У вас вопросы?
У нас ответы:) SamZan.net

Уравнение состояния сверхплотного вещества

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.4.2025

Учреждение образования «Брестский государственный университет

имени А.С.Пушкина»

Физический факультет

Кафедра теоретической физики и астрономии

Реферат по специализации

«Теоретическая физика»

Уравнение состояния сверхплотного вещества.

Брест 2010


Уравнение состояния для Ае- и Аеп-фаз вещества

Мы будем иметь дело с моделями звездных конфигураций, состоящих из вырожденных газовых масс. Это конфигурации белых карликов и барионных звезд. Под последними подразумеваются модели небесных тел, состоящих из вырожденного барионного газа. В расчетах параметров этих звездных конфигураций нужно иметь уравнение состояния вещества. Нас интересуют только вырожденные состояния вещества.

Начнем с рассмотрения Ае-фазы. Она состоит из голых атомных ядер и свободного вырожденного электронного газа. При достаточно низких температурах движение ядер сводится лишь к тому, что они совершают нулевые колебания около фиксированных точек равновесия. Поэтому они не дают никакого вклада в давление вещества. Давление целиком обусловлено электронами, плотность же энергии определяется атомными ядрами.

Плотность энергии равна

ρ = пс2 +b)∑ 2 Акпк + e (1)

где b — средняя энергия связи нуклона в ядрах (здесь нет смысла различать массы протона и нейтрона), пк — число ядер данного типа (с параметрами Ак и Zк) в единице объема, ρе — плотность энергии электронного газа. В условиях наличия вырожденного электронного газа b является функцией е .Согласно

ρе = 4Ке(хе (1 + 2e)-(хе + )) (2)

где, хе = ρе/mес = (3)1 /3hne1/3 me с — граничный импульс электронов в единицах mес (при ре>> тес, хе = ее с2) и


Ке  (3)

Иногда удобно взамен хe использовать параметр tе:

tе =4arsh xe (4)

С помощью этого параметра плотность энергии электронов запишется в следующем компактном виде:

ρe = Ке(sh te- te). (5)

В выражении энергии (1) можно произвести некоторые упрощения. Так,

Aknk=Zknk=ne

где А/Z есть средняя величина отношения Ак/Zк (усредненная по всем типам ядер, имеющихся в среде). Учитывая последнее и пренебрегая малыми величинами b и ρе, получаем

ρ= (6)

Напомним, что из-за явления нейтронизации отношение А/ Z является функцией хе, эта зависимость аппроксимирована полиномом. Теперь вычислим давление. Оно равно производной энергии по объему с обратным знаком, при постоянном числе частиц и энтропии (в данном случае энтропия равна нулю). Так как парциальное давление ядер не учитывается, то


P=-()Ne=-()Ne

где Nе = Vпе — число электронов в некотором объеме V. При дифференцировании ρе нужно учесть, что хе зависит от объема V. Имея в виду (2), находим для давления

Р = Ке [xе (2 - 3) +3].(7)

Учитывая также формулу, уравнение состояния вещества в Aе-фазе можно записать в следующем параметрическом виде:

( 3 K n  (2+a1xe+a2 +a3 ,

P=()4K (8)

Где a1,a2, а3 — постоянные, входящие в формулу: а1= 1,255 10-2, а2=1,75510-5, а3=1,37610-6; кроме того, мы ввели также новое обозначение

Кп= 5,11 1035 эргсм-3, (9)

которое будет встречаться в дальнейшем.

Рассмотрим два важных предельных случая уравнения состояния (8). В нерелятивистском случае параметр хе мал по сравнению с единицей. Разложим Р в ряд по степеням хе и отбросим малые величины в выражениях ρ и Р; исключая параметр х, получим


Р=Aρ5/3, (10)

Где

A= )5/3 -23 )5/3

Величина η= A/Z для всех ядер, за исключением водорода.

Р=B ρ4/3, (11)

Где

B=5,6410-14 )4/3

В выражении для плотности энергии мы опустили b и ρе.

Энергия связи нуклона в ядре имеет значение в интервале 0<b8 Мэв. У порога исчезновения Aе-фазы Р 1029 эргсм-3, а отношение парциальных плотностей энергии электронов и ядер порядка

Таким образом, b и ρе действительно достаточно малы и в расчетах звездных конфигураций не могут играть сколько-нибудь заметную роль.

В приведенном уравнении состояния не учтено взаимодействие частиц. Здесь мы имеем дело только с кулоновскими силами . Было показано, что потенциальная энергия электрона, обусловленная электрическими силами, мала по сравнению с его кинетической энергией, причем с возрастанием плотности отношение их уменьшается. Таким образом, приближение идеального газа здесь вполне оправдано. Ряд поправок к выражению давления (8), обусловленных кулоновскими взаимодействиями. Поправки к Р некоторую роль могут играть лишь при больших Z и х<1. Изменения, обусловленные температурой, тоже несущественны. Здесь важным является эффект зависимости А/Z от граничной энергии электронов.

Уравнение состояния (8) применимо до x=46, чему соответствует плотность ρ2,41032 эргсм-3. При больших плотностях мы имеем дело с Aen-фазой, где уравнение состояния другое. 

Введем параметр

tn =4arsh xn ,

тогда ρп и Рп запишутся в следующем виде:

ρn=Kn(sh tn - tn),

Pn= Kn(sh tn - 8sh).(13)

Учитывая также энергию атомных ядер, парциальное давление и плотность энергии электронов, для уравнения состояния Aen-фазы вещества получаем

ρ=Kn(sh tn - tn)+mnc2,

P= Kn(sh tn - 8sh)+Pe.(14)

Здесь ρе и Рe —плотность энергии и давление электронного газа. Заметим, что чуть выше порога появления Aen-фазы парциальная плотность энергии и давление электронов (можно даже сказать — плотность энергии атомных ядер) достаточно малы по сравнению с соответствующими величинами для нейтронного газа. Здесь почти на всем протяжении фазы энергия и давление системы в основном определяются нейтронным газом.

Вообще говоря, в Aen-фазе следовало бы учитывать ядерные взаимодействия между нейтронами. Их вклад несуществен для энергии, но, по-видимому, является важным для давления: при заданном числе нейтронов учет ядерных сил приведет к уменьшению давления. Насколько нам известно, в рассматриваемой области плотностей теория ядерной материи как следует не разработана, поэтому мы довольствуемся приближением идеального газа. Уравнение состояния (14) справедливо в области плотностей 2,41032  ρ 5.451034 эргсм-3.

Об асимптотическом виде уравнения состояния

Целесообразно сначала исследовать асимптотическое поведение вида уравнения состояния при чрезвычайно больших плотностях. Здесь можно достичь определенного результата, исходя из совершенно общих соображений. В опытах по рассеянию быстрых протонов на нуклонах было установлено наличие весьма интенсивных сил отталкивания, действующих на расстояниях r210-14 см. Этот экспериментальный факт дает некоторое основание утверждать, что в надъядерной области с возрастанием плотности массы состояние барионной плазмы (мы говорим о барионной плазме, поскольку концентрация лептонов в ней очень мала) все больше отходит от газа и постепенно приближается к состоянию идеальной жидкости.

Можно доказать, что при любом типе взаимодействия, если только энергия взаимодействия частиц больше их кинетической, известный закон Р ρ/3 обязательно нарушается, т. е. давление при достаточно больших плотностях может иметь значения выше ρ/3. Соотношение ЗР  имеет место для идеального газа и в тех случаях, когда поля настолько слабы, что при любых плотностях кинетическая энергия частиц всегда больше их энергии взаимодействия. Такими полями являются электромагнитное, гравитационнное и некоторые типы мезонных полей.


Литература

  1.  Саакян, Г.С. Равновесные конфигурации вырожденных газовых масс / Г.С. Cаакян.-М.: Наука, 1972.
  2.  Секержицкий, В.С., Секержицкий, С.С. К вопросу о параметрах холодного сверхплотного вещества с учетом плотности ядер//К 100-летию со дня рождения Гейзенберга., БрГУ.



1. тема суспільних відносин передбачених і гарантованих Конституцією і законами України прийнятими на її осно.
2. Самоубийство по Дюркгейму
3. 1] Введение основные термины и определения [1
4. История России историография, источники
5. римский миф Специфика общественнополитической или исторической мифологии заключается в том что она созд
6. .Цель которая преследовалась при выполнении настоящей работы состояла в том чтобы на основе изучения анали
7. Нормативное регулирование по налогу на имущество физических лиц
8. вариантов заданий на создание прикладного программного обеспечения деятельности небольшого предприятия
9. Как построить дорогу Воспитатель ГДОУ 64 Самсонова Л
10. В этих грамотах прослеживается возрастание роли великого князя а затем московского царя в решении таможен