Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
18.Т6 Прямолинейно-параллельный фильтрационный поток упругой жидкости.
Пусть в полубесконечном горизонтальном пласте постоянной толщины h и ширины В начальное пластовое давление всюду постоянно и равно рк. На галерее (при х = 0) давление мгновенно снижено до рг и в дальнейшем поддерживается постоянным рг = соnst. В удаленных точках (х ) р= рк = соnst.
В пласте образуется неустановившийся прямолинейно-параллельный поток упругой жидкости. Давление в любой точке потока x и в любой момент времени можно определить, интегрируя уравнение пьезопроводности: при начальных и граничных условиях:
p(х, t) = рк = соnst при t = 0; р(х, t) = рг при x = 0, t > 0, р(х, t) = pк при x = , t > 0.
Получим: p= pг + (рк рг) erf() erf(u) = u= при t 0 Q , при t Q 0
Добыча, накопленная к моменту времени t:
2. Плоскорадиальный фильтрационный поток упругой жидкости. Пусть в неограниченном горизонтальном пласте постоянной толщины h имеется добывающая скважина нулевого радиуса (точечный сток). Начальное пластовое давление во всем пласте одинаково и равно рк. В момент времени t= 0 скважина пущена в эксплуатацию с постоянным объемным дебитом Q0. В пласте образуется неустановившийся плоскорадиальный поток упругой жидкости. Распределение давления в пласте (в любой его точке в любой момент времени) р (r, t) определяется интегрированием уравнения p(r,t)= pk при t =0 p(r,t)= pk при t
Q = при r=0 t0
Давление в любой точке: p (r,t)= рк - (-Ei(-u)), Эта формула получила название основной формулы теории упругого режима фильтрации. Она имеет широкое практическое применение и используется при интерпретации результатов исследований скважин.
где -Еi =-Еi(-u) интегральная показательная функция, которая табулирована. Табл. №1.
При малых значениях аргумента -Еi
В упрощенном виде:
В связи со сложностью точных решений, был предложен приближенный метод смены стационарных состояний. В момент времен t, возмущенная зона считается распределенной на определенное расстояние
- приведенный радиус влияния и предполагается, что во всей зоне давление распределяется так, как будто бы движение установившееся.
Ели в пласте действует группа скважин, то применим принцип суперпозиций:
p (r,t)=
Определение коллекторских свойств пласта по данным исследования скважин при упругом режиме. Проектирование и контроль за разработкой нефтяных и газовых месторождений, создание и эксплуатация подземных хранилищ газа связаны с определением коллекторских свойств пластов и изучением их фильтрационных характеристик (однородность пласта по толщине и площади, наличие литологических и тектонических экранов и их расположение и т. д.).
Гидродинамические методы исследования пластов и скважин, связанные с замерами пластовых и забойных давлений в возмущающих и реагирующих скважинах, называют пьезометрическими. Различают две группы пьезометрических методов при установившихся и неустановившихся режимах.
Эти методы тесно связаны с теорией упругого режима. После пуска или остановки скважины на ее забое и в окружающих реагирующих скважинах возникают (в условиях упругого режима) длительные процессы перераспределения давления. При помощи самопишущих скважинных манометров можно записать повышение или понижение давления и построить график изменения забойного давления с течением времени кривую восстановления давления (КВД).
Коллекторские свойства пласта влияют на форму графиков восстановления забойного давления, поэтому по форме КВД стали определять коллекторские свойства пласта его проницаемость и пьезопроводность. Для упрощения обработки КВД прибегают к преобразованию графиков восстановления давления, изменяя их криволинейную форму в прямолинейную.
На основании основной формулы теории упругого режима можно получить функциональную зависимость между изменением забойного давления pс и временем с момента пуска скважины в эксплуатацию с постоянным дебитом:
pс = A+i lg t A = i lg i = 0,1832 (1)
Снятую скважинным манометром кривую восстановления забойного давления после остановки скважины перестраивают в координатах рc lg t. По прямому участку этой кривой находится отрезок, отсекаемый ее продолжением на оси ординат (параметр А). И тангенс наклона этой прямой к оси абсцисс (параметр i). Затем с помощью (1) определяется параметр , называемый гидропроводностью пласта, коэффициент проницаемости и коэффициент пьезопроводности пласта.
В случае ограниченного пласта, когда изменение давления, вызванное закрытием скважины, доходит до его границы, КВД в скважине начнет искажаться, а через достаточно большое время выходит на горизонтальную асимптоту, соответствующую стационарному распределению давления. Поэтому длина .
Уравнение состояния идеального газа = ат p/pат. Для газовых месторождений с высокими пластовыми давлениями (до 4060 МПа), которые эксплуатируются с большими депрессиями (порядка 1530 Мпа) вводят z = z (р, Т) коэффициент сверхсжимаемости, характеризующий степень отклонения состояния реального газа от закона идеальных газов.
Для изотермической фильтрации реального: = ат z(p ат)p/p атz(p)
При малых изменениях давления: z = z0[1 - аz,(р0 - р)], при больших изменениях: z = z0 eaz (p-p0)
прямолинейного участка на кривой ограничена.
. График зависимости дебита от перепада давления называется индикаторной диаграммой.