Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
переводит присоединение к нему корепрессора триптофана. Активный trp-репрессор присоединяется к оператору, что приводит к невозможности построения мРНК на основе структурных генов оперона. В результате синтез белков-ферментов для синтеза триптофана становится невозможен. Таким образом, регуляция репрессируемых ферментов происходит при участии изначально неактивного репрессора, который приобретает активность лишь при взаимодействии с корепрессором продуктом катализируемой реакции.
Аттенюация это регулируемая терминация, которая происходит лишь в том случае, если строящаяся мРНК приобретает определенную вторичную структуру. Смысл этого способа регуляции остановить синтез ферментов А, В и С, закодированных в trp-опероне, если в клетке достаточно триптофана. На ДНК внутри лидерной последовательности оперона, после оператора, но приблизительно за 180 пар нуклеотидов до структурных генов белков-ферментов синтеза триптофана расположен аттенюатор. Зона аттенюатора транслируется в участок на мРНК, в котором закодирован лидерный пептид из 14 аминокислот, в том числе нескольких триптофановых остатков подряд. После своего синтеза этот пептид очень быстро разрушается. Перед аттенюатором находятся несколько участков ДНК, последовательности которых обладают центральной симметрией. Это приводит к тому, что мРНК, построенная РНК-полимеразой комплементарно к таким участкам, способна образовать две взаимоисключающие комбинации либо две шпильки (из участков, обозначенных на рисунке 1-2 и 3-4) либо только одну шпильку (из участков 2-3). Если возникнет структура из двух шпилек, то наличие в ней шпильки 3-4 приведет к терминации транскрипции на аттенюаторе. В этом случае мРНК для синтеза ферментов А, В и С синтезироваться не будет. Если сформируется единственная шпилька 2-3, то РНК-полимераза беспрепятственно минует аттенюатор и проведет транскрипцию генов, кодирующих ферменты синтеза триптофана (А, В, С) до конца. Так как у прокариот трансляция начинается еще до завершения транскрипции, лидерный пептид строится рибосомой еще до того, как РНК-пролимераза начнет строить мРНК на цистронах триптофанового оперона. Двигаясь по участку мРНК, содержащему “пропись” лидерного пептида, рибосома поочередно присоединяет аминокислотные остатки, синтезируя заданную пептидную цепочку, и доходит до места, где в цепи должны находиться остатки триптофана. Если в клетке триптофан отсутствует, рибосома не может вставить его в пептид и останавливается на соответствующем месте мРНК. Остановившись, она закрывает собой последовательность 1. Это делает невозможным формирование шпильки 1-2 и сопутствующей ей второй (терминаторной) шпильки 3-4. В соответствии с этим терминации транскрипции не происходит, РНК-полимераза переходит в область структурных генов оперона и строит там мРНК для синтеза ферментов А, В, С. В итоге отсутствие триптофана “включает” процесс его синтеза ферментами А, В, С. Если триптофана в клетке достаточно, то рибосома использует его, включая в цепь лидерного пептида и движется дальше, не останавливаясь на критическом участке мРНК. Поэтому препятствий для формирования ансамбля шпилек 1-2 и 3-4 не возникает. Терминаторная шпилька 3-4 обеспечивает терминацию транскрипции на аттенюаторе, не доходя до структурных генов. То есть при достаточном количестве триптофана построения ферментов для его синтеза не происходит. 11.Двойная регуляция синтеза белка на уровне транскрипции у прокариот: функционирование аra-оперона.
Арабинозный оперон Escherichia coli, содержит структурные гены araB, araA и araD для ферментов, участвующих в превращении L-арабинозы в D-ксилулозо-5-фосфат. Экспрессия оперона индуцируется арабинозой; подвергается регуляции в области промотора; находится под влиянием как отрицательного, так и положительного контроля со стороны специфического белка-регулятора. Этот оперон регулируется с помощью белка, взаимодействующего с контролирующим сайтом в промоторе, однако регуляция проявляет черты как отрицательного, так и положительного контроля. Функция арабинозы сводится к связыванию с репрессором в качестве малых молекул индуктора. До этого момента имеет место типичный отрицательный контроль. Но связывание с арабинозой не только инактивирует способность репрессора присоединяться к оператору. Вместо этого репрессор превращается в белок-индуктор, который первоначально был назван Р2, а теперь известен как Cind. Его связывание с промотором необходимо для включения транскрипции. Это уже характерно для положительного контроля.
12.Регуляция синтеза белка у эукариот.
Синтез белков в клетке регулируется на трех уровнях: 1) путем изменения активности генов, то есть через тотальную или избирательную модуляцию продукции мРНК на матрице ДНК (уровень транскрипции); 2) путем изменения активности мРНК в ее трансляции рибосомами (уровень трансляции); 3) путем деградации мРНК посредством ее тотального или избирательного расщепления рибонуклеазами.
Существуют три основных способа, как регулировать трансляцию. Первый способ - позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам инициации (дискриминация мРНК). Второй способ - негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия). Этими двумя способами регулируются индивидуальные мРНК, то есть трансляция каждой мРНК может специфически контролироваться независимо от других мРНК клетки. Третий способ - тотальная регуляция трансляции всей совокупности мРНК клетки посредством модификации факторов инициации.
Но большинство генов эукариот подвергаются адаптивной регуляции - то есть индукции и репрессии, которые осуществляются на уровне транскрипции. Выявлено более 100 различных белков, способных взаимодействовать с регуляторными последовательностями ДНК и тем самым влиять на сборку транскрипционного комплекса и скорость транскрипции. Эти белки содержат ДНК-связывающие домены, отвечавшие за узнавание специфических участков в молекуле ДНК, а также домены, активирующие транскрипцию. Последние связываются с транскрипционными факторами, либо с РНК-полимеразой. Регуляторные белки могут иметь в своем составе антирепрессорные домены, которые взаимодействуют с гистонами нуклеосом, освобождая от них участки ДНК. Эти белки могут содержать в себе также домены, связывающие лиганды - индукторы транскрипции (стероидные гормоны, гормоны щитовидной железы, производные витаминов). После связывания лиганда конформация белка изменяется, и он образует участок, узнающий в регуляторной зоне ДНК специфическую последовательность и индуцирующий транскрипцию определенного гена.
Важную роль в регуляции активности генов играют участки ДНК, располагающиеся в 1000 и более пар оснований от промотора. Энхансеры участки ДНК размером 10 - 20 пар оснований, присоединение к которым регуляторных белков увеличивает скорость транскрипции ( от enhance усиливать).Сайленсеры (глушители) - участки ДНК, которые, связываясь с белками, обеспечивают замедление транскрипции. Между промотором и энхансером ДНК образует петлю, в результате чего связанные с энхансером белки непосредственно взаимодействуют с одним из общих факторов транскрипцииии или с молекулой самой РНК-полимеразы. Регуляция синтеза белка осуществляется и на уровне трансляции. Разные мРНК имеют неодинаковое сродство к рибосомным субчастицам, поэтому в полирибосоме содержится много или мало рибосом. Так определяется соотношение белков в клетке. Наконец, может происходить подавление инициации трансля ции всех мРНК клетки. Например, это может происходить при действии теплового шока, стрессах, недостатке железа,вирусной инфекции и т.п. Стрессовый фактор индуцирует фосфорилирование второго фактора инициации, тем самым инактивирует его и, следовательно, трансляцию.
13.Процессинг тРНК у эукариот.
Процессинг - это созревание синтезированной на ДНК преРНК и преобразование её в зрелую РНК. Проходит в ядре клетки у эукариот. Созревание, или процессинг, мРНК предполагает модифицирование первичного транскрипта и удаление из него некодирующих интронных участков с последующим соединением (сплайсингом) кодирующих последовательностей экзонов. Модифицирование первичного транскрипта эукариотической мРНК начинается вскоре после синтеза его 5'-конца, содержащего одно из пуриновых оснований (аденин или гуанин). На этом конце образуется колпачок кэп, который блокирует 5'-конец мРНК путем присоединения к первому нуклеотиду транскрипта трифосфонуклеозида, содержащего гуанин, связью 5'5'В результате образуется последовательность ГфффАфЧМ..., в которой остаток туанина находится в обратной ориентации по отношению к другим нуклеотидам мРНК. Модификация 5'-конца мРНК предполагает также метилирование присоединенного гуанина и первых двух-трех оснований первичного транскрипта Образуемые на 5' -концах мРНК кэпы обеспечивают узнавание молекул мРНК малыми субчастицами рибосом в цитоплазме. После выхода мРНК в цитоплазму ее полиА-последовательность постепенно укорачивается под действием ферментов, отщепляющих нуклеотиды на 3'-конце. Таким образом, по длине полиА-последовательности можно косвенно судить о времени пребывания мРНК в цитоплазме. Возможно, добавление полиА-последовательности в ходе процессинга повышает стабильность мРНК. Наряду с модифицированием мРНК эукариот процессинг предполагает удаление из первичных транскриптов неинформативных для данного белка интронных участков, размер которых варьирует от 100 до 10 000 нуклеотидов и более. На долю интронов приходится около 80% всей гяРНК. Удаление интронов с последующим соединением экзонных участков называют сплайсингом Сплайсинг представляет собой механизм, который должен обеспечивать удаление из первичного транскрипта строго определенных интронных участков. Нарушение этого процесса может привести к сдвигу рамки считывания при трансляции и невозможности синтеза нормального пептида. Закономерность вырезания интронов, очевидно, обеспечивается благодаря наличию на их концах специфических нуклеотидных последовательностей, служащих сигналами для сплайсинга.
Составные части процессинга
1.Удаление нуклеотидов. Результат: значительное уменшение длины и массы исходной РНК.2.Присоединение нуклеотидов. Результат: незначительное увеличение длины и массы исходной РНК.
Модификация (видоизменение) нуклеотидов. Результат: появление в составе РНК редких "экзотических" минорных ("меньших") нуклеотидов.
Удаление нуклеотидов
1. Отщепление отдельных нуклеотидов по одному с концов цепи РНК. Осуществляется ферментами экзонуклеазами. Обычно преРНК начинается на 5'-конце АТФ или ГТФ, а на 3'-конце заканчивается участками ГЦ. Они нужны только для самой транскрипции, но не нужны для работы РНК, поэтому и отщепляются.
2. Отрезание фрагментов РНК, состоящих из нескольких нуклеоидов. Осуществляется ферментами эндонуклеазами. Таким способом с концов преРНК удаляются спейсерные последовательности нуклеотидов.
3. Разрезание преРНК на отдельные индивидуальные молекулы РНК. Осуществляется ферментами эндонуклеазами. Таким способом получаются рибосомальные РНК (рРНК) и гистоновые (мРНК).
4. Сплайсинг. Это вырезание срединных участков (интронных последовательностей) из преРНК и затем её сшивание. Вырезание осуществляется ферментами эндонуклеазами, а сшивание - лигазами. В результате получается мРНК, состоящая только из экзонных последовательностей нуклеотидов. Все пре-мРНК подвергаются сплайсингу, кроме гистоновых.