Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Примером такого оружия может служить электромагнитная катапульта

Работа добавлена на сайт samzan.net: 2016-06-20

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 12.5.2024

Ускорительное оружие

Ускорительное оружие — это оружие, в котором передача энергии поражающим элементам обеспечивается ускорителем того или иного типа. Примером такого оружия может служить электромагнитная катапульта.

В более узком смысле ускорительное оружие — конструктивно выполненное на основе ускорителя (как правило линейного) элементарных частиц. В таком оружии ускоритель разгоняет пучок элементарных частиц или плазмы, впоследствии выстреливаемых по цели.

Заманчивость такого вида оружия в том, что оно может быть использовано как в атмосфере, так и вне её, то есть в космическом пространстве.

  1.  Ускорительное (пучковое) оружие
    Это оружие основано на использовании узконаправленных пучков заряженных или нейтральных частиц, генерируемых с помощью различных типов.
    Поражение различных объектов и человека определяется  радиационным (ионизирующим) и термомеханическим воздействием. Пучковые средства могут разрушать оболочки корпусов летательных аппаратов, поражать баллистические ракеты и космические объекты путем вывода из строя бортового электронного оборудования. Предполагается, что с помощью мощного потока электронов можно осуществлять подрыв боеприпасов с взрывчатым веществом, расплавлять ядерные заряды головных частей боеприпасов.
    Для придания высоких энергий электронам, генерируемым ускорителем, создаются мощные электрические источники, а для повышения их «дальнобойности» предполагается наносить не одиночные, а групповые удары по 10–20 импульсов в каждом. Начальные импульсы будут как бы пробивать в воздухе тоннель, по которому последующие достигнут цели. Весьма перспективными частицами для  пучкового оружия считаются нейтральные атомы водорода, т. к. пучки его частиц не будут искривляться в геомагнитном поле и отталкиваться внутри самого пучка, не увеличивая тем самым угол расходимости.
    Работы по ускорительному оружию на пучках заряженных частиц (электронов) ведутся в интересах создания комплексов ПВО кораблей, а также для мобильных тактических сухопутных установок.

Существует проект «ионного» пистолета Ion Ray Gun (60$), работающего от 8 пальчиковых батареек, наносящий урон на дистанции до 7 метров.

  1.  Рельсотрон

Рельсотрон состоит из двух параллельных электродов, называемых рельсами, подключенных к источнику мощного постоянного тока. Разгоняемая электропроводная масса располагается между рельсами, замыкая электрическую цепь, и приобретает ускорение под действием силы Лоренца, которая возникает при замыкании цепи в возбужденном нарастающим током магнитном поле. Сила Лоренца (cила Ампера) действует и на рельсы, приводя их к взаимному отталкиванию. Иногда используется подвижная арматура, соединяющая рельсы.

С изготовлением рельсотрона связан ряд серьёзных проблем: импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел испариться и разлететься, но возникла бы ускоряющая сила, разгоняющая его вперед. На снаряд или плазму действует сила Лоренца, поэтому сила тока важна для достижения необходимой индукции магнитного поля и важен ток, протекающий через снаряд перпендикулярно силовым линиям индукции магнитного поля. При протекании тока через снаряд, материал снаряда (часто используется ионизированный газ сзади легкого полимерного снаряда) и рельса должны обладать:

  1. как можно более высокой проводимостью,
  2. снаряд — как можно меньшей массой,
  3.  источник тока — как можно большей мощностью и меньшей индуктивностью.

Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверхбольших скоростей (скорость снаряда в огнестрельном оружии ограничивается кинетикой проходящей в оружии химической реакции). А самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки. В тех рельсотронах, где снарядом является проводящая среда, после подачи напряжения на рельсы снаряд разогревается и сгорает, превращаясь в токопроводную плазму, которая далее также разгоняется. Таким образом, рельсотрон может стрелять плазмой, однако вследствие её неустойчивости она быстро дезинтегрируется. При этом необходимо учитывать, что движение плазмы, точнее, движение разряда (катодные, анодные пятна), под действием силы Лоренца возможно только в воздушной или иной газовой среде не ниже определенного давления, так как в противном случае, например, в вакууме, плазменная перемычка рельсов движется в направлении обратном силе Лоренца — т. н. обратное движение дуги. При использовании в рельсотронных пушках непроводящих снарядов, снаряд помещается между рельсами, сзади снаряда тем или иным способом между рельсами зажигается дуговой разряд, и тело начинает ускоряться вдоль рельсов. Механизм ускорения в этом случае отличается от вышеизложенного: сила Лоренца прижимает разряд к задней части тела, которая, интенсивно испаряясь, образует реактивную струю, под действием которой и происходит основное ускорение тела.

 

  1.  Пушка Гаусса —данный метод ускорения масс используется в основном в любительских установках, так как данный метод не является достаточно эффективным для практической реализации. По своему принципу работы (создание бегущего магнитного поля) сходна с устройством, известным как линейный двигатель.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, ориентированные согласно полюсам катушки, из-за чего после прохода центра соленоида снаряд притягивается в обратном направлении, то есть тормозится. В любительских схемах иногда в качестве снаряда используют постоянный магнит так как с возникающей при этом ЭДС индукции легче бороться. Такой же эффект возникает при использовании ферромагнетиков, но выражен он не так ярко благодаря тому что снаряд легко перемагничивается (коэрцитивная сила).

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным.

Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

  1. Космическая пушка — метод запуска объекта в космическое пространство с помощью огнестрельного оружия типа огромной пушки или электромагнитной пушки. Относится к безракетным методам вывода объектов на орбиту.

В проекте высотных исследований Военно-морских сил США использовалась 16-дюймовая (406 мм) пушка с длиной ствола 100 калибров (40 м), стрелявшая 180-килограммовыми снарядами без разрывного заряда, имевшими начальную скорость 3600 метров в секунду, которые достигали максимальной высоты 180 километров. Следовательно, эта пушка позволяет снаряду выполнить суборбитальный космический полёт.

Однако пока ни одна космическая пушка ни разу не осуществила успешный запуск объекта на орбиту. Космическая пушка сама по себе не способна доставить объект на стационарную орбиту вокруг планеты без выполнения корректировки курса объекта после запуска, поскольку сама пушка является точкой траектории, а орбита — это замкнутая траектория. То есть, снаряд всё-таки должен быть «немного ракетой».

Рентгеновский лазер

Рентгеновский лазер (также иногда встречается название разер) — источник когерентного электромагнитного излучения в рентгеновском диапазоне, основанный на эффекте вынужденного излучения. Является коротковолновым аналогом лазера. В более широком смысле рентгеновскими лазерами называют любые устройства, способные генерировать когерентное рентгеновское излучение.

По сравнению с оптическим диапазоном лазерная генерация в ультрафиолетовом и рентгеновском диапазонах обладает следующими сложностями:

  1. С уменьшением длины волны сильно падает эффективность лазерного усиления
  2. В рентгеновском диапазоне отсутствуют хорошие зеркала, что делает затруднительным создание резонаторов
  3. Для генерации в рентгеновском диапазоне нужны значительно бо́льшие мощности накачки(эскалибур, ядерный взрыв)

В рентгеновских лазерах в узком смысле в качестве активной среды обычно используется горячая плазма. Именно для таких лазеров достигнуты наибольшие успехи. Наименьшая длина волны, для которой продемонстрирован лазерный эффект составляет 3,56 нм.

Лазер на свободных электронах (англ. Free Electron Laser, FEL) — вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе — периодической системе отклоняющих (электрических или магнитных) полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.

В отличие от газовых, жидкостных или твердотельных лазеров, где электроны возбуждаются в связанных атомных или молекулярных состояниях — у FEL источником излучения является пучок электронов в вакууме, проходящий сквозь ряд расположенных специальным образом магнитов — ондулятор (вигглер), заставляющий пучок двигаться по синусоидальной траектории, теряя энергию, которая преобразуется в поток фотонов(конус). В результате вырабатывается мягкое рентгеновское излучение, применяемое, например, для исследования кристаллов и других наноструктур.

Косми́ческий лифт

Трос удерживается одним концом на поверхности планеты (Земли), а другим — в неподвижной над планетой точке выше геостационарной орбиты (ГСО) за счёт центробежной силы. По тросу поднимается подъёмник, несущий полезный груз. При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.

От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом.

Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой — прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других — выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

По подсчётам если  на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

  1. Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.
  2. Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО.
  3. Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км, которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.
  4. Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.

Ещё способ — сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20—25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха).

Противовес может быть создан двумя способами — путём привязки тяжёлого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант интересен тем, что с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс. Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолёта. Лидерство заняла компания LaserMotive представившая подъёмник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4 кг. (2018, 2031, 1, 5 километра, kickstater)

Со́лнечный па́рус

Со́лнечный па́рус (также называемый световым парусом или фотонным парусом) — приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.

Следует различать понятия «солнечный свет» (поток фотонов, именно он используется солнечным парусом) и «солнечный ветер» (поток элементарных частиц и ионов, который используется для полётов на электрическом парусе — другой разновидности космического паруса).

Минутка гордости.

Идея полетов в космосе с использованием солнечного паруса возникла в 1920-е годы в России и принадлежит одному из пионеров ракетостроения Фридриху Цандеру, исходившему из того, что частицы солнечного света — фотоны — имеют импульс и передают его любой освещаемой поверхности, создавая давление. Величину давления солнечного света впервые измерил русский физик Пётр Лебедев в 1900 году.

Солнечный парус — самый перспективный и реалистичный на сегодня вариант звездолёта.

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволит увеличить полезную нагрузку по сравнению с космическим кораблём на реактивном движении.

Недостатком солнечного парусника является тот факт, что за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида. Данный проект ставит проблему точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Уже сейчас можно построить межзвёздный зонд, использующий давление солнечного ветра.

Существует 2 варианта солнечных парусников: на давлении электромагнитных волн и на потоке частиц.

Гонка марс-500, 1989, наши.

Геодезический купол

Геодезический купол — сферическое архитектурное сооружение, собранное из балок, образующих геодезическую структуру, благодаря которой сооружение в целом обладает хорошими несущими качествами. Геодезический купол является несущей сетчатой оболочкой.

Форма купола образуется благодаря особому соединению балок — в каждом узле сходятся ребра слегка различной длины, которые в целом образуют многогранник, близкий по форме к сегменту сферы.

Популяризатором геодезиков был Ричард Фуллер, изучавший в конце 1940-х годов свойства куполов. Позднее он получил патент на конструирование геодезических куполов.

Конструкция геодезического купола заинтересовала Фуллера прежде всего благодаря малой массе при большом внутреннем пространстве. Фуллер надеялся, что геодезики помогут решить послевоенный жилищный кризис.

Проект «Эдем» (Eden Project; в русском переводе также встречается название «Райский сад») — ботанический сад в графстве Корнуолл, в Великобритании. Включает оранжерею, состоящую из нескольких геодезических куполов, под которыми собраны растения со всего мира. Площадь оранжерей составляет 22 000 м².

Комплекс состоит из двух оранжерей, каждая из которых представляет собой несколько соединенных геодезических куполов, под которыми содержится множество видов растений со всего мира. В оранжереях созданы биомы (единый природный комплекс, характеризующийся некоторым основным типом растительности или иной особенностью ландшафта), характерные для влажных экваториальных лесов и для средиземноморского климата.

Купола изготовлены из сотен шестиугольников и нескольких пятиугольников, соединяющих всю конструкцию. Каждый из шести- и пятиугольников изготовлен из прочного светопроницаемого пластика. В первой оранжерее представлена тропическая растительность, во второй — средиземноморская растительность.




1. ти Склад Место хранения Марка Сорт Профиль Размер
2.  Взрывы конденсированных ВВ и ЯВ Массу заряда и мощность взрыва ВВ ЯВ принято оценивать тротиловым экв
3. а Психология ~ наука или искусство понимания структура научной психологии отличие психологии от други
4. ИСПОЛНИТЕЛЬНОГО ПРАВА ПРОГРАММА КУРСА ldquo;ЮРИДИЧЕСКАЯ ПСИХОЛОГИЯrdquo; ДЛЯ СТУДЕНТОВ ДНЕВНОГ
5. Функции лунного пейзажа в литературе
6. А ауамен берілетін ауру Б та~амды~ токсикоинфекция В ~ндіріс орнына жа~ын т~ратын адамдарда дамиты
7.  Определение понятия страх [5] Глава 2
8. федерация и конфедерация
9. ИНТЕЛЛЕКТУАЛЬНАЯ СПЕЛЕОТЕХНИКА Спорткомплекс ИФКСиТ СФУ г
10. Доклад Приморского края
11. оттепели и застоя
12. Реферат по курсу студентки курса Чапаевск 2004
13. Трудовая демократия
14. Катин папа ~ Вячеслав Иванович по профессии строитель
15. аминокислота Что является конечным продуктом метаболизма пурина у рыб аммиак мочевая кисл
16. тематический анализ 1 курс 1 семестр ЗАНЯТИЕ 2 Предел функции
17. альбиносах 10 лет работа в музее 15 лет знаток моллюсков
18. Базисный период Текущий период Базисный период
19. Реферат- Радиоэлектронное вооружение
20. По лицензионному договору одна сторона автор или иной правообладатель лицензиар предоставляет либо обязу