Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

момент инерции тела I относительно произвольной оси равен сумме момента инерции этого тела IС относительно

Работа добавлена на сайт samzan.net:


20. момент инерции тела I относительно произвольной оси равен сумме момента инерции этого тела IС относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния  между осями

.

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

 

Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

  Сивухин Д.В. т.1 стр. 193

  Википедия

Теорема Гюйгенса — Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

21. В качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния х (в этом случае все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от х2, умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной dx, то соответствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

22. Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

 

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

23.Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы  

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы  

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы  

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

24. При вращении твёрдого тела относительно неподвижной оси, все точки тела движутся по плоским круговым траекториям. Выделим частицу mi тела, вращающегося вокруг оси z (рис. 9.2). Положение частицы зададим радиус-вектором относительно произвольного центра 0, лежащего на оси вращения. Ri — радиус окружности, по которой движется рассматриваемая точка. Vi = wRi — её линейная скорость.

Рис. 9.2

Рассматривая твёрдое тело как неизменную систему материальных точек, для каждой из них можно записать уравнение моментов:

                         .                  (9.1)

В левой части этого уравнения — момент внешних сил относительно оси z, действующий на частицу mi. Справа — производная по времени проекции момента импульса частицы на ту же ось.

Момент импульса частицы относительно центра 0 (по определению) равен:

.

Заметим, что для всех частиц , поэтому легко вычислить модуль этого вектора Li:

Li = miriVi = miriwRi.

Так как образует угол ai с осью z, то проекция этого вектора на ось z равна:

           = LiCosai = miriwRiCosai = miwRi(riCosai) = miw.         (9.2)

Учитывая этот результат, перепишем уравнение (9.1) ещё раз:

                         .             (9.3)

Подобные уравнения могут быть составлены для всех точек твёрдого тела.

Просуммировав все эти уравнения, получим закон вращательного движения твёрдого тела:

или

                         .             (9.4)

Здесь:    Mz — суммарный момент всех внешних сил, вращающих твёрдое тело вокруг оси z;

     wz — угловая скорость вращения;

      — новая характеристика твёрдого тела — его момент инерции относительно оси вращения;

     Lz = Izwz — момент импульса тела относительно оси z.

Если момент инерции твёрдого тела Iz не меняется, уравнению (9.4) можно придать такой вид:

                         .                  (9.5)

Здесь ε =— угловое ускорение вращающегося тела.

Уравнение (9.5) называется основным уравнением динамики для твёрдого тела, вращающегося вокруг неподвижной оси.

Mz = Iz×ε                (9.6)

Трудно не заметить сходство этого уравнения со вторым законом Ньютона для движения точки:

Fz = maz 

Сравнивая эти два выражения, отметим, что в уравнении для вращательного движения в качества «силы» выступает момент силы, вместо линейного ускорения — угловое, вместо массы используется момент инерции Iz.

Сходство этих уравнений можно продолжить, записав их иначе (9.2)

Здесь:    Lz = Iz wx — момент импульса тела относительно оси z,

     Pz = mVz — проекция вектора импульса частицы на ось z.

Во вращательном движении аналогом импульса Р является момент импульса L.

Рассмотренные аналогии позволяют назвать уравнение (9.6) уравнением второго закона динамики (Ньютона) для вращательного движения:

момент внешних сил, вращающих тело вокруг данной оси, равен моменту инерции тела относительно этой оси, умноженному на угловое ускорение тела.

Вернемся ещё раз к уравнению (9.4):

.

Оно в равной степени справедливо как для твердого тела, так и для системы тел. Если момент внешних сил относительно оси z равен нулю, то момент импульса системы относительно этой же оси будет оставаться постоянным.

Mz = 0, Þ Þ Lz = Izwz = сonst.

Это  закон сохранения момента импульса — аналог закона сохранения импульса замкнутой системы. Но есть между этими законами одно существенное различие. Постоянство импульса частицы (если её масса не меняется) означает неизменность её линейной скорости:

p = mV = сonst. Þ V = сonst.

Если же не меняется момент импульса тела (Lz), то это не означает постоянства угловой скорости:

Lz = Izw = сonst.

Изменение момента инерции вращающегося тела приведёт к изменению его угловой скорости даже в случае отсутствия внешних вращающих моментов. При этом сохранится неизменным произведение Iz × w = сonst., то есть угловая скорость окажется обратно пропорциональной моменту инерции тела (системы):

.

Известно много примеров, иллюстрирующих эту особенность закона сохранения момента импульса: вращение фигуристов и балерин, опыты на скамье Жуковского, сальто-мортале гимнастов и т.п.

25. Рассмотрим вращение тела вокруг неподвижной оси, которую назовем осью Z (рис.). Линейная скорость точки с массой mi, равна vi = ωR, где R, —расстояние точки до оси Z. Для кинетической энергии i-й материальной точки тела получаем выражение:

.                        

Полная кинетическая энергия тела

.                    

Поскольку входящая сюда сумма представляет собой момент инерции относительно оси Z, получаем:

                                         (1.100)

Вычислим работу, совершаемую внешней силой при вращении твердого тела. Элемент работы .

Последнее выражение есть момент внешней силы N , таким образом,

.                                       (1.101)

Полная работа может быть вычислена с помощью следующих формул:

.                                               (1.202)

Приведем в заключение формулу, описывающую кинетическую энергию тела, совершающего плоское движение — поступательное, со скоростью Vc и вращение с частотой ω):

                                        (1.103)

Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции.

Гироско́п (от др.-греч. γῦρος — круг + σκοπέω — смотрю) — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчета. Простейший пример гироскопа — юла (волчок).

26.  Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

  1.  Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
  2.  Атомы и молекулы находятся в непрерывном хаотическом движении.
  3.  Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

27. Количество вещества (моль вещества)

Моль (моль)

1 моль - такое количество вещества, которое содержит 6,02 ´ 1023 молекул (число Авогадро), что соответствует числу атомов углерода в 0,012 кг изотопа 12С

Молярная концентрация вещества

Моль на кубометр или моль на литр (моль/м3 ; моль/л)

Представляет собой отношение количества вещества к объему раствора.

1 моль/л - такая молярная концентрация, которая соответствует содержанию одного моля вещества в одном литре раствора.

Массовая концентрация вещества

грамм на литр; грамм на кубический метр (г/л; г/м3)

Масса растворенного вещества, находящаяся в единице объема раствора.

1 г/м3 - массовая концентрация, соответствующая содержанию одного грамма растворенного вещества в одном кубометре раствора.

28. АБСОЛЮТНАЯ ТЕМПЕРАТУРА - одно из основных понятий термодинамики, введённое У. Томсоном (Кельвином; W. Thomson) в 1848; обозначается буквой Т. Согласно второму началу термодинамики, 1/Т - интегрирующий множитель для количества теплоты , полученной системой при любом обратимом процессе, поэтому - дифференциал функции состояния S (энтропии). Это позволяет ввести абсолютную термодинамическую шкалу Кельвина с помощью обратимых термодинамических циклов, например Карно цикла . Абсолютная температура связана с энтропией, внутренней энергией U и объёмом V соотношением 1/Т=. Абсолютная температура выражается в Кельвинах (К), отсчитывается от абсолютного нуля температуры и измеряется по Международной практической температурной шкале.

В статистической физике абсолютная температура входит в каноническое распределение Гиббса , где Н - функция Гамильтона системы, Z - статистический интеграл. В статистической теории неравновесных процессов абсолютная температура вводится с помощью локально-равновесного распределения, подобного распределению Гиббса, но с абсолютной температурой, зависящей от пространственных координат и времени.

29.Давле́ние  — физическая величина, численно равная силе F, действующей на единицу площади поверхности S перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы , действующей на малый элемент поверхности, к его площади:

Среднее давление по всей поверхности есть отношение силы к площади поверхности:

Давление характеризует состояние сплошной среды и является диагональной компонентой тензора напряжений. В простейшем случае изотропной равновесной неподвижной среды давление не зависит от ориентации.

30. Идеальный газ. Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. В модели идеального газа предполагается следующее: молекулы обладают пренебрежимо малым объемом по сравнению с объемом сосуда, между молекулами не действуют силы притяжения, при соударениях молекул друг с другом и со стенками сосуда действуют силы отталкивания.

Давление идеального газа. Одним из первых и важных успехов молекулярно-кинетической теории было качественное и количественное объяснение явления давления газа на стенки сосуда.

   Качественное объяснение давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела. При столкновении молекулы со стенкой сосуда проекция вектора скорости на ось ОХ, перпендикулярную стенке, изменяет свой знак на противоположный, но остается постоянной по модулю (рис. 82).

Поэтому в результате столкновения молекулы со стенкой проекция ее импульса на ось ОХ изменяется от до . Изменение импульса молекулы показывает, что на нее при столкновении действует сила , направленная от стенки. Изменение импульса молекулы равно импульсу силы :

.

Во время столкновения молекула действует на стенку с силой , равной по третьему закону Ньютона силе по модулю и направленной противоположно.

   Молекул газа очень много, и удары их о стенку следуют один за другим с очень большой частотой. Среднее значение геометрической суммы сил, действующих со стороны отдельных молекул при их столкновениях со стенкой сосуда, и является силой давления газа. Давление газа равно отношению модуля силы давления к площади стенки S:

.

На основе использования основных положений молекулярно-кинетической теории было получено уравнение, которое позволяло вычислить давление газа, если известны масса m0 молекулы газа, среднее значение квадрата скорости молекул и концентрация n молекул:

. (24.1)

Уравнение (24.1) называют основным уравнением молекулярно-кинетической теории.
   Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа
:

,

получим

. (24.2)

Давление идеального газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема.




1. Аграрная политика Республики Башкортостан
2. Архангельская область
3. На тему- Історія збройних сил України1
4. Валовое сбережение~вычитание из валового располагаемого дохода и институциональных единиц и секторов ил
5. Женщина за рулем Выбор автомобиля
6. Ho Shinpiden Sekizui Jok Ibukiho Источник- Сущность Gendi Reiki ho ~ Учитель Hiroshi Doi; перевод на английский Yukio Miur; отредактир
7. тематизации объективных знаний о действительности
8. Петербургский государственный университет Юридический факультет Кафедра теории и истории государства и.html
9. Кому- Высшему Лорду Инквизитору Ордо Маллеус господину
10. а Профессор МР
11. Тема- Профессиональная этика практического психолога Выполнила- студентка 3 курса Факультета психо.
12. Парадокс Ольберса1
13. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата економічних наук.1
14. Если уж нечистый расточает улыбки весны значит нацелился на душу.html
15. Отношения между всеми действующими лицами строительства заказчик, подрядчик, проектировщик, стройиндустрии
16. IT-практикум DELPHI и AutoCAD
17. Лекция 3 СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ЧЕЛОВЕКЕ План лекции- Системы восприятия человек.html
18. СанПьетроаМаджелла
19. тематик и экономист пионер и один из создателей линейного программирования.
20. зеленой экономике Материал предоставлен изданием БЕЛТА 17 января 2012 16-22 Белоруссия экология экономика