Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Подвижной состав в том числе специальный самоходный должен своевременно проходить плановопредупредитель

Работа добавлена на сайт samzan.net:


1.Подвижной состав, в том числе специальный самоходный, должен своевременно проходить планово-предупредительные виды ремонта, техническое обслуживание и содержаться в эксплуатации в исправном состоянии, обеспечивающем его бесперебойную работу, безопасность движения. Каждый вагон независимо от типа и вида должен обладать необходимой прочностью при минимальной массе, быть простым и дешевым в изготовлении, а также удобным и экономичным в эксплуатации. Подвижной и специальный подвижной состав подлежат в соответствии с законодательством Российской Федерации обязательной сертификации в рамках Системы сертификации на федеральном железнодорожном транспорте (ССФЖТ). Все элементы вагонов по прочности, устойчивости и состоянию должны обеспечивать безопасное и плавное движение поездов с наибольшими скоростями, установленными МПС России. Вновь строящиеся вагоны должны обеспечивать безопасное и плавное движение поездов с наибольшими конструкционными скоростями перспективных локомотивов, предназначенных для обслуживания соответствующих категорий поездов.Вагоны, не имеющие переходных площадок, должны иметь специальные подножки и поручни.Вносить изменения в конструкции основных узлов принятого в эксплуатацию подвижного состава, в том числе специального самоходного, допускается только с разрешения соответствующих департаментов МПС России.Подвижной состав должен удовлетворять требованиям габарита, установленного государственным стандартом. Каждая единица подвижного состава, в том числе специального самоходного, должна иметь следующие отличительные четкие знаки и надписи: технический знак Российских железных дорог, инициалы железной дороги (кроме вагонов), номер (для пассажирских вагонов содержит код дороги приписки), табличку завода-изготовителя с указанием даты и места постройки, дату и место производства установленных видов ремонта, вес тары (кроме локомотивов и специального самоходного подвижного состава). Кроме того, должны быть нанесены следующие надписи: на локомотивах, моторвагонном подвижном составе и специальном самоходном подвижном составе — конструкционная скорость, серия, наименование депо или другого предприятия приписки, таблички и надписи об освидетельствовании резервуаров, контрольных приборов и котла; на пассажирских вагонах, моторвагонном подвижном составе и специальном самоходном подвижном составе, на котором предусматривается доставка работников к месту производства работ и обратно, — число мест; на грузовых вагонах — грузоподъемность. На тендерах паровозов должны быть обозначены серия, номер и инициалы железной дороги приписки. На каждый локомотив, вагон, единицу моторвагонного и специального подвижного состава должен вестись технический паспорт (формуляр), содержащий важнейшие технические и эксплуатационные характеристики.

3. Электровозы классифицируют по роду тока, типу передач, роду работы и осевым характеристикам, а электропоезда — по роду тока и виду работы.Классификация по роду тока. В зависимости от рода тока, подводимого к электровозам и электропоездам, различают системы электрической тяги постоянного тока, однофазного тока пониженной частоты 16 2/3 и 25 Гц, однофазного тока промышленной частоты 50 Гц. Имеется еще и многосистемный электроподвижной состав.Э. п. с. постоянного тока. Номинальное напряжение в контактной сети магистральных железных дорог, электрифицированных на постоянном токе, обычно составляет 3000 В, на промышленном транспорте — 1500 В, метрополитена — 825 В На электровозах и электропоездах устанавливают тяговые двигатели постоянного тока с контакторно-реостатным (рис. 3) или импульсным тиристорным управлениемПуск и регулирование скорости движения в первом случае осуществляют с помощью пусковых резисторов, кроме того, контакторами переключают тяговые двигатели с одного соединения на другое. Такой способ управления получил наибольшее распространение Однако он имеет ряд недостатков, важнейшие из которых следующие: значительные потери энергии в пусковых резисторах, толчки тока и силы тяги при переключениях, невозможность плавного регулирования скорости, сложность осуществления рекуперативного торможения, необходимость применения относительно низкого напряжения в контактной сети, воздействие колебаний напряжения и перенапряжений в системе электроснабжения на питаемые непосредственно от контактной сети тяговые двигатели.Тяговые двигатели э. п. с. магистрального и промышленного транспорта с кон-такторно-реостатным управлением обычно имеют номинальное напряжение на зажимах 1500 В. При этом напряжении габаритные размеры и масса тяговых двигателей относительно велики (минимальная масса двигателя 7,5—10 кг на 1 кВт)При напряжении 3000 В в контактной сети тяговые подстанции располагают через 20—25 км, при напряжении 1500 В — через 10—15 км. С уменьшением расстояния между подстанциями увеличивается неравномерность их нагрузки и растет влияние пиковых нагрузок, использование подстанций ухудшается, стоимость оборудования возрастает. Опыты по повышению напряжения сети более 3000 В при постоянном токе и применении вращающихся или статических преобразователей напряжения на электровозах и электропоездах не привели к положительным результатам из-за сложности, громоздкости и большой стоимости электрооборудования.Система электрической тяги на постоянном токе получила широкое распространение как в СССР, так и за рубежом (в США, Англии, Франции, Италии, Чехословакии и других странах). Протяженность этих дорог составляла на 1 января 1990 г. около 52 % общей длины всех электрифицированных линий мира, а в Советском Союзе — 51 % от общей протяженности электрифицированных линий страны.Э. п. с. однофазного тока пониженной частоты. В ряде стран применяют для тяги однофазный ток пониженной частоты 16 2/3 или 25 Гц. Основные преимущества такой системы обусловлены возможностью применять в контактной сети высокое напряжение (11 и 15 кВ), что позволяет значительно уменьшить площадь сечения контактного провода и увеличить расстояние междуподстанциями

4. Тепловозы классифицируются по ряду различных признаков. Наиболее важным является разделение тепловозов по следующим признакам.По роду службы (виду выполняемой работы) они делятся на грузовые, пассажирские, универсальные (предназначенные для выполнения различной работы, например, грузопассажирские, маневрово-вывозные и т. п.), маневровые и промышленные. Назначение тепловоза отражается на его характеристиках, конструкции передачи и экипажной части.Современные тепловозы по типу передач делятся на тепловозы с электрической и гидравлической передачами. Электрические передачи могут быть постоянного, переменно-постоянного и переменного тока. Промышленные тепловозы малой мощности выполняют и с механической передачей.По устройству ходовых частей различаются тепловозы тележечного типа, аналогичные рассмотренным выше тепловозам типа 2ТЭ10, и тепловозы с осями в жесткой раме (бестележечные). Почти все современные тепловозы тележечного типа.Тепловозы делятся также: по ширине рельсовой колеи — на тепловозы нормальной колеи — 1520 мм в СССР и 1435 мм во многих зарубежных странах — и узкоколейные (ширина колеи от 600 до 1000— 1100 мм); по числу секций—на одно-, двух- и многосекционные. Односекционные тепловозы часто имеют две кабины управления, двухсекционные — по одной на секцию. У многосекционных тепловозов промежуточные секции вообще могут не иметь кабин машиниста, так как управляются с головных секций.

5. В электрическая вал дизеля вращает тяговый генератор, питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре через осевой редуктор. Редуктор представляет собой соединённые зубчатые колёса, располагающиеся на валу ТЭД и оси колёсной пары. Электропередача постоянного тока обладает гиперболической тяговой характеристикой, при которой увеличение сопротивления движения вызывает увеличение силы тяги, а уменьшение — ускорение локомотива, легко управляется и регулируется. Электропередача позволяет управлять несколькими тепловозами по системе многих единиц из одной кабины. Минусом её является большая масса и относительная дороговизна необходимого оборудования. Электропередача обеспечивает электродинамическое (реостатное) торможение, при котором ТЭД работают как генераторы, нагруженные тормозными реостатами; за счёт сопротивления вращению валов ТЭД осуществляется торможение. По сравнению с пневматическими тормозами электродинамическое торможение более эффективно, меньше износ тормозных колодок.Первоначально на тепловозах ввиду простоты устройства и исключительно удачных характеристик использовалась передача постоянного тока. Так, первые в мире тепловозы Ээл2 и Щэл1 вообще оказались концептуально пригодны для поездной работы именно благодаря электропередаче постоянного тока с регулированием по схеме Лемпа. Однако из-за большого веса агрегатов и наличия механически изнашиваемых электрически нагруженных элементов конструкции — коллекторов, требующих тщательного ухода и ограничивающих рабочий ток якорей — в дальнейшем (в СССР с конца 1960-х годов) стали постепенно внедряться агрегаты переменного тока. Их внедрению содействовало появление компактных, недорогих и весьма надежных кремниевых выпрямителей. Первоначально были внедрены тяговые генераторы переменного тока с выпрямителями с ТЭД постоянного (пульсирующего) тока.

7. В качестве тяговых электродвигателей на электровозах постоянного тока в основном применяют двигатели с последовательным возбуждением. Они менее чувствительны к колебаниям напряжения в контактной сети и обеспечивают более равномерное распределение нагрузки при их параллельном включении, чем электродвигатели других систем возбуждения.Тяговые электродвигатели рассчитаны на номинальное напряжение 1500 В. Размеры тяговых электродвигателей ограничены шириной железнодорожной колеи и диаметром движущих колес по кругу катания DK, который также нельзя значительно увеличивать (у электровозов обычно DK ≤ 1250 мм). Вместе с тем мощности тяговых электродвигателей непрерывно возрастают, достигая у современных грузовых электровозов 750—800 кВт, а у пассажирских — до 1050 кВт. Поэтому «вписать» такие электродвигатели в ограниченные размеры очень трудно. Приходится наиболее полно использовать конструкционные материалы и последние достижения техники и технологии (применение изоляции повышенной теплостойкости и влагостойкости, высококачественной меди для обмоток и коллекторов, наилучших марок электрографитизированных щеток и т. д.). Даже при самых тяжелых режимах работы электровоза на коллекторах электродвигателей не должно возникать значительного искрения под щетками и тем более кругового огня. Для улучшения коммутации тяговые двигатели выполняют с добавочными полюсами, а у наиболее мощных машин в последнее время пре­дусматривают дополнительно компенсационную обмотку.Скорость движения электровоза можно регулировать изменением напряжения, подаваемого на тяговые двигатели, или изменением соотношения тока якоря и тока возбуждения. Напряжение регулируют включением последовательно с тяговыми электродвигателями резисторов и переключением самих тяговых двигателей в различные группы соединений. В последнее время выполнены работы по применению импульсного регулирования напряжения. Регулирование напряжения с помощью резисторов является неэкономичным из-за потерь электрической энергии в резисторах, а поэтому их включают обычно лишь кратковременно, в период разгона электровоза на реостатных позициях. При втором способе электродвигатели включаются последовательно, последовательно-параллельно и параллельно (рис 98). Если напряжение в контактной сети составляет 3000 В, указанные три схемы включений дают на зажимах электродвигателей для шестиосных электровозов соответственно напряжение 500, 1000 и 1500 В. При импульсном регулировании напря­жения используются управляемые полупроводниковые вентили-тиристоры.Изменение соотношения токов якоря и возбуждения в тяговых электродвигателях достигается путем включения параллельно обмотке возбуждения главных полюсов шунтирующего сопротивления. Изменяя величину этого сопротивления, можно получить несколько ступеней скорости движения электровоза.Основным аппаратом, с помощью которого машинист управляет электровозом, является контроллер машиниста, установленный в каждой кабине управления. Главная рукоятка контроллера служит для переключения тяговых электродвигателей с одной схемы соединения на другую и изменения величины пусковых сопротивлений. С помощью реверсивной рукоятки изменяется направление движения электровоза (ток в обмотках возбуждения тяговых электродвигателей изменяет направление). Чтобы предотвратить ошибки машиниста при управлении электровозом, рукоятки контроллера механически сблокированы между собой.Контроллер машиниста непосредственно не связан с силовой цепью электровоза. Все переключения в силовой цепи осуществляются приборами, имеющими электропневматические или электромагнитные приводы, связанные низковольтными электрическими цепями g контроллером. Такая система управления, называемая косвенной, дает возможность изолировать все устройства, находящиеся под высоким напряжением, и позволяет осуществлять управление с одного поста несколькими локомотивами путем параллельного соединения их цепей управления.На электровозах ЧС200 и ЧС6 управление тяговыми электродвигателями осуществляется с помощью клавишей.Включение и выключение вспомогательных машин, получающих ток от контактной сети, производится кнопками, установленными в кабине машиниста.Токоприемник соединяет силовую цепь электровоза с контактным проводом. Наиболее распространенный тип токоприемника представлен на рис. 99. В основании 2 укреплены валы 1 и 5 нижних подвижных рам 11, которые шарнирно соединены с верхними подвижными рамами 10, образуя замкнутую рычажно-шарнирную конструкцию. Управление токоприемником электропневматическое. Для подъема его необходимо подать сжатый воздух в цилиндр пневматического привода 9. При этом привод сжимает опускающую пружину 6 и освобождает валы U 5. При выпуске сжатого воздуха из цилиндра пружина 6, преодолевая сопротивление пружин 3 и 5, поворачивает вал 1 и опускает токоприемник. Амортизаторы 4 смягчают удар верхних рам об основание.Все электровозы имеют по два токоприемника, из них один запасной. В некоторых случаях, например при гололеде, электровоз работает одновременно на двух токоприемниках.Цепи тяговых двигателей от коротких замыканий и перегрузок защищают быстродействующий выключатель, дифференциальные реле и реле перегрузки.Вспомогательные машины электровоза (мотор-вентиляторы, мотор-компрессоры, мотор-генератор и генератор тока управления) приводятся в действие электродвигателями постоянного тока, работающими от контактной сети. Мотор-вентилятор служит для воздушного охлаждения пусковых резисторов и тяговых электродвигателей, что способствует более полному использованию их мощности.

Мотор-компрессор (рис. 100) питает тормозную систему поезда и пневматические устройства электровоза сжатым воздухом.Мотор-генератор применяют на электровозах с рекуперативным торможением для питания обмоток возбуждения тяговых электродвигателей при работе их в рекуперативном режиме.Генератор тока управления предназначен для питания цепей управления, наружного и внутреннего освещения и заряда аккумуляторной батареи, являющейся резервным источником питания тех же цепей.

8. От контактной сети переменного тока электровоз получает однофазный ток промышленной частоты 50 Гц, номинального напряжения 25 000 В. Электрическое оборудование такого электровоза отличается от оборудования электровоза постоянного тока главным образом наличием понижающего трансформатора и выпрямительной установки.Трансформаторы выполняют с интенсивным циркуляционным мас-ловоздушным охлаждением. Принцип работы такого охлаждения ясен из рис 101.В качестве выпрямителей обычно применяют кремниевые полупроводниковые вентили — диоды (рис 102, а). В последнее время начали использовать также силовые кремниевые вентили — тиристоры (рис 102, б), которые позволяют управлять процессом токопрохождения.Выпрямленное напряжение на зажимах тяговых электродвигателей не является постоянным во времени, а пульсирует; пульсация напряжения вызывает пульсацию выпрямленного тока. Значительная пульсация неблагоприятно влияет на работу тяговых электродвигателей, поэтому в их цепь включают дополнительные индуктивности — так называемые сглаживающие реакторы. Скорость электровоза переменного тока регулируется изменением напряжения, подводимого к тяговым электродвигателям, путем подключения их к различным выводам вторичной обмотки трансформатора или выводам автотрансформаторной обмотки. При таком способе регулирования отпадает надобность в пусковых реостатах и в переключениях двигателей. На электровозах переменного тока тяговые электродвигатели все время соединены между собой параллельно. Это улучшает тяговые свойства электровоза и упрощает электрическую схему.На электровозах переменного тока, помимо вспомогательного оборудования, применяемого на электровозах постоянного тока, есть еще и мотор-насосы, обеспечивающие циркуляцию масла, охлаждающего трансформатор и мотор-вентилятор охлаждения трансформатора и выпрямителя.Электродвигатели всех вспомогательных машин чаще всего трехфазные асинхронные. Трехфазный ток преобразовывается из однофазного с помощью специальных вращающихся или статических преобразователей, называемых расщепителями фаз.Применение переменного тока при электрификации железных дорог вызвало необходимость организации пунктов стыкования двух родов тока —однофазного напряжением 25 000 В и постоянного напряжением 3000 В. При этом станции стыкования оборудуются специальными устройствами для переключения напряжения в отдельных секциях контактной сети. Хотя при таком стыковании локомотивы сменяются быстро, однако усложняется и удорожается устройство контактной сети. Кроме того затрудняется работа станции. В ряде случаев целесообразно применение электровозов двойного питания, у которых возможны необходимые переключения электрического оборудования для работы на участках постоянного и переменного тока. К электровозам двойного питания относятся электровозы, ВЛ82 и В Л 82м соответственно мощностью 5200 и 6000 кВт с конструк» ционной скоростью 110 км/ч.

9.кпд тягового подвижного состава , характеризующий степень использования  энергоносителей для получения полезной работы , тем выше , чем совершеннее первичная энергетическая установка . КПД электрического подвижного состава состовляет 25-32% , КПД современных автономных локомотивов  в зависимости от типа тепловозного двигателя и степени  его использования достигает 25-31%

10.11. Электрифицированные железные дороги в нашей стране получают электроэнергию от энергосистем. Энергосистема — это совокупность крупных электрических станций, объединенных линиями электропередачи и совместно питающих потребителей электрической и тепловой энергией. Энергосистемы объединяют электростанции различных типов: тепловые, где используются разнообразные виды органического топлива, гидравлические и атомные. Следует отметить, что нагрузки электрической тяги отличаются большой равномерностью, а это способствует более стабильной работе энергосистем. От Единой энергетической системы нашей страны питаются электрические магистрали европейской части страны, Урала, Сибири. Питание от мощных энергосистем обеспечивает бесперебойность снабжения электроэнергией потребителей, в том числе и электрического подвижного состава. Трехфазный переменный ток напряжением 6—10 кВ от генераторов электростанции по кабелю проходит к повышающему трансформатору, здесь в зависимости от различных условий напряжение может быть повышено до 20, 35, 110, 220, 330, 500, 750 кВ. Эти номинальные значения напряжений предусмотрены действующими в СССР стандартами.Затем ток по линии электропередачи (ЛЭП) проходит к потребителям, в данном случае к тяговой подстанции. Если произойдет короткое замыкание на линии электропередачи или возникнут недопустимые перегрузки, высоковольтный выключатель отключит ее от электрической станции. Этот же выключатель используют для снятия напряжения с линии, например, при ее осмотре.Далее ток проходит через другой высоковольтный выключатель в первичную обмотку трансформатора тяговой подстанции, который понижает напряжение переменного трехфазного тока до значения, необходимого для нормальной работы электроподвижного состава (э. п. с).Устройство и работа тяговых подстанций дорог, электрифицированных на постоянном и переменном токе, резко различаются.На тяговой подстанции постоянного тока, которая показана на рисунке, переменный ток преобразуется в постоянный. Первоначально для этой цели использовали вращающиеся преобразователи, которые состояли из мощных двигателей переменного тока, установленных на одном валу с генераторами постоянного тока. Затем вместо тяжелых и громоздких машинных преобразователей стали применять ртутные выпрямители. В дальнейшем все ртутные выпрямители были заменены полупроводниковыми.Выпрямленное напряжение через специальный защитный аппарат — быстродействующий выключатель — и питающую линию (фидер) подводится к контактной сети. При включенных тяговых двигателях электровоза ток от вторичной обмотки трансформатора проходит через выпрямитель, быстродействующий выключатель, фидер, контактную сеть, пускорегулирующие аппараты и тяговые двигатели в рельсы. Чтобы получить замкнутую электрическую цепь, рельсы соединяют отсасывающей линией с нулевой точкой вторичной обмотки трансформатора.Быстродействующий выключатель автоматически отключает фидер, а следовательно, и контактную сеть в случае перегрузки и коротких замыканий последней. Кроме того, иногда необходимо отключать контактную сеть (снимать с нее напряжение) для производства каких-либо работ, для чего также отключают быстродействующий выключатель.Следовательно, тяговые подстанции дорог постоянного тока служат для по нижеиия напряжения, подводимого oi ЛЭП, преобразования переменноготокг в постоянный и распределения электрической энергии постоянного тока по участкам контактной сети. Если железная дорога электрифицирована на переменном токе промышленной частоты, то тяговая подстанция предназначена для понижения напряжения, подводимого ЛЭП, и распреде ления электрической энергии по участкам контактной сети. На линиях, электрифицированных на переменном токе замкнутый контур тока образуется присоединением одного конца первичное обмотки трансформатора, расположенного на электровозе, к контактной сети, а другого — к рельсу и далее через отсасывающую линию к подстанции. Устройство тяговых подстанций дорог переменного тока значительно проще, поскольку выпрямление напряжения для питания тяговых двигателей осуществляется на самом подвижном составе.  Коэффициент полезного действия электрической тяги выражается произведением к. п. д. отдельных звеньев системы питания электрифицированной железной дороги: электростанции, линии электропередачи, тяговой подстанции, контактной сети и самого электровоза. Если энергия поступает от тепловой электростанции, к. п. д. которой примерно 35%, то полный к. п. д. электрической тяги составляет около 28%. С тем же примерно к. п. д. работают электрифицированные железные дороги, которые начали получать энергию от атомных электростанций. Гидроэлектростанции, к. п. д. которых достигает 85%, питают примерно одну пятую часть электрифицированных железных дорог; к. п. д. электротяги составляет при этом 60—62%.

12. Все технологические процессы любого производства связаны с потреблением энергии. На их выполнение расходуется подавляющая часть энергетических ресурсов.Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.Преобразование энергии различных видов в электрическую происходит на электростанциях. Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, гидроаккумулирующие, газотурбинные, а также маломощные электрические станции местного значения – ветряные, солнечные, геотермальные, морских приливов и отливов, дизельные и др.Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.При экономичной работе ТЭС, т.е. при одновременном отпуске потребителем оптимальных количеств электроэнергии и теплоты, их КПД достигает более 70 %. В период, когда полностью прекращается потребление теплоты (например, в неотопительный сезон), КПД станции снижается.Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.Различают ГЭС плотинного и деривационного типов. Плотинные ГЭС применяют на равнинных реках с небольшими напорами, деривационные (с обходными каналами) – на горных реках с большими уклонами и при небольшом расходе воды. Следует отметить, что работа ГЭС зависит от уровня воды, определяемого природными условиями.Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.Большинство электростанций объединены в энергетические системы, к каждой из которых предъявляются следующие требования:Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.Достаточная пропускная способность линий электропередач (ЛЭП).Обеспечение бесперебойного электроснабжения при высоком качестве энергии.Экономичность, безопасность и удобство в эксплуатации.Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии , электрифицированный транспорт и др.).Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.

13. Электродвигатели постоянного тока напрямую питаются от контактной сети. Регулирование осуществляется подключением резисторов, перегруппировкой двигателей и ослаблением возбуждения. В последние десятилетия стало распространяться импульсное регулирование, позволяющее избежать потерь энергии в резисторах.Вспомогательные электродвигатели (привод компрессора, вентиляторов и др.) обычно также питаются напрямую от контактной сети, поэтому они получаются очень большими и тяжёлыми. В некоторых случаях для их питания используют вращающиеся или статические преобразователи (например, на электропоездах ЭР2Т, ЭД4М, ЭТ2М используется мотор-генератор, преобразующий постоянный ток 3000 В в трёхфазный 220 В 50 Гц).Простота электрооборудования, низкий удельный вес и высокий КПД обусловили широкое распространение этой системы в ранний период электрификации.Недостатком системы является сравнительно низкое напряжение контактной сети, так как для передачи той же мощности при меньшем напряжении требуется пропорционально больший ток. Это вынуждает использовать большее суммарное сечение контактных проводов и подводящих кабелей, увеличивать площадь контакта с пантографом электровоза за счет увеличения числа проводов в подвеске контактной сети до 2-х и даже 3-х (например, на подъемах). Кроме того система характеризуется малыми расстояниями между тяговыми подстанциями, которые хоть и автоматизированы, но требуют обслуживания при эксплуатации, и это расстояние уменьшается всего до нескольких километров на грузонапряженных участках, особенно в горных условиях.На железных дорогах в основном используется напряжение =3000 (3300) В и =1500 (1650) В. Первоначально первые электропоезда магистральных железных дорог питались постоянным напряжением =1200 В. В начале 70-х в СССР на Закавказской железной дороге были проведены практические исследования с возможностью электрификации на постоянном токе напряжением =6000 В.Железные дороги России и стран бывшего Советского Союза, электрифицированные по системе постоянного тока используют напряжение =3 кВ (то есть =3000 В) .Трамваи, троллейбусы используют постоянное напряжение =550 (600) В, метрополитен =750 (825) В

14. В ряде европейских стран (Германия, Швейцария и др.) используется система однофазного переменного тока 15 кВ 16⅔ Гц. Пониженная частота позволяет использовать коллекторные двигатели переменного тока. Двигатели питаются от вторичной обмотки трансформатора без каких-либо преобразователей. Вспомогательные электродвигатели (для компрессора, вентиляторов и др.) также обычно коллекторные, питаются от отдельной обмотки трансформатора.Недостатком системы является необходимость преобразования частоты тока на подстанциях или строительство отдельных электростанций для железных дорог. Наиболее экономичным было бы использование тока промышленной частоты, однако его внедрение встретило много трудностей. Поначалу пытались использовать коллекторные электродвигатели переменного тока, мотор-генераторы (однофазный синхронный электродвигатель плюс генератор постоянного тока, от которого работали тяговые электродвигатели постоянного тока), вращающиеся преобразователи частоты (дающие ток для тяговых асинхронных электродвигателей). Коллекторные электродвигатели плохо работали на токе промышленной частоты, а вращающиеся преобразователи были слишком тяжёлыми.Система однофазного тока промышленной частоты (25 кВ 50 Гц) начала широко применяться только после создания во Франции в 1950-х годах электровозов со статическими ртутными выпрямителями (игнитронах; позже они заменялись на более современные кремниевые выпрямители — из экологических и экономических соображений); затем эта система распространилась и во многих других странах (в том числе в СССР).При выпрямлении однофазного тока получается не постоянный ток, а пульсирующий, поэтому используются специальные двигатели пульсирующего тока, а в схеме имеются сглаживающие реакторы (дроссель), снижающий пульсации тока, и резисторы постоянного ослабления возбуждения, включенные параллельно обмоткам возбуждения двигателей и пропускающие переменную составляющую пульсирующего тока, которая лишь вызывает ненужный нагрев обмотки.Для привода вспомогательных машин используют либо двигатели пульсирующего тока, питающиеся от отдельной обмотки трансформатора через выпрямитель, либо промышленные асинхронные электродвигатели, питающиеся от расщепителя фаз (такая схема была распространена на французских и американских электровозах, а с них была перенесена на советские) или конденсаторов (применена, в частности, на российских электровозах ВЛ65, ЭП1, 2ЭС5К).Недостатками системы являются значительные электромагнитные помехи для линий связи, а также неравномерная нагрузка фаз внешней энергосистемы. Для повышения равномерности нагрузки фаз в контактной сети чередуются участки с разными фазами; между ними устраивают нейтральные вставки — короткие, длиной несколько сотен метров, участки контактной сети, которые подвижной состав проходит с выключенными двигателями, по инерции. Они сделаны для того, чтобы пантограф не перемыкал находящийся под высоким линейным (межфазным) напряжением промежуток между секциями в момент перехода с провода на провод. При остановке на нейтральной вставке на неё возможна подача напряжения от передней по ходу секции контактной сети.Железные дороги России и стран бывшего Советского Союза, электрифицированные по системе переменного тока используют напряжение ~25 кВ (то есть ~25000 В) частотой 50 Гц.

15. Разнообразие систем электроснабжения вызвало появление пунктов стыкования (систем тока, напряжений, частоты тока). При этом возникло несколько вариантов решения вопроса организации движения через такие пункты. Выявились 3 основные направления:

1. Оборудование станции стыкования переключателями, позволяющими подавать на отдельные участки контактной сети тот или иной род тока. Например, поезд прибывает с электровозом постоянного тока, затем этот электровоз отцепляется и уезжает в оборотное депо или тупик для отстоя локомотивов. Контактную сеть на этом пути переключают на переменный ток, сюда заезжает электровоз переменного тока и отправляется с поездом. Недостатком такого способа является удорожание электрификации и содержание устройств электроснабжения, а также требует смены локомотива.

2. Использование многосистемного подвижного состава. При этом стыкование по контактной сети делается за пределами станции. Данный способ позволяет проходить пункты стыкования без остановки (хоть и, как правило, на выбеге). Но стоимость таких электровозов выше, а содержание дороже, кроме того, многосистемные электровозы имеют больший вес (что, однако, малоактуально на железной дороге, где нередка добалластировка локомотивов для увеличения сцепного веса). В СССР и странах СНГ были выпущены мелкими сериями такие типы подвижного состава, как электровозы ВЛ82 и ВЛ82м, ВЛ61д (постоянный ток напряжением 3000 В и однофазный 25 000 В), ВЛ19 и Ср (постоянный ток напряжением 3000 В и 1500 В). В Западной Европе встречается четырёхсистемный ЭПС (постоянный ток 1500 В, постоянный ток 3000 В, переменный ток 25 кВ 50 Гц, переменный ток 15 кВ 16⅔ Гц). В настоящее время в России налажено производство только пассажирских двухсистемных электровозов ЭП10 (постоянный ток 3000 В и переменный ток 25 кВ 50 Гц), которые выпускает НЭВЗ.

3. Применение тепловозной вставки — оставление между участками с разными системами электроснабжения небольшого тягового плеча, обслуживаемого тепловозами. На практике применяется на участке Кострома — Галич протяженностью 126 км: в Костроме постоянный ток, в Галиче — переменный; транзитом курсируют поезда Москва — Хабаровск и Кострома — Шарья. При таком способе «стыкования» значительно ухудшаются условия эксплуатации линии: в два раза повышается время стоянки составов, снижается эффективность электрификации из-за содержания и пониженной скорости тепловозов.

16.

1 — линия эпектропередач; 2 — тяговая подстанция; 3, 4 — питающие линии; 5 — отсасывающая линия, 6 — рельсы; 7 — локомотив.

17. Тяговые подстанции (ТП) являются одним из важнейших устройств системы тягового электроснабжения (СТЭ). Их питание осуществляется от системы внешнего электроснабжения (СВЭ), а потребителем преобразованной электроэнергии является электроподвижной состав (ЭПС) железных дорог. Применяются также тяговые подстанции для питания городского электрического транспорта (ГЭТ) и электропоездов метрополитена. Тяговая подстанция — электрическая подстанция, предназначенная в основном для питания транспортных средств на электрической тяге через контактную сеть (согласно ПЭЭП). От ТП получают питание и другие железнодорожные нетяговые потребители, а также некоторые районные нежелезнодорожные потребители. Тяговые подстанции принято классифицировать по ряду признаков (рис. 1). Приведенная на рис. 1 классификация тяговых подстанций может быть дополнена делением подстанций и по ряду других признаков: по способу управления (телеуправляемые и нетелеуправляемые); по способу обслуживания (с постоянным дежурным персоналом, с дежурством на дому, без дежурного персонала); по возможности перемещения (стационарные и передвижные). Опорная ТП получает питание от СВЭ по трем и более линиям электропередачи напряжением 110 или 220 кВ. Промежуточная проходная (транзитная) ТП получает питание по одной линии электропередачи, в рассечку которой она включена, от двух опорных или районных подстанций. Промежуточная ответвительная (отпаечная) ТП получает питание по двум линиям (или цепям ЛЭП) напряжением 110 или 220 кВ, к которым она присоединена ответвлениями (отпайками). Концевая (тупиковая) ТП получает питание по двум радиальным линиям от другой тяговой или районной подстанции. При питании подстанций по одноценной ЛЭП от двух опорных подстанций между ними можно располагать до трех проходных ТП

18. Контактная сеть представляет собой комплекс устройств для передачи электроэнергии от тяговых подстанций к ЭПС через токоприемники. Она является частью тяговой сети и для рельсового электрифицированного транспорта обычно служит ее фазой (при переменном токе) или полюсом (при постоянном токе); другой фазой (или полюсом) служит рельсовая сеть. Контактная сеть может быть выполнена с контактным рельсом или с контактной подвеской. В контактной сети с контактной подвеской основными являются следующие элементы: провода – контактный провод, несущий трос, усиливающий провод и пр.; опоры; поддерживающие и фиксирующие устройства; гибкие и жесткие поперечины (консоли, фиксаторы); изоляторы и арматура различного назначения. Контактную сеть с контактной подвеской классифицируют по видам электрифицированного транспорта, для которого она предназначена, – ж.-д. магистрального, городского (трамвая, троллейбуса), карьерного, рудничного подземного рельсового транспорта и др.; по роду тока и номинальному напряжению питающегося от сети ЭПС; по размещению контактной подвески относительно оси рельсового пути – для центрального токосъема (на магистральном ж.-д. транспорте) или бокового (на путях промышленного транспорта); по типам контактной подвески – с простой, цепной или специальной; по особенностям выполнения анкеровки контактного провода и несущего троса, сопряжений анкерных участков и др.Контактная сеть предназначена для работы на открытом воздухе и поэтому подвержена воздействию климатических факторов, к которым относятся: температура окружающей среды, влажность и давление воздуха, ветер, дождь, иней и гололед, солнечная радиация, содержание в воздухе различных загрязнений. К этому необходимо добавить тепловые процессы, возникающие при протекании тягового тока по элементам сети, механическое воздействие на них со стороны токоприемников, электрокоррозионные процессы, многочисленные циклические механические нагрузки, износ и др. Все устройства контактной сети должны быть способны противостоять действию перечисленных факторов и обеспечивать высокое качество токосъема в любых условиях эксплуатации. В отличие от других устройств электроснабжения, контактная сеть не имеет резерва, поэтому к ней по надежности предъявляют повышенные требования, с учетом которых осуществляются ее проектирование, строительство и монтаж, техническое обслуживание и ремонт.

19.

20.24. Контактная подвеска – одна из ос новных частей контактной сети, представляет собой систему проводов, взаимное расположение которых, способ механического соединения, материал и сечение обеспечивают необходимое качество токосъема. Конструкция контактной подвески (КП) определяется экономической целесообразностью, эксплуатационными условиями (максимальной скоростью движения ЭПС, наибольшей силой тока, снимаемого токоприемниками), климатическими условиями. Необходимость обеспечения надежного токосъема при возрастающих скоростях движения и мощности ЭПС определила тенденции изменения конструкций подвесок: сначала простые, затем одинарные с простыми струнами и более сложные – рессорные одинарные, двойные и специальные, в которых для обеспечения требуемого эффекта, гл. обр. выравнивания вертикальной эластичности (или жесткости) подвески в пролете, используются пространственно-вантовые системы с дополнительным тросом или другие. При скоростях движения до 50 км/ч удовлетворительное качество токосъема обеспечивает простая контактная подвеска, состоящая только из контактного провода, подвешенного к опорам А и В контактной сети (рис. 8.10,а) или поперечным тросам.Качество токосъема во многом определяется стрелой провеса провода, зависящей от результирующей нагрузки на провод, которая складывается из собственного веса провода (при гололеде вместе со льдом) и ветровой нагрузки, а также от длины пролета и натяжения провода. На качество токосъема большое влияние оказывает угол а (чем он меньше, тем хуже качество токосъема), значительно изменяется контактное нажатие, появляются ударные нагрузки в опорной зоне, происходит усиленный износ контактного провода и токосъемных вставок токоприемника. Несколько улучшить токосъем в опорной зоне можно, применив подвешивание провода в двух точках (рис. 8.10,6), что при определенных условиях обеспечивает надежный токосъем при скоростях движения до 80 км/ч. Заметно улучшить токосъем при простой подвеске можно, только существенно уменьшив длину пролетов с целью снижения стрелы провеса, что в большинстве случаев неэкономично, либо применив специальные провода со значительным натяжением. В связи с этим применяют цепные подвески (рис. 8.11), в которых контактный провод подвешен к несущему тросу с помощью струн. Подвеска, состоящая из несущего троса и контактного провода, называется одинарной; при наличии вспомогательного провода между несущим тросом и контактным проводом – двойной. В цепной подвеске несущий трос и вспомогательный провод участвуют в передаче тягового тока, поэтому они соединены с контактным проводом электрическими соединителями либо токопроводящими струнами.Основной механической характеристикой контактной подвески принято считать эластичность – отношение высоты подъема контактного провода к приложенной к нему и направленной вертикально вверх силе. Качество токосъема зависит от характера изменения эластичности в пролете: чем она стабильнее, тем лучше токосъем. В простых и обычных цепных подвесках эластичность в середине пролета выше, чем у опор. Выравнивание эластичности в пролете одинарной подвески достигается установкой рессорных тросов длиной 12-20 м, на которых крепят вертикальные струны, а также рациональным расположением обычных струн в средней части пролета. Более постоянной эластичностью обладают двойные подвески, но они дороже и сложнее. Для получения высокого показателя равномерности распределения эластичности в пролете используют различные способы ее повышения в зоне опорного узла (установка пружинных амортизаторов и упругих стержней, торсионный эффект от скручивания троса и др.). В любом случае при разработке подвесок необходимо учитывать их диссипативные характеристики, т. е. устойчивость к воздействию внешних механических нагрузок. Контактная подвеска является колебательной системой, поэтому при взаимодействии с токоприемниками может находиться в состоянии резонанса, вызванного совпадением или кратностью частот ее собственных колебаний и вынужденных колебаний, определяемых скоростью проследования токоприемника по пролету с заданной длиной. При возникновении резонансных явлений возможно заметное ухудшение токосъема. Предельной для токосъема является скорость распространения механических волн вдоль подвески. В случае превышения этой скорости токоприемнику приходится взаимодействовать как бы с жесткой, недеформируемой системой. В зависимости от нормируемых удельных натяжений проводов подвески такая скорость может составлять 320-340 км/ч. Простые и цепные подвески состоят из отдельных анкерных участков. Закрепления подвески “на концах анкерных участков могут быть жесткими или компенсированными. На магистральных ж. д. применяют в основном компенсированные и полукомпенсированные подвески. В полукомпенсированных подвесках компенсаторы имеются только в контактном проводе, в компенсированных – еще и в несущем тросе. При этом в случае изменения температуры проводов (вследствие прохождения по ним токов, изменения температуры окружающей среды) стрелы провеса несущего троса, а следовательно, и вертикальное положение контактных проводов остаются неизменными. В зависимости от характера изменения эластичности подвесок в пролете стрелу провеса контактного провода принимают в диапазоне от 0 до 70 мм. Вертикальную регулировку полукомпенсированных подвесок осуществляют так, чтобы оптимальная стрела провеса контактного провода соответствовала среднегодовой (для данного района) температуре окружающего воздуха. Конструктивную высоту подвески – расстояние между несущим тросом и контактным проводом в точках подвеса – выбирают исходя из технико-экономических соображений, а именно – с учетом высоты опор, соблюдения действующих вертикальных габаритов приближения строений, изоляционных расстояний, особенно в зоне искусственных сооружений и др.; кроме того, должен быть обеспечен минимальный наклон струн при экстремальных значениях температуры окружающего воздуха, когда могут возникнуть заметные продольные перемещения контактного провода относительно несущего троса. Для компенсированных подвесок это возможно, если несущий трос и контактный провод выполнены из различных материалов. Для увеличения срока службы контактных вставок токоприемников контактный провод располагают в плане с зигзагом. Возможны различные варианты подвески несущего троса: в тех же вертикальных плоскостях, что и контактный провод (вертикальная подвеска), по оси пути (полукосая подвеска), с зигзагами, противоположными зигзагам контактного провода (косая подвеска). Вертикальная подвеска обладает меньшей ветроустойчивостью, косая – наибольшей, но она наиболее сложна при монтаже и обслуживании. На прямых участках пути в основном применяется полукосая подвеска, на криволинейных – вертикальная. На участках с особенно сильными ветровыми нагрузками широко используют ромбовидную подвеску, в которой два контактных провода, подвешенных к общему несущему тросу, располагаются у опор с противоположными зигзагами. В средних частях пролетов провода притянуты один к другому жесткими планками. В некоторых подвесках поперечная устойчивость обеспечивается применением двух несущих тросов, образующих в горизонтальной плоскости своего рода вантовую систему.За рубежом в основном применяют цепные одинарные подвески, в т. ч. на скоростных участках – с рессорными проводами, простыми разнесенными опорными струнами, а также с несущими тросами и контактными проводами, имеющими повышенные натяжения.

21.

22. 23.

24. По способу регулирования натяжения проводов цепная подвеска может быть:

некомпенсированной, когда контаткный провод и несущий трос анкеруют (закрепляют) на концевых опорах анкерного участка жестко и нет устройств для автоматического регулирования их натяжения;

полукомпенсированной, в которой часть проводов, например, контактный или контактный и вспомогательный, снабжена устройствами для автоматического регулирования натяжения — компенсаторами;

компенсированной, в которой все провода снабжены общими или отдельными для каждого провода компенсаторами.

25. Струна – элемент цепной контактной подвески, с помощью которого один из ее проводов (как правило, контактный) подвешивается к другому – несущему тросу. По конструкции различают: звеньевые струны, составленные из двух и более шар-нирно связанных звеньев жесткой проволоки; гибкие струны из гибкого провода или капронового каната; жесткие – в виде распорок между проводами, применяемые значительно реже; петлевые – из проволоки или металлической полосы, свободно подвешенной на верхнем проводе и жестко или шарнирно закрепленной в струновых зажимах нижнего (обычно контактного); скользящие струны, закрепленные на одном из проводов и скользящие вдоль другого. На отечественных ж. д. наибольшее распространение получили звеньевые струны из биметаллической сталемедной проволоки диаметром 4 мм. Недостатком их является электрический и механический износ в сочленениях отдельных звеньев. В расчетах эти струны не рассматриваются как токопроводящие. Такого недостатка лишены гибкие струны из медного или бронзового многожильного провода, жестко прикрепленные к струновым зажимам и выполняющие роль электрических соединителей, распределенных вдоль контактной подвески и не образующих существенных сосредоточенных масс на контактном проводе, что характерно для типовых поперечных электрических соединителей, используемых при звеньевых и других непроводящих ток струнах. Иногда применяют непроводящие струны контактной подвески из капронового каната, для крепления которых требуются поперечные электрические соединители. Скользящие струны, способные перемещаться вдоль одного из проводов, используют в полукомпенсированных цепных контактных подвесках с малой конструктивной высотой, при установке секционных изоляторов, в местах анкеровки несущего троса на искусственных сооружениях с ограниченными вертикальными габаритами и в других особых условиях. Жесткие струны обычно устанавливают только на воздушных стрелках контактной сети, где они выполняют роль ограничителя подъема контактного провода одной подвески относительно провода другой.

26. о взаимному расположению проводов, образующих цепную подвеску в плане, различают:

вертикальную цепную подвеску, в которой провода расположены в одной вертикальной плоскости или имеют небольшое (не более 0,5 м) смещение, и

косую, когда несущий трос значительно (угол наклона струн к вертикали в плоскости, перпендикулярной оси пути, превышает 20°) смещен относительно контактного провода.

Косая подвеска используется на кривых участках пути и позволяет существенно уменьшить углы изменения направления контактного провода у опор в местах расположения фиксаторов (устройств, удерживающих контактный провод в требуемом положении в горизонтальной плоскости). Это повышает эластичность контактной подвески в опорных узлах, что благоприятно сказывается на токосъёме. При определенных радиусах кривых косая контактная подвеска может даже выполняться без фиксаторов. Косая подвеска значительно сложнее в монтаже и эксплуатации; правильное её содержание возможно только при высокой квалификации обслуживающего персонала, так как она обладает свойством «опрокидывания» — эффект, когда контактный провод оказывается выше несущего.В зависимости от типа струн и их расположения у опор, цепная подвеска может быть:

с простыми опорными струнами, — струны устанавливают не далее 1-2 м от опор (см. рис. «Одинарная контактная подвеска» выше);

со смещёнными простыми опорными струнами, — струны удалены от опор более чем на 2 м. В одинарной подвеске опорные простые струны устанавливают на расстоянии 4-5 м от опоры, в двойной — 5-9 м;

рессорной, — в ней струны закреплены на рессорном проводе;

с упругими струнами, — струны подвешивают к несущему тросу с помощью упругих элементов, например гибких полимерных стержней или рычагов, скручивающих несущий трос;

демпфированной, — в её струнах у опор установлены демпферы.

27. Анкерный участок – участок контактной подвески, границами которого являются анкерные опоры. Деление контактной сети на анкерные участки необходимо для включения в провода устройств, поддерживающих натяжение проводов при изменении их температуры и осуществления продольного секционирования контактной сети. Это деление уменьшает зону повреждения в случае обрыва проводов контактной подвески, облегчает монтаж, техн. обслуживание и ремонт контактной сети. Длина анкерного участка ограничивается допустимыми отклонениями от задаваемого компенсаторами номинального значения натяжения проводов контактной подвески. Отклонения вызваны изменениями положения струн, фиксаторов и консолей. Например, при скоростях движения до 160 км/ч максимальная длина анкерного участка при двусторонней компенсации на прямых участках не превышает 1600 м, а при скоростях 200 км/ч допускается не более 1400 м. В кривых длина анкерных участков уменьшается тем больше, чем больше протяженность кривой и меньше ее радиус. Для перехода с одного анкерного участка на следующий выполняют неизолирующие и изолирующие сопряжения.

28.29. Секционирование контактной сети – разделение контактной сети на отдельные участки (секции), электрически разъединенные изолирующими сопряжениями анкерных участков или секционными изоляторами. Изоляция может быть нарушена во время прохода токоприемника ЭПС по границе раздела секций; если такое замыкание недопустимо (при питании смежных секций от различных фаз или принадлежности их к различным системам тягового электроснабжения), между секциями размещают нейтральные вставки. В условиях эксплуатации электрическое соединение отдельных секций осуществляют, включая секционные разъединители, установленные в соответствующих местах. Секционирование необходимо также для надежной работы устройств электроснабжения в целом, оперативного технического обслуживания и ремонта контактной сети с отключением напряжения. Схема секционирования предусматривает такое взаимное расположение секций, при котором отключение одной из них в наименьшей степени влияет на организацию движения поездов. Секционирование контактной сети бывает продольным и поперечным. При продольном секционировании осуществляют разделение контактной сети каждого главного пути вдоль электрифицированной линии у всех тяговых подстанций и постов секционирования. В отдельные продольные секции выделяют контактную сеть перегонов, подстанций, разъездов и обгонных пунктов. На крупных станциях, имеющих несколько электрифицированных парков или групп путей, контактная сеть каждого парка или групп путей образует самостоятельные продольные секции. На очень крупных станциях иногда выделяют в отдельные секции контактную сеть одной или обеих горловин. Секционируют также контактную сеть в протяженных тоннелях и на некоторых мостах с ездой понизу. При поперечном секционировании осуществляют разделение контактной сети каждого из главных путей на всем протяжении электрифицированной линии. На станциях, имеющих значительное путевое развитие, применяют дополнительное поперечное секционирование. Число поперечных секций определяется числом и назначением отдельных путей, а в ряде случаев и режимами трогания ЭПС, когда необходимо использовать площадь сечения контактных подвесок соседних путей. Секционирование с обязательным заземлением отключенной секции контактной сети предусматривают для путей, на которых могут находиться люди на крышах вагонов или локомотивов, либо путей, вблизи которых работают подъемно-транспортные механизмы (погрузочно-разгрузочные, экипировочные пути и др.). Для обеспечения большей безопасности работающих в этих местах соответствующие секции контактной сети соединяют с другими секциями секционными разъединителями с заземляющими ножами; эти ножи заземляют отключаемые секции при отключении разъединителей.На рис. 8.22 приведен пример схемы питания и секционирования станции, расположенной на двухпутном участке линии, электрифицированной на переменном токе. На схеме показаны семь секций – четыре на перегонах и три на станции (одна из них с обязательным заземлением при ее отключении). Контактная сеть путей левого перегона и станции получает питание от одной фазы энергосистемы, а путей правого перегона – от другой. Соответственно выполнено секционирование с помощью изолирующих сопряжений и нейтральных вставок. На участках, где требуется плавка гололеда, на нейтральной вставке устанавливают два секционных разъединителя с моторными приводами. Если плавка гололеда не предусмотрена, достаточно одного секционного разъединителя с ручным приводом.Для секционирования контактной сети главных и боковых сетей на станциях применяют секционные изоляторы. В некоторых случаях секционные изоляторы используют для образования на контактной сети переменного тока нейтральных вставок, которые ЭПС проходит, не потребляя тока, а также на путях, где длина съездов недостаточна для размещения изолирующих сопряжений. Соединение и разъединение различных секций контактной сети, а также соединение с питающими линиями осуществляют с помощью секционных разъединителей. На линиях переменного тока, как правило, применяют разъединители горизонтально-поворотного типа, на линиях постоянного тока – вертикально-рубящего. Управляют разъединителем дистанционно с пультов, установленных в дежурном пункте района контактной сети, в помещениях дежурных по станциям и в других местах. Наиболее ответственные и часто переключаемые разъединители установлены в сети диспетчерского телеуправления.Различают разъединители продольные (для соединения и разъединения продольных секций контактной сети), поперечные (для соединения и разъединения ее поперечных секций), фидерные и др. Их обозначают буквами русского алфавита (например, продольные -А, Б, В, Г; поперечные – П; фидерные – Ф) и цифрами, соответствующими номерам путей и секций контактной сети (например, П23). Для обеспечения безопасности проведения работ на отключенной секции контактной сети или вблизи нее (в депо, на путях экипировки и осмотра крышевого оборудования ЭПС, на путях погрузки и разгрузки вагонов и др.) устанавливают разъединители с одним заземляющим ножом.

30. Опоры контактной сети – конструкции для закрепления поддерживающих и фиксирующих устройств контактной сети, воспринимающие нагрузку от ее проводов и других элементов. В зависимости от вида поддерживающего устройства опоры разделяют на консольные (однопутного и двухпутного исполнения); стойки жестких поперечин (одиночные или спаренные); опоры гибких поперечин; фидерные (с кронштейнами только для питающих и отсасывающих проводов). Опоры, на которых отсутствуют поддерживающие, но имеются фиксирующие устройства, называются фиксирующими. Консольные опоры разделяют на промежуточные – для крепления одной контактной подвески; переходные, устанавливаемые на сопряжениях анкерных участков,- для крепления двух контактных проводов; анкерные, воспринимающие усилие от анкеровки проводов. Как правило, опоры выполняют одновременно несколько функций. Например, опора гибкой поперечины может быть анкерной, на стойках жесткой поперечины могут быть подвешены консоли. К стойкам опор можно закрепить кронштейны для усиливающих и других проводов. Опоры изготавливают железобетонными, металлическими (стальными) и деревянными. На отечественных ж. д. применяют в основном опоры из предварительно напряженного железобетона (рис. 8.24), конические центрифугированные, стандартной длины 10,8; 13,6; 16,6 м. Металлические опоры устанавливают в тех случаях, когда по несущей способности или по размерам невозможно использовать железобетонные (например, в гибких поперечинах), а также на линиях с высокоскоростным движением, где предъявляются повышенные требования к надежности опорных конструкций. Деревянные опоры применяют только как временные.Для участков постоянного тока железобетонные опоры изготавливают с дополнительной стержневой арматурой, расположенной в фундаментной части опор и предназначенной для уменьшения повреждений арматуры опор электрокоррозией, вызываемой блуждающими токами. В зависимости от способа установки железобетонные опоры и стойки жестких поперечин бывают раздельные и нераздельные, устанавливаемые непосредственно в грунт. Требуемая устойчивость нераздельных опор в грунте обеспечивается верхним лежнем или опорной плитой. В большинстве случаев применяют нераздельные опоры; раздельные используют при недостаточной устойчивости нераздельных, а также при наличии грунтовых вод, затрудняющих установку нераздельных опор. В анкерных железобетонных опорах применяют оттяжки, которые устанавливают вдоль пути под углом 45° и крепят к железобетонным анкерам. Железобетонные фундаменты в надземной части имеют стакан глубиной 1,2 м, в который устанавливают опоры и затем заделывают пазухи стакана цементным раствором. Для заглубления фундаментов и опор в грунт используют преимущественно способ вибропогружения. Металлические опоры гибких поперечин изготавливают обычно четырехгранной пирамидальной формы, их стандартная длина 15 и 20 м. Продольные вертикальные стойки из углового проката соединяют треугольной решеткой, выполненной также из уголка. В районах, отличающихся повышенной атмосферной коррозией, металлические консольные опоры длиной 9,6 и 11 м закрепляют в грунте на железобетонных фундаментах. Консольные опоры устанавливают на призматических трехлучевых фундаментах, опоры гибких поперечин – либо на раздельных железобетонных блоках, либо на свайных фундаментах с ростверками. Основание металлических опор соединяют с фундаментами анкерными болтами. Для закрепления опор в скальных грунтах, пучинистых грунтах районов вечной мерзлоты и глубокого сезонного промерзания, в слабых и заболоченных грунтах и т. п. применяют фундаменты специальных конструкций.

31. Консоль – поддерживающее устройство, закрепленное на опоре, состоящее из кронштейна и тяги. В зависимости от числа перекрываемых путей консоль может быть одно-, двух- и реже многопутной. Для исключения механической связи между контактными подвесками различных путей и повышения надежности чаще используют однопутные консоли. Применяют неизолированные, или заземленные консоли, при которых изоляторы находятся между несущим тросом и кронштейном, а также в стержне фиксатора, и изолированные консоли с изоляторами, размещенными в кронштейнах и тягах. Неизолированные консоли (рис. 8.25) по форме могут быть изогнутыми, наклонными и горизонтальными. Для опор, установленных с увеличенным габаритом, применяют консоли с подкосами. На сопряжениях анкерных участков при монтаже на одной опоре двух  консолей используют специальную траверсу. Горизонтальные консоли применяют в тех случаях, когда высота опор достаточна для закрепления наклонной тяги.  изолированных консолях (рис. 8.26) возможно проводить работы на несущем тросе вблизи них без отключения напряжения. Отсутствие изоляторов на неизолированных консолях обеспечивает большую стабильность положения несущего троса при различных механических воздействиях, что благоприятно сказывается на процессе токосъема. Кронштейны и тяги консолей крепят на опорах с помощью пят, допускающих их поворот вдоль оси пути на 90° в обе стороны относительно нормального положения.

32. Гибкая поперечина – поддерживающее устройство для подвешивания и фиксации проводов контактной сети, расположенных над несколькими путями. Гибкая поперечина представляет собой систему тросов, натянутых между опорами поперек электрифицированных путей (рис. 8.27). Поперечные несущие тросы воспринимают все вертикальные нагрузки от проводов цепных подвесок, самой поперечины и других проводов. Стрела провеса этих тросов должна быть не менее Vio длины пролета между опорами: это уменьшает влияние температуры на высоту крепления контактных подвесок. Для повышения надежности поперечин используют не менее двух поперечных несущих тросов.Фиксирующие тросы воспринимают горизонтальные нагрузки (верхний – от несущих тросов цепных подвесок и других проводов, нижний – от контактных проводов). Электрическая изоляция тросов от опор позволяет обслуживать контактную сеть без отключения напряжения. Все тросы для регулирования их длины закрепляют на опорах с помощью стальных штанг с резьбой; в некоторых странах с этой целью применяют специальные демпферы, преимущественно для крепления контактной подвески на станциях.

33. Жесткая поперечина – служит для подвешивания проводов контактной сети, расположенных над несколькими (2-8) путями. Жесткая поперечина выполняется в виде блочной металлической конструкции (ригеля), установленной на двух опорах (рис. 8.28). Такие поперечины используют также для разрекрываемого пролета. Ригель со стойками соединен шарнирно или жестко с помощью подкосов, позволяющих разгрузить его в середине пролета и уменьшить расход стали. При размещении на ригеле осветительных приборов на нем выполняют настил с перилами; предусматривают лестницу для подъема на опоры обслуживающего персонала. Устанавливают жесткие поперечины гл. обр. на станциях и раздельных пунктах.

34.

35.36. Вагоном называется единица железнодорожного подвижного состава, предназначенная для перевозки пассажиров или грузов.

Вагонный парк характеризуется сложностью и многообразием типов и конструкций. Это вызвано необходимостью удовлетворения различных требований при перевозках: защиты ряда грузов от атмосферных воздействий, сохранения качества скоропортящихся грузов, обеспечения комфорта пассажирам и др.

Вагоны классифицируются по четырем основным признакам: назначению, месту эксплуатации, осности и ширине колеи.

По назначению вагоны разделяются на две основные группы: пассажирские и грузовые.

Парк пассажирских вагонов составляют

несамоходные вагоны, перемещаемые локомотивами,

и самоходные, имеющие свою энергетическую установку или получающие энергию от контактной сети.

К несамоходным пассажирским вагонам относятся вагоны дальнего следования, межобластного и пригородного сообщения, вагоны-рестораны, багажные, почтовые, почтово-багажные и специальные. Вагоны дальнего следования — это некупейные и купейные вагоны со спальными жесткими местами, а также купейные с мягкими спальными местами. Вагоны межобластного сообщения используют для перевозки пассажиров на расстояние до 700 км. Эти вагоны строятся открытого типа или купейными и оборудуются мягкими креслами для сидения. В вагонах пригородного сообщения перевозят пассажиров на расстояние до 150 км. Пригородные поезда локомотивной тяги формируются из вагонов с креслами или жесткими местами для сидения. Вагоны-рестораны предназначены для организации питания пассажиров в пути следования, почтовые — для перевозки почтовых грузов, багажные — для багажа. От вагонов для перевозки пассажиров они отличаются планировкой и внутренним оборудованием. К специальным пассажирским вагонам относятся: служебные и санитарные вагоны, вагоны-клубы, вагоны-электростанции и др.Самоходные пассажирские вагоны — это вагоны электро- и дизель-поездов, а также автомотрисы. Они используются для пригородного и местного сообщений. 

Парк грузовых вагонов состоит из универсальных и специальных вагонов следующих типов:

крытые — для грузов, требующих защиты от атмосферных воздействий и механических повреждений;

полувагоны — для навалочных, штабельных и штучных грузов, не требующих защиты от атмосферных воздействий;

платформы — для длинномерных, штабельных, громоздких, сыпучих и колесно-гусеничных грузов, не требующих защиты от атмосферных воздействий;

цистерны — для жидких, газообразных и пылевидных грузов;

изотермические — для скоропортящихся грузов;

хопперы — для массовых сыпучих грузов;

транспортеры — для крупногабаритных и тяжеловесных грузов, которые по своим размерам или массе не могут быть перевезены в других вагонах;

думпкары (вагоны-самосвалы) — для транспортировки и автоматизированной разгрузки горнорудных и земляных пород.

Универсальные вагоны предназначены для перевозки широкой номенклатуры грузов, специальные — для отдельных видов или групп сходных по свойствам грузов. К универсальным вагонам относятся крытые вагоны с дверями в боковых стенах, полувагоны с люками в полу, платформы с откидными бортами и рефрижераторные изотермические вагоны. Специальные вагоны — это цистерны, хопперы (крытые и открытые), транспортеры, думпкары, а также крытые вагоны для перевозки скота, стали и бумаги в рулонах, полувагоны; глухим кузовом, платформы и крытые вагоны для перевозки автомобилей, платформы для крупнотоннажных контейнеров и лесоматериалов, изотермические вагоны для перевозки молока, живой рыбы, вина и др. По месту эксплуатации различают вагоны магистральные (общесетевые), промышленного и городского транспорта.Магистральные вагоны допускаются для движения по всей сети железных дорог России и стран СНГ. Вагоны промышленного транспорта предназначены для эксплуатации на подъездных путях промышленных предприятий. Однако те из них, которые отвечают требованиям норм расчета и проектирования вагонов магистральных железных дорог и Правил технической эксплуатации железных дорог (ПТЭ), имеют право выхода на пути МПС. К вагонам промышленного транспорта относятся думпкары, используемые на горнорудных и угольных предприятиях, а также все специальные грузовые вагоны, эксплуатируемые на промышленных предприятиях. Вагоны городского транспорта обеспечивают перевозку пассажиров по городским и, в ряде случаев, пригородным железнодорожным путям — наземным и подземным. К вагонам городского транспорта относят: трамвайные вагоны — для перевозки населения по рельсовым путям, оборудованным контактной подвеской; вагоны метрополитена — для массовой перевозки пассажиров на линиях метрополитена, оборудованных третьим токоведущим рельсом.

По осности (числу колесных пар) вагоны подразделяются на двухосные, четырехосные, шестиосные, восьмиосные и многоосные. Большинство вагонного парка составляют четырехосные вагоны.

По ширине колеи различают вагоны широкой (более 1435 мм), нормальной (1435 мм) и узкой (менее 1435 мм) колеи. Вагоны России, стран СНГ, Финляндии и Китая строятся для колеи 1520 мм, США, Канады и большинства стран Европы — для колеи 1435 мм.

37. Это колесные пары, буксы с подшипниками и рессорное подвешивание. У четырехосных и многоосных вагонов все эти части объединены в тележки.Колесная пара, состоящая из оси и двух наглухо укрепленных на ней колес, воспринимает все нагрузки, передающиеся от вагона на рельсы.Колесные пары (рис. 140) формируются из цельнокатаных стальных колес, обладающих высокой эксплуатационной надежностью, с диаметром по кругу катания 1050 и 960 мм.Поверхность катания колес (рис. 141) имеет коническую форму (1 : 20 в середине и 1 : 7 у наружного края), что способствует сохранению во время движения среднего положения колесной пары в колее, облегчает прохождение в кривых и предотвращает образование неравномерного проката по ширине колеса. С внутренней стороны по отношению к колее поверхность катания ограничена выступающей частью — гребнем, не допускающим схода колесной пары с рельсов. Поверхность катания колеса, соприкасаясь с рельсом сравнительно небольшой площадью (около 2,5 см2), испытывает значительные контактные напряжения при проходе по рельсовым стыкам, при движении по кривым и прямым участкам пути вследствие возникновения сил трения из-за разности диаметров колес, насаженных на одну ось. Большие силы трения возникают также на поверхности катания при соприкосновении с ней тормозной колодки в момент торможения.На работу колеса влияет его диаметр и толщина обода. При большом диаметре увеличивается поверхность соприкосновения колеса с рельсом, что приводит к уменьшению их износа. Кроме того, уменьшается частота вращения колесной пары и снижается нагрев колес тормозными колодками. Вместе с тем с увеличением диаметра колеса и толщины обода возрастает масса колес и воздействие на путь необ-рессоренных частей вагона, а также повышается тара.Вагонные колеса насаживают на ось так, чтобы расстояние между внутренними вертикальными гранями их ободьев составляло для вагонов нормальной колеи 1440 мм ± 3 мм. Для повышения плавности хода и уменьшения боковых сил, передаваемых от колес на рельсы, у вагонов скорых поездов (от 121 до 140 км/ч) нижний допуск уменьшен до 1 мм.

38 Кузов вагона предназначен для размещения пассажиров или грузов. Его конструкция зависит от типа вагона. У многих вагонов основанием кузова является рама, состоящая в основном из совокупности продольных и поперечных балок, жёстко соединённых между собой. Рама кузова опирается на ходовые части, на ней размещены ударно-тяговые приборы и часть тормозного оборудования. Ударно-тяговые приборы предназначены для сцепления вагонов между собой и с локомотивом, для передачи и смягчения действия растягивающих (тяговых) и сжимающих усилий от локомотива и от одного вагона к другому. Современным ударно-тяговым прибором является автосцепное устройство, выполняющее основные функции ударных (буфера) и тяговых (сцепка) приборов.

39. Классификация приборов тормозного оборудования.

Тормозное оборудование подвижного состава разделяется на пневматическое, приборы которого работают под давлением сжатого воздуха, и механическое - тормозная рычажная передача. Пневматическое тормозное оборудование по своему назначению делится на следующие группы:

Приборы, служащие для получения и хранения сжатого воздуха: компрессоры; главные резервуары.Приборы управления тормозами: поездные краны машиниста; кран вспомогательного локомотивного тормоза; разобщительный, комбинированный краны;  устройство блокировки тормозов;  регулятор давления.Приборы торможения: воздухораспределители; запасные резервуары; авторежимы; тормозные цилиндры; реле давления (повторители).Воздухопроводы и арматура: магистрали и отводы от магистралей; воздушные фильтры; разобщительные, концевые и трехходовые краны, стоп-краны; обратные, переключательные. предохранительные и выпускные клапаны; пылеловки и влаго-маслоотделители; соединительные рукава. Приборы контроля: манометры; ЭПК автостопа; локомотивные скоростемеры; пневмоэлектрический датчик контроля целостности тормозной магистрали; датчики-реле давления; сигнализаторы оттека тормозов.Механическая рычажная передачи включает в себя следующие основные детали: триангели или траверсы; вертикальные и горизонтальные рычаги; винтовые и гладкие тяги; затяжки (распорки); тормозные башмаки и колодки; подвески и предохранительные скобы; автоматические регуляторы

40.




1. тема комплексних рішень і заходів з реалізації цілей організації і кожного працівника яка дозволяє- ~ забе
2. КУРСОВОЙ ПРОЕКТ Применение ионообменного процесса для извлечения органических кислот из растворов
3. МЫСЛЬ 1991 в кратком изложении ББК 87
4. РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Утверждено
5. Одним з головних чинників які спонукали її стати більш цивілізованою і відмовитися від язичництва було баж
6. совокупность политических институтов и организаций норм ценностей и отношений в которых реализуется поли
7. тема внутримикрорайонных проездов тротуаров дорожек произведено озеленение территории размещены площадк
8. Высшая банковская школа ОТЧЕТ прохождения производственной практики Фоми
9. тайская столица в новом свете Понять душу Бангкока и Таиланда значит понять историческую значимость во
10. 2 Расчет затухания участков регенерации
11. Бухгалтерский баланс и модели его построения
12. Проблемы развития малых предприятий в России
13.  Краткая характеристика предметной области
14. Контрольная работа ’ 1 по курсу Древние языки и культуры.html
15. 1111 Компания провела свою первую презентацию дав старт совершенно новой теории и практике сетевого бизнеса
16. а структура стойких сравнительно постоянных психических свойств определяющих особенности отношений и по
17. Реферат по философии на тему- Диалектический характер процесса познания
18. Принципы лечения кожных болезней.html
19. Тема 3. Экономические системы Вопросы- Сущность экономической системы
20. основание головного мозга имеет сложный рельеф соответствующий черепным ямкам внутреннего основания чере