Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
2
Цифровые фильтры являются частным случаем линейных инвариантных систем. Существенное ограничение связано с физической реализуемостью системы.
Определение. Система называется физически реализуемой, если сигнал на выходе в момент времени t зависит от входных сигналов в моменты времени .
Пусть имеется ЛИС . Рассмотрим сосредоточенную в одной точке последовательность . Пусть , а по определению . Для произвольной последовательности справедливо разложение . В силу линейности а в силу инвариантности . Окончательно, если , то
(1)
Другими словами, реакция на любую последовательность получается с помощью свертки этой последовательности и последовательности , называемой импульсной реакцией, или функцией отклика.
Если имеются две последовательно соединенных ЛИС, то в силу ассоциативности операции свертки, результирующая функция отклика получается как свертка функций отклика отдельных систем. Отсюда следует неожиданный вывод о коммутативности последовательного соединения. При параллельном соединении в качестве функции отклика получаем сумму функций, отвечающих отдельным слагаемым.
Вообще говоря, сумма в (1) бесконечная. Чтобы она имела смысл, надо ввести дополнительные ограничения.
Определение. Система (1) называется устойчивой, если она переводит любую ограниченную последовательность в ограниченную.
Предложение. Система устойчива тогда и т.т., когда
.
Доказательство. Достаточность условия очевидна. Для доказательства необходимости заметим, что функция отклика ограничена, поскольку это реакция на ограниченную последовательность. Возьмем в качестве входной последовательности , если . Реакция в нуле на эту последовательность имеет вид .
Предыдущие примеры ЛИС давали явные выражения выходных сигналов через входные. Предположим теперь, что входная последовательность обладает свойством: . Пусть
,
, (2)
где - натуральное, а - любые целые числа.. Эта система будет инвариантна, если соблюдены описанные выше ограничения. Имеется в виду, что вместе со сдвигом входной последовательности сдвигается и .Она будет линейной, если число одно и тоже для обеих входных последовательностей. Она будет физически реализуемой, если . Последовательность, заданная соотношениями (2) называется рекуррентной, или последовательностью с бесконечным временем отклика. Для такой ЛИС также можно построить функцию отклика. Вопрос об устойчивости в терминах (2) будет рассмотрен ниже.
Пусть имеется ЛИС с функция отклика , на вход которой подается , а на выходе получается последовательность . Переходя в (1) к преобразованиям Фурье, получим
(3).
Уравнение (3) является основным в теории фильтрации. Функция называется передаточной функцией фильтра. Если выборка велась с частотой , то будет периодической функцией с периодом . Если последовательность - вещественная, то . Отсюда следует, функция является симметричной. В этой связи эту функцию рассматривают лишь на интервале и изображают модуль, так как он определяет коэффициент усиления на каждой из частот.
Предположим, что в последовательности лишь конечное число элементов отличны от нуля. В этом случае фильтр называется фильтром с конечным временем отклика (FIR). В этом случае
. Переходя к преобразованиям Фурье и учитывая, что , получим, что . Другими словами, передаточная функция фильтра имеет вид
(4)
Фильтром с бесконечным временем отклика (IIR) называется фильтр, определенный с помощью рекуррентного соотношения (2). Как было отмечено выше, это ЛИС, поэтому она может быть задана с помощью функции отклика . Последняя будет иметь бесконечное число ненулевых элементов, хотя и не может быть произвольной сходящейся последовательностью. Передаточную функцию находим, переходя в (2) к преобразованиям Фурье.
IIR фильтр является линейной инвариантной системой, а его функцию отклика можно найти формальным представлением в виде ряда: где , с последующим суммированием коэффициентов при одинаковых степенях .