У вас вопросы?
У нас ответы:) SamZan.net

Лекция 12 Wvelet фильтрация Детализация сигнала Введем обозначение- для любой функции

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.4.2025

1

Лекция 12 Wavelet фильтрация

Детализация сигнала

Введем обозначение:  для любой функции . Положим .

Предложение. Если выполнено условие ортогональности, то при фиксированном  функции  образуют ортонормированную систему.

Доказательство. Имеем

при . Нормированность проверяется очевидным образом с помощью замены переменных.

Обозначим через  линейное пространство, порожденное функциями . Потребуем, чтобы имело место включение . Это весьма жесткое ограничение. Оно выполнено, например, для . Для произвольной функции  положим

   (1)

- проекция функции на пространство . Коэффициенты разложения это и есть дискретные wavelet преобразования. Чем больше индекс пространства, тем более точное приближение исходной функции с помощью  получаем. Эта процедура и называется детализацией. Наложим на  еще одно дополнительное условие: потребуем, чтобы . Последнее означает, что каждую функцию из  можно приблизить с произвольной точностью подходящей функцией из . Заметим, что это выполнено для функции , поскольку каждую функцию из  можно приблизить ступенчатой функцией. Как следствие получим, что это верно и для произвольной функции с носителем на интервале , с помощью которой можно приблизить функцию . Положим , где второе слагаемое есть ортогональное дополнение к первому. Теперь  - прямая сумма попарно ортогональных пространств. Для  так получается базис Хаара, о котором будет рассказано позже.

Wavelet фильтрация

Вычисление коэффициентов разложения является трудоемкой задачей. Покажем, каким образом она может быть упрощена с помощью фильтра специального вида. В силу сделанного предположения , поэтому имеем место разложение . Рассмотрим скалярное произведение

=

. Коэффициенты в (1) можно найти следующим образом. Положим . Тогда = (2)

Формула (2) представляет собой свертку последовательностей. Она позволяет найти коэффициенты разложение для меньших значений индексов , если известны коэффициенты разложения для больших значений.  Ее можно рассматривать как применение фильтра специального вида с функцией отклика к источнику, которым являются коэффициенты разложения по большему индексу.




1. доклад 2публикация тезисов 3 устный доклад и публикация тезисов 4стендовый доклад и публикация тезисо
2. Тема- Государственный долг РФ Выполнил- студен
3. реферат дисертації на здобуття наукового ступеня кандидата юридичних наук Київ ~.html
4. 10ЗАП 5 Реєстрацію суб~єктів аудиторської діяльності в Україні здійснює хто 7
5. Введение Менеджером можно назвать человека только тогда когда он принимает организационные решения или
6. Декларация смерти Посвящается Дори Симмондс Глава 1 11 января 2140 года Меня зовут Анна
7. Тема Філософія Нового часу
8. УлГПУ им ИН Ульянова СМК 021092013 ПОЛОЖЕНИЕ о конкурсе Science Slm стр
9. Доходность банковской деятельности
10. тематически гипотензивные средства на принимает