с одним из компонентов смеси (СНзСООН); Из уравнения (а), сильная кислота заменяется эквивалентным количеством слабой кислоты (в данном случае НСl заменяется СН3СООН). В соответствии с законом разведения Оствальда повышение концентрации уксусной кислоты понижает степень ее диссоциации, а в результате этого концентрация ионов Н+ в буфере увеличивается незначительно. При добавлении к буферному раствору щелочи концентрация водородных ионов и рН изменяется также незначительно. Щелочь при этом будет реагировать с другим компонентом буфера, (СН3СООН) по реакции нейтрализации. В результате этого добавленная щелочь заменяется эквивалентным количеством слабоосновной соли, в меньшей степени влияющей на реакцию среды. Анионы СНзСОО~, образующиеся при диссоциации этой соли, будут оказывать некоторое Угнетающее действие на диссоциацию уксусной кислоты. Буферной емкостью (В) называется количество сильной кислоты или сильного основания, которое нужно прибавить к одному литру буферного раствора, чтобы изменить его рН на единицу. Она выражается в моль/л или чаще в ммоль/л и определяется по формуле: В = (c V) / д pH Vб , где В - буферная емкость; с - концентрация сильной кислоты или основания (моль/л); V - объем добавленного сильного электролита (л); Vб - объем буферного раствора (л); д рН - изменение рН.
55. Буферные системы крови.
Наиболее мощными буферными системами крови являются гемоглобиновый и оксигемоглобиновый буфера, которые составляют примерно 75% всей буферной емкости крови. Буферные, свойства гемоглобина по своему механизму действия идентичны белковым буферным системам: кислые продукты обмена веществ взаимодействуют с калиевой солью гемоглобина с образованием эквивалентного количества их калиевых солей и свободного гемоглобина, обладающего свойством слабой органической кислоты. Кроме того, система оксигемоглобин гемоглобин участвует в ещё одном своеобразном механизме поддержания постоянства рН крови. Как известно, венозная кровь содержит большие количества углекислоты в виде бикарбонатов, а также С02, связанной с гемоглобином. Через легкие углекислота выделяется в воздух; однако сдвига рН крови в щелочную сторону не происходит, так как образующийся оксигемоглобин является более сильной кислотой, чем гемоглобин. В тканях, в артериальной крови под влиянием низкого парциального давления кислорода оксигемоглобин диссоциирует и кислород диффундирует в ткани. Образующийся при этом гемоглобин, однако, не обусловливает изменения рН крови в щелочную сторону, так как в кровь из тканей поступает углекислота. Учитывая, что постоянство кислотно-щелочного равновесия в организме играет существенную роль в течение всех биохимических процессов, в клинике при анализе крови значительный интерес представляет определение резервной щелочности крови. В поддержании в организме кислотно-щелочного равновесия участвуют несколько буферных систем, как-то: оксигемоглобиновый, белковый; карбонатный и фосфатный, а также ряд органов легкие, почки, кожа, печень, одной из функций! которой является нейтрализация кислых продуктов обмена, и кишечник.
56. Уравнение Гендерсона Гассельбаха.
Примером кислотного буфера может служить ацетатный буферный раствор, содержащий смесь уксусной кислоты и ацетата натрия (СНзСООН + СНзСООNа). При добавлении к такому раствору кислоты она взаимодействует с солью и вытесняет эквивалентное количество слабой кислоты: СНзСООNа + НСl СН3СООН + NaСl. В растворе вместо сильной кислоты образуется слабая, и поэтому величина рН уменьшается незначительно. Если к этому буферному раствору добавить щелочь, она нейтрализуется слабой кислотой, и в растворе образуется эквивалентное количество соли: СНзСООН + NaОН СНзСООNа + Н2О. В результате рН почти не увеличивается. Для расчета рН в буферном растворе на примере ацетатного буфера рассмотрим процессы, в нем протекающие, и их влияние друг на друга. Ацетат натрия практически полностью диссоциирует на ионы, ацетат-ион подвергается гидролизу, как ион слабой кислоты: СНзСООNа -> Na++ СН3СОО~ СНзСОО- + НОН СНзСООН + ОН-. Уксусная кислота, также входящая в буфер, диссоциирует лишь в незначительной степени: СНзСООН СН3СОО+H-- Слабая диссоциация СНзСООН еще более подавляется в при-сутствии СНзСООNа, поэтому концентрацию недиссоциированной уксусной кислоты принимаем практически равной ее начальной концентрации:[СНзСООН] = сr. C другой стороны, гидролиз соли также подавлен наличием в растворе кислоты. Поэтому можно считать, что концентрация ацетат-ионов в буферной смеси практически равна исходной концентрации соли без учета концентрации ацетат-ионов, образующихся в результате диссоциации кислоты: [СНзСОО] = сс. Это уравнение называют уравнением буферного раствора (уравнением Гендерсона Гассельбаха). Его анализ для буферного раствора, образованного слабой кислотой и ее солью, показывает, что концентрация водородных ионов в буферном растворе определяется константой диссоциации слабой кислоты и соотношением концентраций кислоты и соли.
57. Понятие о кислотно-щелочном состоянии крови.
Величина рН крови зависит от концентраций свободной растворенной в крови Н2СОз и кислоты, связанной в гидрокарбонат-ион. Концентрацию углекислоты, растворенной в крови, можно найти по формуле [СО2своб] = s p CO2 где Рсо2 - парциальное давление углекислого газа в воздухе, находящемся в равновесии с кровью; s - коэффициент растворимости углекислого газа в крови. Для определения суммарной концентрации СО2 в крови к ней добавляют сильную кислоту и измеряют объем выделяюще-
гося газа. Таким образом, пользуясь газоаналитическим методом определения гидрокарбонат-иона и СО2, можно вычислить величину рН плазмы. Из уравнения Гендерсона-Гассельбаха нетрудно рассчитать соотношение гидрокарбонат-иона и угольной кислоты в крови при, рН = 7.4. Оно равно 20:1. Избыток гидрокарбоната обеспечивает так называемый щелочной резерв крови. При поступлении в кровь кислот гидрокарбонат нейтрализует их, а избыток СО2 выводится через легкие, вызывая увеличение легочной
61. Кислотно-основное титрование. Кривые титрования. Точка эквивалентности. Выбор индикатора. Применение в медицине.
Титриметрические методы анализа широко применяются в медицине в биохимических лабораториях для анализов крови, мочи и других биологических жидкостей. В клинической практике находит широкое применение кислотно-основной метод анализа желудочного сока. Этот метод играет существенную роль в диагностике и лечении многих заболеваний желудочно-кишечного тракта. Реакция желудочного сока резко кислая, обусловлена наличием соляной кислоты, кисло-реагирующих однозамещенных фосфатов, а при патологических условиях - присутствием молочной кислоты и летучих жирных кислот. При определении кислотности желудочного сока различают общую кислотность, общую соляную кислоту, свободную и связанную соляную кислоту. Исследование химического состава мочи также имеет большое клиническое значение, так как изменения химических процессов в организме приводит к изменению как количественного, так и качественного состава мочи, к появления в некоторых случаях ряда химических веществ, которые в норме с мочой, не выделяются. Кислотно-основное титрование основано на применении реакций нейтрализации. Основным уравнением процесса нейтрализации в водных растворах является взаимодействие ионов гидроксония (или водорода) с ионами гидроксида, сопровождающееся образованием слабодиссоцированных молекул воды: Н3О++ОН=2Н2ОилиН++ОН=Н2О Методы нейтрализации позволяют количественно определять кислоты (с помощью титрованных растворов щелочей), основания (с помощью титрованных растворов кислот) и другие вещества, реагирующие в стехиометрических соотношениях с кислотами и основаниями в водных растворах. Точку эквивалентности устанавливают кислотно-основными индикаторами. Изменение окраски индикатора должно быть обратимым. Это означает, что они способны менять свою окраску практически любое число раз по мере изменения рН в зависимости от кислой или щелочной реакции среды. Индикаторы, применяемые в методе нейтрализации представляют собой органические вещества: это слабые электролиты, обладающие кислыми и основными свойствами. Окраска кислотно-основных индикаторов зависит от рН раствора. Так как Кинд является величиной постоянной, то прибавление в раствор кислоты ведет к увеличению [Н+] и [Нlng] и уменьшению [lnd-] т.е. к усилению окраски, свойственной молекулярной форме индикатора. Прибавление в раствор щелочи вызывает обратное действие - усиление окраски, свойственной ионной форме индикатора. Кривые титрования дают возможность проследить изменение рН раствора в различные моменты титрования, изучить влияние температуры и концентрации реагирующих веществ на процесс нейтрализации, установить конец титрования и сделать правильный выбор индикатора. Концентрация ионов водорода в предельно разбавленных водных растворах сильных кислот (НС1, Н>Ю3 и др.) практически равняется концентрации этих кислот. Точку эквивалентности устанавливают различными способами, например, по изменению окраски индикатора, прибавляемого в титруемый раствор. Момент, при котором происходят наблюдаемое изменение цвета индикатора, называют конечной точкой титрования.
58. Гидролиз солей. Степень гидролиза в биологических процессах.
Гидролизом называется процесс взаимодействия ионов соли Е ионами воды. Гидролиз солей является процессом, обратным иейтрализации. Рассмотрим три наиболее типичных случая реакции гидролиз! солей: 1. При гидролизе солей, образованных слабой кислотой и сильным основанием, получаются слабые кислоты и сильные основания, и реакция среды становится щелочной. Из уравнения видно, что ацетатный ион (СН3СОО~) может присоединять протон воды, образовывать уксусную кислоту и свободный ион гидроксила, а ион Nа+ не принимает участия в реакции гидролиза. Учитывая сказанное, реакцию гидролиза солей слабой кислоты и сильного основания можно написать: СН3COO- + H2O CH3 COOH+OH-- . Таким образом, ацетат натрия в водном растворе проявляет себя как слабое основание, и реакция среды становится щелочной. Отсюда следует, что чем меньше будет константа диссоциации кислоты, из которой образована соль, тем выше будет концентрация ионов ОН~ в растворе. 2. При гидролизе солей, образованных слабыми основаниями и сильными кислотами, возникают слабые основания и сильные кислоты, и реакция среды смещается в кислую сторону.
62. Реакция осаждения и растворения. Производные растворимости. Аргентометрия. Применение в медицине.
Количественно растворимость различных веществ выражается концентрацией насыщенных растворов. Растворимость данного вещества равна его молярной концентрации в насыщенном растворе в моль/л. Растворимость часто выражают и в граммах растворенного вещества на 100 г растворителя. Растворимость вещества зависит от природы растворяемого вещества, т.е. от его сродства к растворителю, температуры, концентрации ионов в растворе. При растворении большинства солей в воде в раствор переходят не молекулы, а ионы. Поэтому в водном насыщенном растворе сильного малорастворимого электролита между твердой фазой (осадком) и ионами этого электролита в водной фазе. Устанавливается динамическое гетерогенное равновесие. Рассмотрим гетерогенное равновесие между кристаллическим осадком малорастворимой соли АgС1 и его водным раствором, содержащим ионы Аg+ и Сl-. При введении в воду соли в количестве, большем, чем это необходимо для получения насыщенного раствора будет иметь место равновесие между твердой фазой и ионами соли в растворе. В насыщенном растворе соли произведение концентрации ее ионов в степенях, равных стехиометрическим коэффициентам, есть величина постоянная при данной температуре, называемая произведением растворимости (ПР) Смещение ионных гетерогенных равновесий происходит в соответствии с принципом Ле Шателье, а именно, изменение концентрации одноименных (то есть входящих в состав соли) ионов вызывает изменение растворимости электролита, поскольку произведение растворимости - величина постоянная. Из этой закономерности вытекают следствия. а) Выпадение осадка. Осадок малорастворимого электролита выпадает из пересыщенного раствора. Выпадение осадка продолжается до тех пор, пока раствор не станет насыщенным. б) Растворение осадка. Осадок малорастворимого электролита будет растворяться в том случае, если раствор над ним станет ненасыщенным. Реакции осаждения широко применяют в клиническом, гигиеническом и фармацевтическом анализе. С их помощью определяют содержание хлорид-иона в плазме, моче и желудочном соке, анализируют токсичные ионы и др. Аргентометрия - метод объемного анализа основанный на применении стандартного раствора нитрата серебра. Различают несколько методов аргентометрии: метод просветления, метод Мора, метод Фольгарда, метод Фаянса. Метод Мора, основанный на реакции, протекающей между Аg+ и Сl и выполняемый в присутствии индикатора-раствора хромата калия. Метод Фольгарда, основанный на реакции, протекающей между Аg+ SCN- и выполняемой в присутствии индикатора - ионов железа (III).
63. Окислительно-восстановительные реакции. Роль окислительно-восстановительных процессов в организме. Окислительно-восстановительный потенциал. Уравнение Нернста.
С окислительно-восстановительными реакциями связаны дыхание и обмен веществ, гниение и брожение, фотосинтез и нервная деятельность живых организмов. Окислительно-восстановительные процессы лежат в основе горения топлива, коррозии металлов, электролиза, металлургии и т.д. Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислително- восстановительными. Процессы окисления и восстановления протекают одновременно: если один элемент, участвующий в реакции, окисляется, то другой должен восстанавливаться. Окислитель - это вещество, содержащее элемент, который принимает электроны и понижает степень окисления. Окислитель в результате реакции восстанавливается. Так, в реакции 2Fe+3 Cl3 + 2K+I- -> I2 0 + 2Fe+2 Cl2- + 2K+ Cl- . Восстановитель - вещество, содержащее элемент, который отдает электроны и повышает степень окисления. Восстановитель в результате реакции окисляется. Восстановителем в предлагаемой реакции является ион I - . Источником электрической энергии в элементе служит химическая реакция вытеснения меди цинком: Zn + Cu2+ + Cu. Работа окисления цинка, равная убыли изобарно-изотермического потенциала, может быть представлена как произведение переносимого электричества на величину э. д. с.: A=--дG0=п EF, где п- заряд катиона; Е з. д. с. элемента и F- число Фарадея. С другой стороны, по уравнению изотермы реакции. Окислительно-восстановительные потенциалы имеют большое значение в физиологии человека и животных. К числу редок-сисистем относятся такие системы в крови и тканях, как гем/гематии и цитохромы, в которых содержится двух- и трехвалентное железо; аскорбиновая кислота (витамин С), находящаяся в окисленной и восстановленной формах; система глутатиона, цистин-цистеина янтарной и фумаровой кислот и др.Важнейший процесс биологического окисления, а именно перенос электронов и протонов с окисляемого субстрата на кислород осуществляемый в тканях при помощи строго определенного рядя промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звене этой цепи соответствует той или иной редокс-системе, характерезующейся определенным редокс-потенциалом.
65. Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.
Различные процессы жизнедеятельности сопровождаются возникновением в организме электрохимических процессов, играющих существенную роль в обмене веществ. Электрохимические превращения в организме можно разделить на две основные группы: процессы, связанные с переносом электронов и возникновением окислительно-восстановительных потенциалов; процессы, связанные с переносом ионов (без изменения их зарядов) и с образованием биоэлектрических потенциалов. В результате этих процессов возникают разности потенциалов между разными прослойками тканей, находящихся в различных физиологических состояниях. Они связаны с различной интенсивностью окислительно-восстановительных биохимических процессов. К ним относятся, например, потенциалы фотосинтеза, возникающие между освещенными н неосвещенными участками листа, причем освещенный участок оказывается положительно заряженным по отношению к неосвещенному. Окислительно-восстановительные процессы первой группы в организме можно разделить на три типа: 1.Непосредственный перенос электронов между веществами без участия атомов кислорода и водорода, например, перенос электрона в цитохромах: цитохром (Fе 3+) + е -> цитохром (Ре2+) и перенос электрона в ферменте цитохромоксидазе: цитохромоксидаза (Си2+) + е -> цитохромоксидаза (Си1+). 2. Окислительный, связанный с участием атомов кислорода и ферментов оксидаз, например, окисление альдегидной группы субстрата в кислотную: RСОН + O RСООН. 3.рН-Зависимый, происходящий в присутствии ферментов дегидрогеназ (Е) и коферментов (Ко), которые образуют активированный комплекс фермент-кофермент-субстрат (Е-Ко-5), присоединяет электроны и катионы водорода от субстрата и вызывает его окисление.Такими коферментами являются никотинамид-аденин-нуклеотид (НАД+), который присоединяет два электрона и один протон: S-2Н - 2е + НАД* S + НАДН + Н+, флавин-аденин-динуклеотид (ФАД), который присоединяет два электрона и два протона: S - 2Н - 2е + ФАД S + ФАДН2, и убихинон или кофермент Q (КоО), который также присоединяет два электрона и два протона: S-2Н - 2е + КоQ S + КоQН2.
66. Оксидометрия, иодометрия, перманганатометрия. Применение в медицине.
В зависимости от применяемых титрантов различают несколько видов окислительно-восстановительного титрования: перманганатометрическое, иодиметрическое, бихроматометрическое и другие. Перманганатометрическое титрование основано на взаимодействии стандартного раствора перманганата калия с раствором восстановителя. Окисление перманганатом калия можно проводить в кислой, щелочной и нейтральная среде, причем продукты восстановления КМпО.в разных средах различны. Перманганатометрическое титрование рекомендуется проводить в кислой среде. Во-первых, в результате реакции образуются бесцветные ионы Мп2+ и одна избыточная капля титранта КМпО4 окрасит титруемый раствор в розовый цвет. При окислении в нейтральной или щелочной среде выпадает темно-бурый осадок, или образуются ионы МпО2-4 темно-зеленого цвета, затрудняющие фиксирование точки эквивалентности. Во-вторых, окислительная способность перманганата калия в кислой среде на много больше (Е° MnO4 / Мп2+ = + 1,507в), чем в щелочной и нейтральной среде. Стандартный окислительный потенциал пары Е} /2Г - составляет 0,54 В. Поэтому вещества, окислительный потенциал которых ниже этой величины, будут являться восстановителями. И, следовательно, будут направлять реакцию слева направо, "поглощая" иод. К таким веществам относятся, например, На28зОз, хлорид олова (II) и др. Вещества, окислительный потенциал которых выше 0,54 В, будут окислителями по отношению к иону будут направлять реакцию в сторону выделения свободного иода: 2I+2ё=I2. Количество выделяющегося свободного йода определяют титрованием его растворов тиосульфата Na2S2O3: I+2ё-> 2I- Тиосульфит натрия поглощает свободный йод, сдвигая равновесие реакции вправо. Для протекания реакции слева направо нужен избыток свободного йода. Обычно проводят обратное титрование. К восстановителю, который определяют, прибавляют сразу избыток титрованного раствора йода. Часть его вступает в реакцию с восстановителем, а остаток определяют титрованием раствором тиосульфата натрия.
67. Квантово механическая модель атома.
Квантовая (или волновая) механика основывается на том, что любые материальные частицы одновременно обладают и волновыми свойствами. Впервые это было предсказано Л. де Бройлем, который в 1924 г. теоретически показал, что частица с массой т и скоростью v может быть ассоциирована с волновым движением, длина волны которого X определяется выражением: Л = h / m v, где h (постоянная Планка) = 6.6256-10-27 эрг-с = 6.6256-1034 Дж-с. Вскоре это предположение было подтверждено явлениями дифракции электронов и интерференции двух пучков электронов. Двойственная природа элементарных частиц (корпускулярно-волновой дуализм) - частное проявление общего свойства материи, однако ожидать его следует только для микрообъектов. Волновые свойства микрочастиц выражаются в ограниченной применимости к ним таких понятий, которыми характеризуется макрочастица в классической механике, как координата (х, у, г) и импульс (р = т • v).Для микрочастиц всегда имеются неопределенности в координате и импульсе, связанные соотношением Гейзенберга: д х д px > = h, где д х - неопределенность координаты, а д рх - неопределенность импульса. Согласно принципу неопределенности, движение микрочастицы невозможно описать определенной траекторией и нельзя представить движение электрона в атоме в виде движения по конкретной круговой или эллиптической орбите, как это было принято в модели Бора. Описание движения электрона может быть дано при помощи \ волн де Бройля. Волна, отвечающая микрочастице, описывается волновой функцией у (х, у, г). Физический смысл имеет не сама ; волновая функция, а только произведение квадрата ее модуля на элементарный объем |у|2-dу, равное вероятности нахождения электрона в элементарном объеме dv = dx -dу- dz. Волновое уравнение Шредингера - это математическая модель атома. Она отражает единство корпускулярных и волновых свойств электрона. Не вдаваясь в анализ уравнения Шредингера.
68. Электронное облако орбиталь.
Представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции. Энергия электрона в атоме зависит от главного квантового числа п. В атоме водорода энергия электрона полностью определяется значением п. Однако в многоэлектронных атомах энергия электрона зависит и от значения орбитального квантового числа. Поэтому состояния электрона, характеризующиеся различными значениями, принято называть энергетическими подуровнями электрона в атоме. В соответствии с этими обозначениями говорят об s - подуровне, р-подуровие и т. д. Электроны, характеризующиеся значениями побочного квантового числа О, 1, 2 и 3, называют, соответственно, s-электроиами, p -электронами, d - электронами и f - электронами. При данном значении главного квантового числа п наименьшей энергией обладают s -электроны, затем р-, d- и f-электроны. Состояние электрона в атоме, отвечающее определенным значениям п и l, записывается следующим образом: сначала цифрой указывается значение главного квантового числа, а затем буквой -- орбитального квантового числа. Так, обозначение 2р относится к электрону, у которого п = 2 и l = 1, обозначение 3d к электрону, у которого п = 3 и l == 2. Электронное облако не имеет резко очерченных в пространстве границ. Поэтому понятие о его размерах и форме требует уточнения.
69. Характеристика электрического состояния электрона системой квантовых чисел: главное, орбитальное, магнитное и спиновое квантовые числа.
В одномерной модели атома энергия электрона может принимать только определенные значения, иначе говоря она квантована. Энергия электрона в реальном атоме также величина квантованная. Возможные энергетические состояния электрона в атоме определяются величиной главного квантового числа п, которое может принимать положительные целочисленные значения: 1, 2, 3... и т. д. Наименьшей энергией электрон обладает при п = 1; с увеличением п. энергия электрона возрастает. Поэтому состояние электрона, характеризующееся определенные значением главного квантового числа, принято называть энергетическим уровнем электрона в атоме: при n = 1 электрон находится на первом энергетическом уровне, при n = 2 на втором и т. д. Главное квантовое число определяет и размеры электронного облака. Для того чтобы увеличить размеры электронного облака, нужно часть его удалить на большее расстояние от ядра. Произвольной не может быть и форма электронного облака. Она определяется орбитальным квантовым числом (его называют также побочным или азимутальным), которое может принимать целочисленные значения от 0 до (п 1), где п главное квантовое число. Различным значениям п отвечает разное число возможных значений . Так, при я = 1 возможно только одно значение; орбитального квантового числа • нуль (/ = 0), при п= 2 l может быть равным 0 или 1, при я = 3 возможны значения /, равные О, 1 и 2; вообще, данному значению главного квантового числа п соответствуют п различных возможных значений орбитального квантового числа. Из уравнения Шредингера следует, что, и ориентация электронного облака в пространстве не может быть произвольной: она определяется значением третьего, так называемого магнитного квантового числа т.п. Магнитное квантовое число может принимать любые целочисленные значения, как положительные, так и отрицательные, в пределах от + L до - L. Таким образом, для разных значений число возможных значений m различно. Так, для s-электронов (l= 0} возможно только одно значение т (m- 0); для p-электронов (L=1) возможны три различных значения т. Помимо квантовых чисел п, I и т, электрон характеризуется еще одной квантованной величиной, не связанной с. движением электрона вокруг ядра, а определяющей его собственное состояние. Эта величина получила название спинового квантового числа или просто спина; спин обычно обозначают буквой S. Спин электрона может иметь только два значения. Таким образом, как и в случае остальных квантовых чисел, возможные значения спинового квантового числа различаются на единицу.
72. Метод валентных связей. Механизм образования валентных связей.
Образование химической связи между атомами водорода является результатом взаимопроникновения электронных облаков, происходящего при сближении взаимодействующих атомов. Вследствие такого взаимопроникновения плотность отрицательного электрического заряда в межъядерном пространстве возрастает. Положительно заряженные ядра атомов притягиваются к области перекрывания электронных облаков. Это притяжение преобладает над взаимным отталкиванием одноименно заряженных электронов, так что в результате образуется устойчивая молекула. Химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Волнистые линии на схеме показывают, что в молекуле водорода каждый электрон занимает место в квантовых ячейках обоих атомов, т. е. движется в силовом поле, образованном двумя силовыми центрами ядрами атомов водорода. Такая двух электронная двух центровая связь называется ковалентной связью Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. В основе метода ВС лежат следующие положения: 1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.
70. Принцип Паули. Правило Хунда. Основное и возбужденное состояние атома.
Для определения состояния электрона в многоэлектронном атоме важное значение имеет сформулированное В. Паули положение (принцип Паули), согласно которому в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми. Из этого следует, что каждая атомная орбиталь, характеризующаяся определенными значениями n, l и т, может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Два таких электрона, находящиеся на одной орбитали и обладающие противоположно направленными спинами, называются спаренн ы м и, в отличие от одиночного (т. е. н е с п а р е и н о г о) электрона, занимающего какую-либо орбиталь. Пользуясь принципом Паули, подсчитаем, какое максимальное число электронов может находиться на различных энергетических уровнях и подуровнях в атоме. При L = 0, т. е. на s-подуровне, магнитное квантовое число тоже равно нулю. Следовательно, на 5-подуровне имеется всего одна орбиталь, которую принято условно обозначать в виде клетки («квантовая ячейка»); П. Как указывалось выше, на каждой атомной орбитали размещается не более двух электронов, спины которых противоположно направлены. Максимальное число электронов на S-подуровне каждого электронного слоя равно 2. При L = 1 (р-подуровень) возможны уже три различных значения магнитного квантового числа (1, 0, + 1) Следовательно, на р-подуровне имеется три орбитали, каждая из которых может быть занята не более чем двумя электронами. Всего на р-подуровне может разместиться 6 электронов Подуровень с! (1 = 2) состоит из пяти орбиталей, соответствующих пяти разным значениям т; здесь максимальное число электронов равно 10. Наконец, на f-подуровне (/ = 3) может размещаться 14 электронов; вообще, максимальное число электронов на подуровне с орбитальным квантовым числом / равно 2(2/ + 1). Анализ атомного спектра углерода показывает, что для невозбужденного атома углерода правильна именно последняя схема, соответствующая наибольшему возможному значению суммарного спина атома (так называется сумма спинов всех входящих в состав атома электронов; для схем атома углерода (1) и (2) эта сумма равна нулю, а для схемы (3) равна единице. Такой порядок размещения электронов в атоме углерода представляет собой частный случай общей закономерности, выражаемой правилом Хунда; устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарного спина атома максимально. Отметим, что правило Хунда не запрещает другого распределения электронов в пределах подуровня. Оно лишь утверждает, что максимальное значение суммарного спина атома соответствует устойчивому, т. е. невозбужденному состоянию, в котором атом обладает наименьшей возможной энергией; при любом другом распределении электронов энергия атома будет иметь большее значение, так что он будет находиться в возбужденном, неустойчивом состоянии. Пользуясь правилом Хунда, нетрудно составить схему электронного строения для атома следующего за углеродом элемента азота (Z = 7)
73.Виды связей. Кратность связи.
В молекуле водорода перекрывание атомных S-электронных облаков происходит вблизи прямой, соединяющей ядра взаимодействующих атомов. Образованная подобным образом ковалентная связь называется b cвязыо (сигма-связъ). В образовании b-связи могут принимать участие и р - электронные облака, ориентированные вдоль оси связи. Так, в молекуле НР (рис. 32) ковалентная b-связь возникает вследствие перекрывания 1S-электронного облака атома водорода и 2p-электронного облака атома фтора. Химическая связь в молекуле F2 тоже b - связь; она образована 2р-электронными облаками двух атомов фтора. При взаимодействии р-электронных облаков, ориентированных перпендикулярно оси связи, образуется не одна, а две области перекрывания, расположенные по обе стороны от этой оси. Такая ковалентная связь называется л - связью (пи-связь). Рассмотрим образование молекулы азота N2. Каждый атом азота обладает тремя неспаренными 2р-электронами, электронные облака которых ориентированы в трех взаимно перпендикулярных направлениях.
74. Насыщенность, направленность и длина связи.
Атомы обладают разнообразными возможностями для образования ковалентных связей. Последние могут создаваться и за счет неспаренных электронов невозбужденного атома, и за счет неспаренных электронов, появляющихся в результате возбуждения атома («распаривания» электронных пар), и, наконец, по донорно - акцептор ному способу. Тем не менее, общее число ковалентных связей, которые способен образовать данный атом, ограничено. Оно определяется общим числом валентных орбиталей. Атомы элементов третьего и последующих периодов могут использовать для образования ковалентных связей не только S- и р-, по также и d-орбитали. Известны соединения d -элементов, в которых в образовании ковалентных связей участвуют S- и р-орбитали внешнего электронного слоя и все пять d -орбиталей предшествующего слоя; в подобных случаях ковалентность соответствующего элемента достигает девяти. Способность атомов участвовать в образовании ограниченного числа ковалентных связей получила название насыщаемости ковалептной связи. Свойства молекулы, ее способность вступать в химическое взаимодействие с другими молекулами (реакционная способность) зависят не только от прочности химических связей в молекуле. Образование ковалентной связи является результатом перекрывания валентных электронных облаков взаимодействующих атомов. Но такое перекрывание возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Иначе говоря, ковалентная связь обладает направленностью.Под длиной связи понимается равновесное расстояние между ядрами двух связанных атомов. Эта величина определяется методом дифракции электронов или рентгеновских лучей и находится обычно в интервале 1-2 А (1 ангстрем = 10'8 см). Энергия связи - это количество энергии, необходимое для ее разрыва.
75. Понятие о гибридизации атомных орбиталей. Геометрия молекул.
Метод гибридизации атомных орбиталей исходит из предположения, что при образовании молекулы вместо исходных атомных S-, р~ и d-электронных облаков образуются такие равноценные «смешанные» или гибридные электронные облака, которые вытянуты по направлению к соседним атомам, благодаря чему достигается их более полное перекрывание с электронными облаками этих атомов. Такая деформация электронных облаков требует затраты энергии. Но более полное перекрывание валентных электронных облаков приводит к образованию более прочной химической связи и, следовательно, к дополнительному выигрышу энергии. Если этот выигрыш энергии достаточен, чтобы с избытком скомпенсировать затраты энергии на деформацию исходных атомных электронных облаков, такая гибридизация приводит, в конечном счете, к уменьшению потенциальной энергии образующейся молекулы и, следовательно, к повышению ее устойчивости. Рассмотрим в качестве примера гибридизации образование молекулы фторида бериллия ВеF2. Каждый атом фтора, входящий в состав этой молекулы, обладает одним неспаренным электроном который и участвует в образовании ковалентной связи. Атом бериллия в невозбужденном состоянии (1S22S2) неспаренных электронов не имеет.S- и р-орбиталей атома бериллия могут образоваться две равноценные гибридные орбита ли (Sр-орбитали). Форма и расположение этих орбиталей, из которых видно, что гибридные Sр-орбитали вытянуты в противоположных направлениях. Перекрывание гибридных. Благодаря вытянутой форме гибридных орбиталей достигается более полное перекрывание взаимодействующих электронных облаков, а значит, образуются более прочные химические связи. Рассмотренный случай гибридизации одной S- и одной р-орбитали, приводящий к образованию двух Sр-орбиталей, называется Sр гибридизацией. Как показывает рис. 39, 5р-орби-тали ориентированы в противоположных направлениях, что приводит к линейному строению молекулы. Действительно, молекула ВеР2 линейна, а обе связи Ве Р в этой молекуле во всех отношениях равноценны.
76. Ионная связь как предельно поляризованная ковалентная связь.
Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Ма+, К+, анионы F-, С1~) или сложными, т. е. состоящими из двух или более атомов (например катион NH4+, анионы ОН-, NO3-, SO42-). Простые ионы обладающие положительным зарядом, легче всего образуются из атомов элементов с низким потенциалом ионизации; к таким элементам относятся металлы главных подгрупп I и II группы. Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, NаС1, СзF и т. п. В отличие от ковалентной связи, ионная связь не обладает направленностью. Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать надпилами взаимного отталкивания, действующими между ионами одного знака. Отсутствие у ионной связи направленности и насыщаемости обусловливает склонность ионных молекул к ассоциации, т. е. к соединению их друг, с другом.
77. Метод молекулярных орбиталей. Связывающие и разрыхляющие орбитали.
В методе молекулярных орбиталей (МО) к рассмотрению электронной структуры молекулы подходят так же, как и к многоэлектронному атому. Логичность использования одной физической модели вытекает из одинаковой природы электронов в атомах и молекулах, а также их взаимодействий с ядрами и между собой. Основные принципы метода МО: 1.Молекула рассматривается как совокупность ядер и электронов, где каждый электрон движется в поле остальных электронов и всех ядер. 2.Состояние электрона описывается волновой функцией, характеризуемой определенным набором квантовых чисел. Эта функция называется молекулярной орбиталью (МО). В отличие от одноцентровой атомной орбитали (АО - электрон в поле одного ядра) молекулярная орбиталь в общем случае многоцентровая. Как и для электрона в атоме, квадрат модуля волновой функции определяет плотность вероятности нахождения электрона или плотность электронного облака. 3. Каждой МО соответствует определенная энергия Е. 4. Совокупность МО молекулы, занятых электронами, называется электронной конфигурацией молекулы. Она строится на основе фундаментальных положений - принципа наименьшей энергии (электрон занимает в молекуле свободную орбиталь с наименьшей энергией), принципа Паули (на одной МО не может находиться более двух электронов, при этом спины их должны быть антипараллельны) и правила Хунда. Следовательно, для описания электронной конфигурации молекулы с 2п электронами требуется п молекулярных орбиталей. Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т. е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей, а находящиеся на ней электроны разрыхляющими электронам и.
78. Водородная связь. Молекулярная и внутри молекулярная водородная связь.
Если атом водорода связан ковалентной связью с каким-либо электроотрицательным элементом, то он может одновременно притягиваться к другому атому, имеющему высокую электронную плотность. Энергия такого притяжения составляет 4-40 кДж/моль, т.е. на порядок меньше энергии ковалентной связи. Связь, возникающая в итоге, получила название, водородной (Н-связь). Атом водорода имеет очень малый размер и частичный положи тельный заряд из-за связи с электроотрицательным атомом. Водородная связь образуется вследствие.внедрения атома водорода в электронную оболочку атома с высокой электроотрицательностью и обычно имеющего неподеленную электронную пару. В качестве таких атомов могут выступать фтор, кислород, азот и, в меньшей степени, хлор и сера Небольшая энергия водородных связей приводит к тому, что они легко возникают и разрушаются. Длина водородной связи заметно превосходит длину ковалентной связи. Так, например, если длина ковалентной связи О-Н составляет 0.97 А, то водородная связь О-Н в воде имеет длину 1.75 А. Чтобы подчеркнуть отличие водородной связи от ковалентной, ее обозначают тремя точками. Водородная связь широко распространена и играет важную роль при ассоциации молекул, в процессах растворения и диссоциации, образования кристаллогидратов и многих других. Образование водородной связи может существенно изменить физические свойства вещества (теплоты плавления и испарения, температуры кипения, вязкость, твердость и др.). Так, например, аномально высокие точки кипения НР, NНз и Н2O объясняются ассоциацией этих молекул в агрегаты за счет водородных связей. Наряду с межмолекулярной водородной связью существует также и внутримолекулярная водородная связь. Образование последней возможно при одновременном наличии в одной молекуле электроноакцепторной группы Х-Н и электронодонорного атома У, причем расстояние между атомами Н и У не должно превышать обычной длины водородной связи (1.6-2.0 А). Примером может служить биомолекула салициловой кислоты. Устойчивости такой связи благоприятствует образование шес-тичленного цикла, в котором нет деформации валентных углов. Следует отметить, что только замыкание пяти- или шестичленных циклов удовлетворяет стерическим требованиям возникновения водородной связи.
79. Комплексные соединения. Координационная теория Вернера.
Любое взаимодействие между атомами, ионами, молекулами, ионами и молекулами и т.д. сопровождается определенным пространственным расположением частиц относительно друг друга или координацией. Простейшим примером является образование гидратной оболочки у катионов металлов при растворении соли в воде. При взаимодействии СоСl3 с аммиаком образуются оранжевые кристаллы, соответствующие составу СоСl 6 NНз- Это указывает на образование прочной связи иона Со + с молекулами аммиака. В обоих случаях мы имеем дело с комплексообразованием. Комплексные соединения представляют собой наиболее обширный и разнообразный класс химических соединений, а поскольку в их состав могут входить как неорганические, так и органические молекулы или ионы, то комплексные соединения связывают воедино неорганическую и органическую химию. Для объяснения строениями свойств комплексных соединений Вернер выдвинул идею о координации, т.е. о пространственном окружении иона металла анионами или нейтральными молекулами. Координационная теория легла в основу современных представлений о комплексных соединениях.
80. Центральный атом, лиганды, координационное число центрального атома.
Химия комплексных (координационных) соединений изучает ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов. Центральная частица (комплексообразователь) и непосредственно связанные с ней лиганды образуют внутреннюю (координационную) сферу комплексного соединения, а число этих лигандов называется координационным числом. Ионы, находящиеся за пределами координационной сферы, образуют внешнюю сферу комплексного соединения. В формулах внутреннюю сферу комплексного соединения заключают в квадратные скобки. В подавляющем большинстве комплексных соединений в качестве комплексообразователя выступают ионы переходных металлов, хотя известны комплексные соединения практически для всех элементов. Наиболее важной характеристикой центрального атома является его степень окисления, определяемая для комплексов как разность между зарядом комплексной частицы и суммарным зарядом лигандов. Например, ион [Со(NНз)3]3+ относят к производным Со3+, приписывая NН3 нулевой заряд как нейтральной молекуле, а ион [Со(SСN)4]2- - к производным Со2+, приписывая группе SСN- заряд-1, как в роданидах щелочных металлов. В качестве лигандов выступают молекулы или ионы, содержащие донорные атомы, способные отдавать комплексообразователю неподеленную электронную пару. Наиболее распространенными до-норными атомами являются N, Р, О, галогены. Число донорных атомов в лиганде может быть различным и оно определяет его координационную емкость или дентатность. Монодентатные лиганды используют в качестве донорного один атом и следовательно, могут занимать только одно координационное место у центрального атома. Монодентатными лигандами являются ионы СL, Р~, ОН~, молекулы NНз, Н2О, СО и др. К бидентатным относятся многие органические молекулы, например, этилендиамин, диметилглиоксим, дианион щавелевой кислоты и т.д.
82. Внутрикомплексные соединения. (хелаты).
Полидентатные лиганды, занимая в координационной сфере два и более места, образуют циклические комплексы, которые называют также хелатными; это очень важный в биологическом отношении класс комплексных соединений. К ним относится гемоглобин, хлорофилл, витамин В12 и многие металлоферменты. Образование циклического комплекса можно рассмотреть на простейшем примере глицината меди. Известно, что осадок Си(ОН)2 легко растворяется в аминоуксусной кислоте - глицине. При этом каждая из двух молекул глицина, участвуя в этом процессе, использует обе функциональные группировки, а именно, аминогруппа связывается с атомом меди по донорно-акцепторному механизму, а карбоксильная - через кислород обычной ковалентной связью. Центральный атом оказывается, как бы втянутым внутрь лиганда и охвачен связями наподобие клешней рака. Отсюда и происходит название - хелатные (от сНе1а1е - клешня). Высокая прочность хелатных комплексов обусловила широкое применение полидентатных лигандов (или комплексонов) в аналитической химии, токсикологии, гигиене и т.д. Строение и устойчивость хелатных комплексов зависят от величины и характера цикла. Циклы, содержащие чередующиеся простые и двойные связи (сопряженные), обычно плоские, а несопряженные связи дают неплоские структуры. Наиболее стабильны пяти- и шестичленные циклы (правило Чугаева). Основную роль в хелатообразовании играют стереохимические особенности лиганда, а не центрального атома. Разные типы гибридизации комплексообразователя сравнительно мало отличаются по энергии. Поэтому может наблюдаться невыгодный способ гибридизации, 'если при этом возрастает устойчивость комплекса за счет увеличения числа связей между центральным атомом и лигандом. Так, например, в хлорофилле комплекс Мg2+ имеет не тетраэдрит ческую, а плоскоквадратную конфигурацию, обусловленную планарным строением порфиринового кольца.
83. Комплексоны и их применение в медицине.
Токсический эффект некоторых комплексов используется для создания противораковых и противомикробных препаратов. К примеру, издавна известно бактерицидное действие серебра, которое объясняется тем, что ничтожных концентраций иона серебра, которые появляются в воде при ее помещении в серебряную посуду, достаточно для угнетения активности тиолсодержащих ферментов микроорганизмов. Известны лекарственные средства и среди комплексов других металлов (например, соединения цинка уже давно применяются в, дерматологии как противомикробные средства). Растет интерес медиков к использованию комплексонов для поддержания металло-лигандного гомеостаза и выведения из организма ионов токсичных металлов. Увеличение уровня промышленного производства и связанное с ним загрязнение окружающей среды привело к резкому росту числа отравлений ионами тяжелых металлов - мышьяка, кадмия, ртути, свинца, стронция, бериллия, таллия. Для того, чтобы выполнять функцию антидотов при отравлении тяжелыми металлами, комплексоны должны отвечать ряду требований. Во-первых, они должны быть нетоксичными. Во-вторых, комплексоны не должны подвергаться разложению или какому-либо изменению в биологической среде. Их антидотное действие зависит от прочности образующегося металлокомплекса, что, в свою очередь, определяется величиной константы нестойкости соответствующих комплексов. Исходя из этой величины, можно установить степень химического сродства отдельных катионов к тем или иным комплексонам, а значит, предвидеть возможность избирательного связывания. Одновременно необходимо учитывать, что эффективность комплексонов в отношении токсичных металлов зависит не только от стабильности образуемого комплекса металл-хелат, но и от прочности связи извлекаемого металла с биокомплексами организма. Еще одна перспективная для медицины группа комплексонов принадлежит к семейству полициклических хелатирующих реагентов - криптандов, с которыми катионы металлов координируются таким образом, что ион оказывается "спрятанным" в циклической полости лиганда. Изображенный выше представитель криптандов высокоселективен по отношению к катиону стронция. Высокой степенью комплексообразования отличается также фитин - сложный органический препарат, представляющий собой смесь кальциевых и магниевых солей инозитфосфорных кислот. Его получают из конопляных жмыхов. Фитин полностью защищает животных, отравленных смертельными дозами свинца. Фитин - совершенно безвредный лечебный препарат, он может быть использован и при отравлении ионами других металлов. Комплексоны и их комплексы применяют при лечении различных металлоизбыточных и металлодефицитных состояний, связанных с заболеваниями, которые вызываются нарушениями обмена кальция, железа, меди и др. (рахит, психические заболевания, профилактика радиационных поражений и т.д.).
85.Реакция комплексообразования.
Природа химической связи в комплексных соединениях. Образование многих комплексных соединений можно в первом приближении объяснить электростатическим притяжением между центральным катионом металла и анионами или полярными молекулами лигандов. Наряду с силами притяжения действуют и силы электростатического отталкивания между одноименно заряженными (или, в случае полярных молекул, одинаково ориентированными) лигандами. В результате образуется наиболее устойчивая группировка атомов (ионов), обладающая минимальной потенциальной энергией. В настоящее время существует несколько подходов к квантово-механическому описанию строения комплексных соединений. Теория кристаллического поля основана на представлении об электростатической природе взаимодействия между центральным ионом и лигандами. Однако, в отличие от простой ионн(,,; теории, здесь учитывается различное пространственное расположение d-орбиталей и связанное с этим различное изменение энергии d -электронов центрального атома, вызываемое их отталкиванием от электронных облаков лигандов.
84. Номенклатура комплексных соединений.
К основным типам комплексных соединений относятся следующие: 1. Аммиакаты комплексы, в которых лигандами служат молекулы аммиака, например: [Си(NН3)4]SО4, [Со(NН3)6]С1з, [Рb(NН3)6]СL. Известны комплексы, аналогичные аммиакатам, в которых роль лиганда выполняют молекулы аминов: СН3ЫН2 (метиламин) , С2Н5 4Н2 (этиламин) , NН2СН2СН2NН2 (этилендиамин, условно обозначаемый Еn) и др. Такие комплексы называют аминатами. Аквакомплексы в которых лигандом выступает вода: [Со(H20)6]С12, [А1(Н20)6]С13, [Сг(Н2О)6]С13 и др. Находящиеся в водном растворе гидратированные катионы содержат в качестве центрального звена аквакомплекс. В кристаллическом состоянии некоторые из аквакомплексов удерживают и кристаллизационную воду, например: [Си(Н2О)4]8О4-Н2О, [Fе(Н2О)6]5О4-Н2О. Кристаллизационная вода не входит в состав внутренней сферы, она связана менее прочно, чем координированная, и легче отдается при нагревании. Ацидокомплексы. В этих комплексах лигандами являются анионы. К ним относятся комплексы типа двойных солей, например, К2 [PtCl], К4[Fе(СN)6] (их можно представить как продукт сочетания двух солей РtСL4-2КС1, Fе(СN)2-4КСN и т. д.), комплексные кислоты Н2[SiFб], Н2[СоС14], гидроксокомплексы Ма2[Sп(ОН)„], Ма2[Sп(ОН)6] и др. Между этими классами существуют переходные ряды, которые включают комплексы с различными лигандами. Приведем переходный ряд между аммиакатами и ацидокомплексами платины(П): [Рt(NН3)4]С12, [Рt(NН3)3С1]С1, [Рt(NH3)2С12], К [Рt(NH3)С13], К2 [РtС14]. Циклические, или хелатные (клешневидные), комплексные соединения. Они содержат би - ли полидентатный лиганд, который как бы захватывает центральный атом подобно клешням рака В этих комплексах символом М обозначен а стрелкой донорно-акцепторная связь. К группе хелатов относятся и внутрикомплексные соединения, в которых центральный атом входит в состав цикла, образуя ковалентные связи с лигандами разными способами: донорно-акцепторным и за счет неспаренных атомных электронов. Комплексы такого рода весьма характерны для аминокарбоновых кислот. Простейший их представитель аминоуксусная кислота (глицин)
NН2СН2СООН образует хелаты с ионами Си2+, Р12+, Rh3+
86. Ионные равновесия в растворах комплексных соединений.
87. Константа нестойкости и устойчивости комплексных ионов.
Частицы, находящиеся во внешней сфере, связаны с комплексным ионом преимущественно электростатическими силами и легко отщепляются в водном растворе. Эта диссоциация называется первичной, она протекает почти нацело, по типу диссоциации сильных электролитов. Лиганды, находящиеся по внутренней сфере, связаны с центральным атомом значительно прочнее и отщепляются лишь в небольшой степени. Обратимый распад внутренней сферы комплексного соединения носит название вторичной диссоциации. Например, диссоциацию комплекса [Аg(NН3)2]Сl Вторичная диссоциация характеризуется наличием равновесия" между комплексной частицей, центральным ионом и лигандами. В этом можно убедиться на основании следующих реакций. Если на раствор, содержащий комплексный ион [Аg(NН3)2]+, подействовать раствором какого-нибудь хлорида, то осадка не образуется,, хотя из растворов обычных солей серебра при добавлении хлоридов выделяется осадок хлорида серебра. Очевидно, концентрация ионов серебра в аммиачном растворе слишком мала, чтобы при. введении в него даже избытка хлорид-ионов можно было бы достигнуть величины произведения растворимости хлорида серебра (ПРд§С1 = 1,8-10~10). Однако после прибавления к раствору комплекса иодида калия выпадает осадок иодида серебра. Это доказывает, что ионы серебра все же имеются в растворе. Как ни мала их концентрация, но она оказывается достаточной для образования осадка, так как произведение растворимости иодида серебра АgI составляет только 1 • 10~16, т. е. значительно меньше, чем у хлорида серебра. Точно так же при. действии сероводорода получается осадок сульфида серебра Аg2 S. Диссоциация ионов [Ад(МН3)2]+> согласно приведенному выше уравнению, как и диссоциация всякого слабого электролита, подчиняется закону действия масс и может быть охарактеризована соответствующей константой равновесия, называемой константой нестойкости комплексного иона. Константы нестойкости для различных комплексных ионов весьма различны и могут служить мерой устойчивости комплекса. Константы нестойкости, в выражения которых входят концентрации ионов и молекул, называются «концентрационными». Более строгими и не зависящими от концентраций и ионной силы раствора являются константы нестойкости, содержащие вместо концентраций активности ионов и молекул. В разбавленных растворах эти два различных выражения констант нестойкости совпадают друг с другом. Из приведенной формулы видно, что чем меньше концентрация продуктов распада, т. е. чем устойчивее комплекс, тем меньше его константа нестойкости. В последнее время для характеристики устойчивости комплексных соединений предпочитают пользоваться величиной, Обратной константе нестойкости, называемой константой устойчивости. Для иона [Аg(NН3)2]+.
88. Вода и её физико-химические свойства. Значение воды для биосферы и жизненности организмов. Человек и биосфера.
Вода способна выполнять каталитические функции, на что уже давно обратили внимание. Например, сухой хлористый водород не реагирует с аммиаком и металлами. Металлический натрий не горит в сухом хлоре, а алюминий не взаимодействует с иодом, однако добавление воды вызывает бурную реакцию между ними. Таких примеров известно множество, и это позволяет считать воду самым универсальным катализатором. Далее, вода, с точки зрения кислотно-основных свойств, представляет собой истинный амфолит, так как содержит равное количество катионов водорода и гидроксильных анионов. Если о роли протона в химических реакциях уже было сказано, то здесь необходимо обратить внимание на значение аниона ОН-. Он выступает в качестве катализатора многих реакций в водных растворах, и в таком случае говорят о щелочном катализе. Вода вступает в химическое взаимодействие со многими простыми и сложными веществами. В частности, следует отметить ре-. акции гидролиза, идущие без изменения степеней окисления. Среди реакций гидролиза значимыми для биосистем являются гидролитические процессы с солями, входящими в состав биосред, а также гидролиз полипептидов, липидов, нуклеотидов. Обратимый гидролиз молекулы аденозинтрифосфата (АТФ) является ключевой реакцией биоэнергетики. Еще одно важное свойство воды - ее донорная активность, вырванная присутствием у атома кислорода неподеленных электронных пар. Это приводит к тому, что все катионы переходных металлов в том числе и биокатионы железа, меди, цинка и др., если они (не связаны с белками или другими органическими биомолекулами, биосредах представляют собой аквокомплексы. Окислительно-восстановительные превращения воды определяется двумя полуреакциями. О значении первой из них уже сказано, а вторая может проис-'ходить в тканях, если окислители будут обладать большей величиной редокс-потенциала, чем его значение для второй полуреакции Вода в биосредах находится частично в виде ассоциатов с неорганическими ионами и биомолекулами - белками, углеводами и др. Иными словами, все биомолекулы окружены гидратными оболочками. Такая вода называется связанной водой. Ее количество обычно составляет около 40%. Остальная вода представляет собой ассоциированную водородными связями подвижную структуру. При этом идет непрерывный обмен между молекулами связанной и свободной воды. При патологических процессах (воспалительных явлениях, образовании раковых клеток и др.) это соотношение меняется, а следовательно, должны меняться и физические свойства биосред.
102. Общая характеристика S элементов.
К жизненно необходимым макроэлементам относятся з-эле-менты первого (водород), третьего (натрий, магний) и четвертого (калий, кальций) периодов, а также р-элементы второго (углерод, азот, кислород) и третьего (фосфор, сера, хлор) периодов. Большинство остальных S- и р-элементов первых трех периодов (АL, Si, Ве и др.) физиологически активны. Расположенные в больших периодах S- и р-элементы редко выступают в качестве незаменимых. Исключение составляют s-элементы - калий, кальций, р-элемент - иод. К физиологически активным относят некоторые s- и р-злементы четвертого и пятого периодов, например, мышьяк, селен, бром. S-элементы первой группы склонны к образованию связей с атомом кислорода, все они находятся в растворе в виде гидратированных ионов Э+(Н2О)Х. Сходство лития с натрием обусловливает их взаимозамещаемость, причем, как правило, они являются синергистами. Рубидий и цезий по физико-химическим характеристикам ближе к калию, поэтому в организме они также могут замещать друг друга. S -Элементы второй группы входят в состав биомолекул, связываясь через атом кислорода с анионами фосфорной, угольной и карбоновых кислот.Магний в организме по преимуществу находится внутри клеток, где образует соединения с белками и нуклеиновыми кислотами, содержащие связи Мg-N и Мg-О. Сходство физико-химических характеристик ионов Ве2+ и Мg2+ обусловливает их взаимозамещаемость в таких соединениях. Это объясняет, в частности, ингибирование магнийсодержащих ферментов при попадании в организм бериллия, следовательно, бериллий - антагонист магния. Кальций, в основном находящийся в составе костной ткани, по своим свойствам близок к стронцию и барию, поэтому эти ионы могут замещать его в костях. При этом наблюдаются как случаи синергизма, так и антагонизма.
103. Общая характеристика p - элементов.
р-Элементы третьей группы в микроколичествах входят в состав биомолекул, связываясь с атомами кислорода или азота. Так, известен антибиотик борамицин, в котором реализуется донорно-акцепторное взаимодействие между атомами азота и бора. р-Элементы четвертой группы входят в состав биомолекул, связываясь с атомами разных элементов. Углерод в биомолекулах образует, полимерные цепи углерод-углерод и прочно соединяется с водородом, кислородом, азотом, серой, селеном и иодом. Прочие элементы этой группы (кремний, германий, олово, свинец) образуют предпочтительно связи с атомом кислорода, а свинец и с серой. Различие в прочностях перечисленных выше связей элементов этой группы обусловливает отсутствие аналогий в их физиологических функциях. Склонность свинца давать прочную связь с атомом серы определяет его токсическое действие. р-Элементы пятой группы также входят в состав биомолекул, образуя связи с атомами многих элементов. Для азота в биомолекулах характерны связи с углеродом и водородом. Фосфор связывается через кислород, мышьяк, сурьма и висмут - через кислород и серу. Это определяет малое сходство азота с фосфором, а также отличие этих элементов от мышьяка, сурьмы и висмута. Наоборот, склонность мышьяка, сурьмы и висмута к связыванию с серой белков определяет их токсичность и в целом - синергизм в поведении в живых системах. р-Элементы шестой группы образуют в биомолекулах связи с различными элементами. Однако сильноэлектроотрицательный кислород резко отличается по физико-химическим характеристикам от серы и селена, в то время как они сходны по свойствам и выступают в качестве синергистов. р-Элементы седьмой группы - бром и хлор обычно находятся в организме в виде гидратированных галогенид-ионов, а фтор и иод -в связанном состоянии. Фтор связывается с металлами в труднорастворимые соли (Са, Мg, Fе). По электроотрицательности и склонности к координации с биогенными элементами фтор резко отличается от других галогенов, поэтому он мало участвует в замещении ионов хлора, брома и иода. Три последних элемента близки по свойствам и могут замещать друг друга в организме. Йод с его невысокой электроотрицательностью в организме образует ковалентные соединения со связью С-l