Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Введение Одной из самых сложных и интересных тем в аудите финансовой отчетности является аудиторская выбор

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024


Введение

Одной из самых сложных и интересных тем в аудите финансовой отчетности является аудиторская выборка. Основная сложность заключается в том, что наиболее предпочтительными методами отбора являются статистические методы. Чтобы разобраться в этих методах, необходимы базовые знания статистики и теории вероятности.

Сущность выборки состоит в том, что аудитор при проверке рассматривает не всю бухгалтерскую документацию, а осуществляет отбор.

Существует 2 группы выборочного исследования: репрезентативное (представительное) и нерепрезентативное (непредставительное).

Суть репрезентативного выборочного исследования заключается в том, что аудитор оценивает генеральную совокупность на основании выборочных данных. Нерепрезентативная выборка также заключается в отборе некоторых единиц, однако такой отбор осуществляется на основе профессионального суждения аудитора.


Методы вероятностной (случайной) выборки

Случайная (вероятностная) выборка — это выборка, для которой каждый элемент генеральной совокупности имеет определенную, заранее заданную вероятность быть отобранным. Это позволяет исследователю рассчитать, насколько правильно выборка отражает генеральную совокупность, из которой она выделена (спроектирована). Такую выборку иногда называют еще случайной.

Вероятностные методы включают:
♦ простой случайный отбор,
♦ систематический отбор,
♦ кластерный отбор,
♦ стратифицированный отбор.

Реализовать случайную выборку можно двумя приемами: лотерейным методом и с помощью таблицы случайных чисел. С помощью случайной выборки строится подавляющее большинство телефонных опросов и опросов на основе избирательных списков. Для построения такой выборки необходимо иметь полный список всех элементов генеральной совокупности.

Простой случайный отбор

Простой случайный отбор предполагает, что вероятность быть включенным в выборку известна и является одинаковой для всех единиц совокупности. Он реализуется двумя методами:
♦ отбор вслепую (другое название — метод лотереи или жребия),
♦ отбор не вслепую (происходит с помощью таблицы случайных чисел).

Итак, в одном случае вы осуществляете свой выбор не глядя, в другом — все осознавая, но для того, чтобы самому не вмешаться и ничего не испортить, обращаетесь к специальным таблицам.

Кроме того, простой случайный отбор подразделяется на две разновидности уже по другому критерию, а именно — возвращению или невозвращению лотерейного шара (вместо него может быть фамилия респондента) обратно в корзину. В этом случае выделяют:
♦ случайный повторный (с возвращением) отбор,
♦ случайный бесповторный (без возвращения) отбор.

В чем сходство и различие двух классификаций? В первом случае — вслепую/не вслепую — ученый мог смотреть на то, как осуществляется отбор, хотя никак не мог ему помешать (если отбор проводился вслепую), или выбор осуществляли не его руки, вынимающие из корзины шар, а таблица случайных чисел. Во втором случае — повторный/бесповторный — дело заключается не в исследователе (если отбор проводился не вслепую), а в лотерейном шаре: его либо возвращают для нового выбора, либо не возвращают и продолжают процесс без него.

Соединив оба членения простого случайного метода в декартову систему координат, получим четыре модальности.

Сразу оговоримся, что получившаяся схема не является в строгом смысле изображением логического квадрата, с помощью которого принято показывать отношения совместимости, эквивалентности, противоположности (контрарности), частичной совместимости (субконтрарности), подчинения и противоречивости суждений. В нашей схеме лишь некоторые квадраты дают новый тип случайного отбора или свидетельствуют о том, что данная комбинация действий осуществима. При использовании метода выборки вслепую единицы генеральной совокупности (фамилии, названия или просто номера из списка) можно вносить в карточки, а карточки в перемешанном виде поместить в какую-то непрозрачную емкость (ящик, коробку). Из этой емкости кто-то случайным образом вы-тягивает число карточек, определяемое объемом выборки. После каждого вытягивания и регистрации карточки ее можно возвращать, а можно не возвращать назад. В первом случае говорят о повторном, во втором — о бесповторном отборе. Их комбинация дает два квадрата, имеющих реальное содержание: можно вслепую выбирать из корзины шары и возвращать их для нового выбора, а можно их откладывать в сторону. Однако выборка не вслепую предполагает использование таблицы случайных чисел. Возвращать в нее выбранный номер невозможно, стало быть, образуемые вдоль этой оси квадраты не являются реальными.

Предлагаемая схема выполняет скорее мнемоническую функцию, помогая лучше запомнить материал. Можно также считать, что она имеет демонстративный смысл, но никак не логический. Она придумана для того, чтобы внести какую-то ясность в типологию разновидностей простого случайного отбора.

Вероятностную выборку целесообразно применять только при наличии соответствующих условий. Первое условие осуществления вероятностной выборки — наличие полного списка всех элементов генеральной совокупности (отсутствие или недоступность которого чаще всего и препятствует ее реализации) от 1 до N, где N — общее число всех элементов. Если же он имеется, то производится нумерация, после чего можно использовать вышеописанные методики. При использовании лотерейного метода (или метода жребия) жетоны с номерами всех элементов помещают в урну, тщательно перемешивают и извлекают последовательно п жетонов, где n — число элементов выборочной совокупности. Элементы генеральной совокупности, имеющие номера, оказавшиеся на извлеченных жетонах, будут составлять выборочную совокупность. Это довольно трудоемкая и продолжительная (при больших размерах выборки) операция, к тому же достаточно трудоемкая, поскольку «для обеспечения равного шанса выбора требуется тщательное перемешивание жетонов» после каждой выемки очередного номера.

Второе условие вероятностной выборки — хорошая перемешанность элементов генеральной совокупности. Если выборка элементов производится из ящика, то его содержимое следует тщательно перемешать и уже после этого брать карточки случайным образом. Только при таких условиях все они имеют одинаковую вероятность попасть в выборку. Часто для образования случайной выборки элементы генеральной совокупности предварительно нумеруются, а каждый номер записывается на отдельной карточке. В результате получается пачка карточек, число которых совпадает с объемом генеральной совокупности. После тщательного перемешивания из этой пачки берут по одной карточке. Объект (респондент), имеющий одинаковый номер с карточкой, считается попавшим в выборку. При этом возможны два принципиально различных способа образования выборочной совокупности.

Первый — вынутая карточка после фиксации ее номера возвращается в пачку, после чего карточки снова тщательно перемешиваются. Повторяя такие выборки по одной карточке, можно образовать выборочную совокупность любого объема. Выборочная совокупность, образованная по такой схеме, получила название случайной возвратной выборки.

Второй— каждая вынутая карточка после ее записи обратно не возвращается. Повторяя по такой схеме выборки по одной карточ-ке, можно получить выборочную совокупность любого заданного объема. Выборочную совокупность, образованную по данной схеме называют случайной безвозвратной выборкой. Она возможна лишь в том случае, если из тщательно перемешанной пачки сразу берут нужное число карточек.

Заметим, что различие между случайными выборками с возвратом и без возврата стирается, если они составляют незначительную часть большой генеральной совокупности.

Однако при большом объеме генеральной совокупности этот метод оказывается очень трудоемким, и поэтому гораздо удобнее пользоваться таблицей случайных чисел. Она доказала свою эффективность при формировании равновероятностной выборки из больших совокупностей.

Систематический отбор является вторым по научной значимости, но первым по популярности употребления видом простого случайного отбора. Его называют еще механическим отбором и считают упрощенным вариантом простого случайного отбора.

Примером служат разного рода квартирные выборки: выбираются улицы, на которых интервьюер проводит квартирный опрос. Квартиры выбираются по определенной схеме (крайняя квартира справа от лестницы на последнем этаже первого подъезда и т.д.).

Если под рукой таблицы случайных чисел нет, а генсовокупность относительно невелика14, то можно воспользоваться алфавитным списком, например, персонала предприятия (картотека всегда есть в отделе кадров) или избирательного участка (при опросе по месту жительства). Процедура систематического отбора проста: количество единиц генеральной совокупности, предположим 2000 работников предприятия, делится на количество анкет, скажем 200, и определяется шаг выборки. Он предполагает, что, начиная с любого номера из списка, опрашивается каждый десятый (2000:200 = 10). В формализованном виде данная процедура выглядит так. Из пронумерованного списка через равные интервалы £ отбирается заданное число респондентов. При этом шаг выборки к рассчитывается по простой формуле:

K = N / n

где N — численность генеральной совокупности, n — численность выборочной совокупности.

Таким образом, шаг выборки, а его еще называют «интервалом скачка» или просто «интервалом», — это математический показатель, рассчитанный как отношение объема генеральной совокупности к объему выборки. Он показывает, сколько номеров в списке фамилий людей, вошедших в генеральную совокупность, надо пропустить (через сколько перешагнуть), чтобы в итоге получить список выборочной совокупности. Буквально шаг выборки означает расстояние между соседними фамилиями респондентов, измеренное количеством отбракованных фамилий из списка генеральной совокупности.

Другой пример. Предположим, что нам нужно спроектировать выборку численностью 100 из списка 5000 студентов какого-то вуза. Если мы намерены использовать систематическую выборку, то должны вначале рассчитать интервал выборки делением числа элементов в списке на размер выборки. В данном случае, разделив 5000 имен на требуемый размер выборки 100 ед., мы получим интервал (шаг) выборки 50. Так что мы будем систематически двигаться по списку и отбирать каждого пятидесятого студента (отобрав таким образом 100 имен). Определение того места в списке, с которого мы начнем, проводится случайным образом, по таблице случайных чисел (это называется случайным стартом). Таким образом, если случайно выбрана точка старта под номером 31, то в выборку будут включены студенты, стоящие под номерами 31, 81, 131, 181 и т.д.

Итак, в основу систематической выборки положены не вероятностные процедуры, а алфавитные списки, картотеки, схемы, которые обеспечивают равновероятное попадание в выборку всех единиц генеральной совокупности.

Несмотря на свои преимущества, систематическая выборка может иногда иметь своим результатом предубежденную выборку. Такая ситуация возникает, например, когда элементы размещены в списке, ранжированном по каким-то характеристикам. В этой ситуации определение места начала случайного отбора будет влиять на средние характеристики всей выборки. Например, если студенты расставлены в списке в соответствии со средним оценочным баллом от высшего к низшему, систематическая выборка, включающая студентов, стоящих в списке под номерами 1,51,101, будет иметь более низкий средний балл, чем выборка, включающая студентов под номерами 50, 100 и 150. Каждая новая выборка будет давать другой средний балл, который представляет собой предубежденную картину студенческой популяции.

Районированная и стратифицированная выборки

Если генеральная совокупность велика, а такое в эмпирическом исследовании случается очень часто, то приходится разделять обследуемую совокупность на более или менее однородные части, а затем осуществлять отбор единиц внутри этих частей. Такую раздробленную на части выборку правильнее всего было бы называть расслоенной. Однако в русском языке подобный термин не утвердился, видимо, как не соответствующий нормам правильного произношения.

Поскольку в отечественной социологии очень много иностранных слов — и это правильно с точки зрения унификации научной терминологии, приведения ее к международным стандартам, — то слову «расслоенная» попытались найти эквивалент. В числе претендентов оказались две наилучшие кандидатуры, а именно термины «районированная» и «стратифицированная».

В русском языке первое слово явно тяготеет к географическому языковому ареалу и обозначает территориальную зону. Поскольку генеральную совокупность, особенно очень большую, например население всей страны, можно разбивать в том числе и по региональному признаку, в отечественной литературе утвердился термин «районированная выборка». Но наряду с тем генеральную совокупность можно расслаивать и по стратам (полу, возрасту, доходам и т.д.), получая в качестве критерия уже не географический район, а социальную группу.

В итоге сложилась практика различения двух разновидностей расслоенной выборки. Если деление происходит по стратам (социальным группам), то выборку именуют стратифицированной, если по экономико-географическим районам, то районированной.

В литературе (да и в маркетинговой практике) два термина — районированная и стратифицированная выборки — нередко считаются эквивалентными. Происходит это потому, что в основе той и другой лежит одна и та же процедура расслоения, а расслаивать в социологии можно двояко: либо по социальным группам (тогда речь идет о социальной структуре и стратификации как ее частном виде), либо по географическим районам. Когда объединяют оба понятия в одно, как правило, дают обобщающее определение подобной выборки, например, такое:
Районированная выборка — вид выборки, при котором отбору предшествует процедура районирования (расслоения, стратификации), т.е. разделения исходной совокупности на статистически или качественно однородные подсо
вокупности, называемые слоями, стратами или типичными группами. Отбор единиц, который может носить как случайный, так и направленный характер, производится независимо из каждого слоя, поэтому районированная выборка равносильна ряду выборок, извлеченных из меньших совокупностей-страт.

В этом определении исходное понятие «районированная выборка» без ущерба для дела можно заменить на «стратифицированную выборку». Таким образом, одинаково правильно будет как разделять одну выборку на две самостоятельные разновидности, районированную и стратифицированную, так и подавать их как единое целое. За единство двух приемов выступает практика социологических исследований. Оказывается, в крупномасштабных проектах социологи начинают с районированной выборки, а затем переходят на стратифицированную. Так, например, в обследованиях Центра «Социо-Экспресс» Института социологии РАН в основе построения районированной выборки лежат десять экономико-географических зон, в каждой из которых выделяются крупные города (численностью свыше 500 тыс. населения), средние города (50-500 тыс.), малые города (до 50 тыс.) или поселки городского типа, а также сельские населенные пункты. Внутри отобранных городов респондентов отбирают случайным методом. Репрезентативность контролируется по региональным пропорциям численности населения, пропорциям между городским и сельским населением, пропорциям между населением указанных типов населенных пунктов.

В международной практике не используется русское слово «район» как географическая зона (ареал, регион, часть территории), поэтому здесь не встретишь и термина «районированная выборка». Вместо него употребляют термин «стратифицированная выборка», подразумевая, что, разбивая единое целое на части, не обязательно точно указывать, что они собой представляют — группы или районы.

В таком случае стратифицированная выборка (stratified sampling) — вероятностная выборка, обеспечивающая равномерное представительство в выборочной совокупности различных частей, типов, групп и слоев населения.

В английском языке слово «стратификация» мало чем отличается от слов «расслоение», «разделение», «разбиение». Это социологи придали стратификации социальный смысл, а в геологии, откуда мы позаимствовали термин, стратификация означает вертикальное расслоение земли на однородные пласты. Ни классов, ни доходов, ни социальных групп здесь нет.

Надо учитывать и другой нюанс. Дело в том, что в зарубежных словарях, прежде всего американских и главным образом ведущих, все, что связано с территориальным признаком, в том числе и расслоение по районам, относится к квотной выборке. К примеру, в знаменитом Оксфордском словаре социологии на термин «stratified sampling» стоит отсылка: см. sampling. Открываем с. 576—577 и читаем о том, что в случае стратифицированной вероятностной {random) выборки речь идет о разбиении совокупности на подгруппы, т.е. страты, например мужчин и женщин, а о районированной выборке в нашем понимании не говорится ни слова. Близкий к районам термин «local areas» употребляется Гордоном Маршаллом (а он считается знатоком в этом деле) только в связи: 1) с первой стадией многоступенчатого отбора, 2) с квотной выборкой.

Возвращаясь от лингвистических тонкостей к методическим, подчеркнем вот еще что: отбор единиц, который может носить как случайный, так и направленный характер, производится независимо из каждого слоя или района, поэтому районированно-стратифицированная выборка (если можно так выразиться) равносильна ряду выборок, извлеченных из меньших совокупностей-страт (районов).

Стратифицированная случайная выборка (в узком значении) основана на выборке по каждой страте отдельно. Это повышает точность результатов либо уменьшает время, силы и стоимость исследования, допуская меньшие размеры выборки при заданном уровне точности. Например, известно, что бедность наиболее часто встречается среди пожилых, безработных и в монородительских семьях. Исследуя проблемы бедности, можно с равным успехом выбрать в качестве объекта любую из трех страт. В отобранных районах или стратах выбор единиц обследования проводится по вероятностному методу.

Основная цель всякого расслоения — повышение точности выборочных оценок. Слои выделяются таким образом, чтобы дисперсия изучаемых переменных внутри слоев была значительно меньше, чем между ними. При расслоении вариация между слоями не входит в среднюю ошибку выборки, а компенсируется самой процедурой выделения слоев. Поэтому расслоение позволяет добиться более высокой степени точности оценок по сравнению с простым случайным отбором. Если каждый слой представляет собой статистически однородную группу, то для любого из них даже выборка малого объема позволит получить достаточно точные оценки, которые, будучи объединены, дадут хорошую оценку для всей совокупности.

Различают стратификацию одномерную и многомерную в зависимости от того, один или несколько признаков положены в основу разделения совокупности. Эти признаки должны иметь тесную связь с изучаемыми переменными, от их выбора в высокой степени зависит эффективность расслоения.

Гнездовая выборка

Противоположность районированной и стратифицированной выборке составляет гнездовая выборка.

Гнездовая выборка — вид выборки, при котором отбираемые объекты представляют собой группы или гнезда (кластеры) более мелких единиц. Гнездом называют единицу отбора высшей ступени, состоящую из более мелких единиц низшей ступени. В выборку могут быть включены как все единицы низшего уровня, так и их часть. Число единиц, образующих гнездо, называют его размером.

В качестве гнезд выступают населенные пункты, районы, дома, подъезды, предприятия, цехи, бригады.

Гнездовой отбор обладает большими организационными преимуществами — проще осуществлять отбор и обследование нескольких компактных групп, чем десятков или сотен отдельных единиц. Технические преимущества гнездового отбора особенно ощутимы при построении территориальной выборки. Отбор небольшого числа территориальных сегментов (населенных пунктов, районов, жилых кварталов и т.п.), затем выборочный или сплошной опрос проживающего в них населения существенно уменьшают стоимость исследования и сроки проведения.

Процедурно такой метод применить легче, чем вероятностный либо районированный. Проблемы, которые возникают здесь, связаны с определением величины гнезда, количеством гнезд, которые надо обследовать, их размещением в генеральной совокупности.

Основные рекомендации при выборе гнезд сводятся к тому, чтобы различия между гнездами были бы по возможности более неоднородными. Это правило прямо противоположно основному принципу расслоения, в соответствии с которым выигрыш в точности тем больше, чем более однородными будут выделенные слои. Другая рекомендация касается выбора размера гнезд: большое число малых гнезд предпочтительнее малого числа крупных.




1. аабабагбвагабгв
2. 254151 198329 93827 Прибыль до налогообложения тыс.html
3. Г Коклин АН До недавнего времени большинство компьютерных сетей на предприятиях и организациях Росси
4. О нашей революции О кооперации Лучше меньше да лучше и др
5. 355М4У1 Описание- Электродвигатели асинхронные трехфазные с короткозамкнутым ротором типа АОМ предназнач
6. реферату- Народження дитини ріст розвиток вікові періодиРозділ- Біологія Народження дитини ріст розвито
7. і. СУ працівників розглядає як основу організації і орієнтоване на довгострокову перспективу
8.  Затвердити Порядок казначейського обслуговування місцевих бюджетів далі Порядок що додається
9. ЗАДАНИЕ НА ПЗ11 Интерфейс Windows
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата психологічних наук2
11. Основные этапы исторического развития естествознания
12. тема Фотография в работе органов внутренних дел занимает вид ное место и широко применяется
13. ских источниках III вв
14. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата юридичних наук Харків ~
15. ЛАБОРАТОРНА РОБОТА 6 Робота синхронного генератора при втраті збудження Асинхронний режим виникає або
16. I Основные требования предъявляемые к курсовой работе II
17. Тема уроку- Біном Ньютона
18. Контроль финансовых результато
19. тема внутреннего контроля Контрольная среда- Отсутствуют филиалы представительства подразделения
20. Формирование научного мировоззрения у школьников