Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
6. УРАВНЕНИЯ МАКСВЕЛЛА
6.1. Уравнения Максвелла в интегральной форме
6.2. Уравнения Максвелла в дифференциальной форме
6.1. Уравнения Максвелла в интегральной форме
Как было показано в разделе 4, явление электромагнитной индукции в неподвижных проводящих контурах обусловлено тем, что переменное магнитное поле возбуждает ЭДС индукции и индукционный ток. Такой ток в замкнутом контуре может возникнуть, если в нем будет действовать вихревое электрическое поле - поле с замкнутыми силовыми линиями. Таким образом, явление электромагнитной индукции (по Фарадею) связано с возбуждением переменным магнитным полем вихревого электрического поля. Тогда циркуляция напряженности этого поля вдоль замкнутого контура L равна
. (6.1)
Дж. Максвелл сделал обобщение закона электромагнитной индукции: переменное магнитное поле в любой точке пространства создает вихревое электрическое поле. Другими словами, закон (6.1) справедлив для любого замкнутого (не только проводящего) контура, произвольно выбранного в переменном магнитном поле. Так как
,
то (6.1) перепишется как
. (6.2)
Формула (б.2) выражает первое уравнение Максвелла в интегральной форме.
Закон полного тока, записанный в виде говорит о том, что вихревое магнитное поле создается токами проводимости, где пров - плотность токов проводимости. Максвелл сделал предположение, что источником возникновения вихревого магнитного поля является также переменное электрическое поле. Для возникновения такого тока в пространстве Максвелл ввел понятие тока смещения, плотность которого см = d/dt, где - вектор электрического смещения. Например, плотность тока смещения в диэлектрике - плотность тока смещения в вакууме, d/dt - плотность тока поляризации ( - вектор поляризации). Тогда с учетом тока смещения обобщенный закон полного тока выразится так:
. (6.3)
Формула (6.3) являются вторым уравнением Максвелла в интегральной форме. Она показывает, что магнитное поле возбуждается токами проводимости и переменными электрическими полями.
С учетом теоремы Гаусса для электростатического поля (? - объемная плотность электрического заряда внутри замкнутой поверхности S, ограничивающей объем среды V) и постоянного магнитного поля , уравнения Максвелла в интегральной форме запишутся в виде
Уравнения Максвелла рассматривают поля, создаваемые макроскопическими зарядами и токами, сосредоточенными в объемах V, значительно больших отдельных молекул, и на расстояниях, значительно больших линейных размеров молекул. В этом смысле теория Максвелла является макроскопической теорией электромагнитных полей.
6.2. Уравнения Максвелла в дифференциальной форме
Используя математические формулы, выражающие теорему Стокса и теорему Гаусса , можно формулы (6.4) представить так:
(6.5)
Формулы (6.5) называются уравнениями Максвелла для электромагнитного поля в дифференциальной форме. Эти уравнения отражают тот факт, что в покоящихся средах переменное магнитное поле порождает вихревое электрическое поле и обратно, переменное электрическое поле порождает магнитное поле. Доказывается, что уравнения Максвелла инвариантны относительно преобразований Лоренца. Векторы и электромагнитного поля можно выразить через скалярный ? и векторный ? потенциалы , которые удовлетворяют уравнениям
, (6.6)
где - оператор Лапласа. Эти уравнения будут использованы при анализе электромагнитных волн в средах. Энергия электромагнитного поля локализована в пространстве с объемной плотностью
. (6.7)
При этом количество энергии, переносимое через единицу поверхности, перпендикулярной к направлению распространения энергии, за единицу времени, определяется вектором Пойнтинга
= [ ]. (6.8)
Векторы , и взаимно перпендикулярны. Величина вектора Пойнтинга определяет плотность потока энергии. Закон сохранения энергии для электромагнитного поля определяется уравнением для объемной плотности энергии W
div + dW/dt = 0. (6.9)
Свойства электромагнитного поля различны в разных инерциальных системах отсчета. Например, если инерциальная система отсчета К неподвижна, а другая инерциальная система К' движется равномерно и прямолинейно относительно К со скоростью v и в системе К' отсутствует магнитное поле (/ = 0), то в системе К =[]; если же в системе К' отсутствует электрическое поле (E' = 0), то в системе К = -[] . Таким образом, относительность магнитных и электрических полей проявляется в том, что одно из полей (электрическое или магнитное) может отсутствовать в одной инерциальной системе отсчета и присутствовать в другой инерциальной системе отсчета.