Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Финансовое решение это выбор альтернативы, осуществлённый руководителем в рамках его должностных полномочий и компетенции и направленный на увеличение прибыли (снижение убытков) организации.
В процессе управления организациями принимается огромное количество финансовых решений, обладающих различными характеристиками. Тем не менее, существуют некоторые общие признаки, позволяющие это множество определённым образом классифицировать. Такая классификация представлена в таблице:
Классификационный признак |
Группы финансовых решений |
Степень повторяемости проблемы |
Традиционные Нетипичные |
Значимость цели |
Стратегические Тактические |
Сфера воздействия |
Глобальные Локальные |
Длительность реализации |
Долгосрочные Краткосрочные |
Прогнозируемые последствия решения |
Корректируемые Некорректируемые |
Метод разработки решения |
Формализованные Неформализованные |
Количество критериев выбора |
Однокритериальные Многокритериальные |
Форма принятия |
Единоличные Коллегиальные |
Способ фиксации решения |
Документированные Недокументированные |
Характер использованной Информации |
Детерминированные Вероятностные |
Рассмотрим её более подробно.
Формализация принятия решений повышает эффективность управления в результате снижения вероятности ошибки и экономии времени : не нужно заново разрабатывать решение каждый раз, когда возникает соответствующая ситуация. Поэтому руководство организаций часто формализует решения для определённых, регулярно повторяющихся ситуаций, разрабатывая соответствующие правила, инструкции и нормативы.
В то же время в процессе управления организациями часто встречаются новые, нетипичные ситуации и нестандартные проблемы, которые не поддаются формализованному решению. В таких случаях большую роль играют интеллектуальные способности, талант и личная инициатива менеджеров.
Конечно, на практике большинство решений занимает промежуточное положение между этими двумя крайними точками, допуская в процессе их разработки как проявление личной инициативы, так и применение формальной процедуры. Конкретные методы , используемые в процессе принятия решений, рассмотрены ниже.
Если выбор наилучшей альтернативы производится только по одному критерию (что характерно для формализованных решений), то принимаемое решение будет простым, однокритериальным. И наоборот, когда выбранная альтернатива должна удовлетворять одновременно нескольким критериям, решение будет сложным, многокритериальным. В практике менеджмента подавляющее большинство решений многокритериальны, так как они должны одновременно отвечать таким критериям, как: объем прибыли, доходность, уровень качества, доля рынка, уровень занятости, срок реализации и т.п.
Лицом, осуществляющим выбор из имеющихся альтернатив окончательного решения, может быть один человек и его решение будет соответственно единоличным. Однако в современной практике менеджмента всё чаще встречаются сложные ситуации и проблемы, решение которых требует всестороннего, комплексного анализа , т.е. участия группы менеджеров и специалистов. Такие групповые, или коллективные, решения называются коллегиальными. Усиление профессионализации и углубление специализации управления приводят к широкому распространению коллегиальных форм принятия решений. Необходимо также иметь в виду, что определённые решения и законодательно отнесены к группе коллегиальных. Так, например, определённые решения в акционерном обществе ( о выплате дивидендов, распределении прибыли и убытков, совершении крупных сделок, избрании руководящих органов, реорганизации и др.) отнесены к исключительной компетенции общего собрания акционеров. Коллегиальная форма принятия решении, разумеется, снижает оперативность управления и «размывает» ответственность за его результаты, однако препятствует грубым ошибкам и злоупотреблениям и повышает обоснованность выбора.
По этому признаку финансовые решения могут быть разделены на фиксированные, или документальные (т.е. оформленные в виде какого либо документа - приказа, распоряжения, письма и т.п. ), и недокументированные ( не имеющие документальной формы, устные ). Большинство решений в аппарате управления оформляется документально, однако мелкие, несущественные решения, а также решения , принятые в чрезвычайных, острых, не терпящих промедления ситуациях, могут и не фиксироваться документально.
2. Детерминированные и вероятностные решения.
Детерминированные решения принимаются в условиях определённости, когда руководитель располагает практически полной и достоверной информацией в отношении решаемой проблемы, что позволяет ему точно знать результат каждого из альтернативных вариантов выбора. Такой результат только один, и вероятность его наступления близка к единице. Примером детерминированного решения может быть выбор в качестве инструмента инвестирования свободной наличности 20 % - ных облигаций федерального займа с постоянным купонным доходом. Финансовый менеджер в этом случае точно знает, что за исключением крайне маловероятных чрезвычайных обстоятельств, из-за которых правительство РФ не сможет выполнить свои обязательства , организация получит ровно 20 % годовых на вложенные средства. Подобным образом, принимая решение о запуске в производство определённого изделия, руководитель может точно определить уровень издержек производства, так как ставки арендной платы, стоимость материалов и рабочей силы могут быть рассчитаны довольно точно.
Анализ финансовых решений в условиях определенности это самый простой случай : известно количество возможных ситуаций (вариантов) и их исходы . Нужно выбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации :
а) Имеется два возможных варианта ;
n=2
В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов . Последовательность действий здесь следующая :
определяется критерий по которому будет делаться выбор ;
методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов ;
вариант с лучшим значением критерия рекомендуется к отбору .
Возможны различные методы решения этой задачи . Как правило они подразделяются на две группы :
методы , основанные на учетных оценках .
Первая группа методов основывается на следующей идее . Денежные доходы , поступающие на предприятие в различные моменты времени , не должны суммироваться непосредственно ; можно суммировать лишь элементы приведенного потока . Если обозначить F1,F2 ,....,Fn прогнозируемый коэффициент дисконтирования денежного потока по годам , то i-й элемент приведенного денежного потока Рi рассчитывается по формуле :
Pi = Fi / ( 1+ r ) i
где r- коэффициент дисконтирования.
Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений ( доходов ) и приведении их к текущему моменту времени . Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течении ряда лет . В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .
Итак последовательность действий аналитика такова ( расчеты выполняются для каждого альтернативного варианта ) :
рассчитывается величина требуемых инвестиций (экспертная оценка ) , IC ;
оценивается прибыль ( денежные поступления ) по годам Fi ;
устанавливается значение коэффициента
дисконтирования , r ;
определяются элементы приведенного потока , Pi ;
рассчитывается чистый приведенный эффект ( NPV ) по
формуле:
NPV= E Pi - IC
сравниваются значения NPV ;
предпочтение отдается тому варианту , который имеет больший NPV ( отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ) .
Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции .Последовательность действий аналитика в этом случае такова :
рассчитывается величина требуемых инвестиций , IC ;
оценивается прибыль ( денежные поступления ) по годам , Fi ;
выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции .
б) Число альтернативных вариантов больше двух .
n > 2
Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем .
Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные объемы производства и потребления равны . Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу :
E E Cg Xg -> min
E Xg = bj E Xg = bj Xg >= 0
Известны различные способы решения этой задачи -распределительный метод потенциалов и др . Как правило для расчетов применяется ЭВМ .
При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации , предполагающие множественные расчеты на ЭВМ . В этом случае строится имитационная модель объекта или процесса ( компьютерная программа ) , содержащая b-е число факторов и переменных , значения которых в разных комбинациях подвергается варьированию . Таким образом машинная имитация - это эксперимент , но не в реальных , а в искусственных условиях . По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .
Однако лишь немногие решения принимаются в условиях определённости. Большинство управленческих решений являются вероятностными.
Вероятностными называются решения, принимаемые в условиях риска или неопределённости.
К решениям принимаемых в условиях риска, относят такие, результаты которых не являются определёнными, но вероятность каждого результата известна. Вероятность определяется как степень возможности свершения данного события и изменяется от 0 до 1. Сумма вероятностей всех альтернатив должна быть равна единице. Вероятность можно определить математическими методами на основе статистического анализа опытных данных. Например, компании по страхованию жизни на основе анализа демографических данных могут с высокой степенью точности прогнозировать уровень смертности в определённых возрастных категориях и на этой базе определять страховые тарифы и объем страховых взносов, позволяющих выплачивать страховые премии и получать прибыль. Такая вероятность, рассчитанная на основе информации, позволяющей сделать статистически достоверный прогноз, называется объективной.
В ряде случаев, однако, организация не располагает достаточной информацией для объективной оценки вероятности возможных событий. В таких ситуациях руководителям помогает опыт, который показывает , что именно может произойти с наибольшей вероятностью. В этих случаях оценка вероятности является субъективной.
Пример решения, принятого в условиях риска ,- решение транспортной компании застраховать свой парк автомобилей. Финансовый менеджер не знает точно, будут ли аварии и сколько и какой ущерб они причинят, но из статистики транспортных происшествий он знает, что одна из десяти машин раз в году попадает в аварию и средний ущерб составляет $ 1 000 (цифры условные). Если организация имеет 100 автомашин, то за год вероятны 10 аварий с общим ущербом $ 10 000. В действительности же аварий может быть меньше, но ущерб больше, или наоборот. Исходя из этого, и принимается решение о целесообразности страхования транспортных средств и размере страховой суммы.
Анализ и принятие решений в условиях риска встречается на практике наиболее часто. Здесь пользуются вероятностным подходом, предполагающим прогнозирование возможных исходов и присвоение им вероятностей . При этом пользуются:
а) известными , типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;
б) предыдущими распределениями вероятностей ( например,из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;
в) субъективными оценками ,сделанными аналитиком самостоятельно либо с привлечением группы экспертов .
Последовательность действий аналитика в этом случае такова :
прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n ;
каждому исходу присваивается соответствующая вероятность pk , причем
Е рк = 1
выбирается критерий(например максимизация математического ожидания прибыли ) ;
выбирается вариант , удовлетворяющий выбранному критерию .
Пример : имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений . Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :
Проект А |
Проект В |
||
Прибыль |
Вероятность |
Прибыль |
Вероятность |
3000 |
0. 10 |
2000 |
0 . 10 |
3500 |
0 . 20 |
3000 |
0 . 20 |
4000 |
0 . 40 |
4000 |
0 . 35 |
4500 |
0 . 20 |
5000 |
0 . 25 |
5000 |
0 . 10 |
8000 |
0 . 10 |
Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно :
У ( Да ) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000
У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250
Таким образом проект Б более предпочтителен . Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) .
В более сложных ситуациях в анализе используют так называемый метод построения дерева решений . Логику этого метода рассмотрим на примере .
Пример : управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2 . Станок М2 более экономичен , что обеспечивает больший доход на единицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов :
Постоянные расходы |
Операционный доход на единицу продукции |
|
Станок М1 |
15000 |
20 |
Станок М2 |
21000 |
24 |
Процесс принятия решения может быть выполнен в несколько этапов :
Этап 1 . Определение цели .
В качестве критерия выбирается максимизация математического ожидания прибыли .
Этап 2 . Определение набора возможных действий для рассмотрения и анализа ( контролируются лицом , принимающим решение)
Управляющий может выбрать один из двух вариантов :
а1 = { покупка станка М1 }
а2 = { покупка станка М2 }
Этап 3 . Оценка возможных исходов и их вероятностей ( носят случайный характер ) .
Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом :
х1 = 1200 единиц с вероятностью 0 . 4
х2 = 2000 единиц с вероятностью 0 . 6
Этап 4 . Оценка математического ожидания возможного дохода :
1200 20 * 1200 - 15000 = 9000
М 0.4
0.6 2000 20 * 2000 - 15000 = 25000
а1
а2
1200 24 * 1200 - 21000 = 7800
0.4
М2 0.6 2000 24 * 2000 - 21000 = 27000
Е ( Да ) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600
Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320
Таким образом , вариант с приобретением станка М2 экономически более целесообразен .
Решение принимается в условиях неопределённости , когда из-за недостатка информации невозможно количественно оценить вероятность его возможных результатов. Это довольно часто встречается при решении новых, нетипичных проблем, когда требующие учёта факторы настолько новы и/или сложны, что о них невозможно получить достаточно информации. Неопределённость характерна и для некоторых решений , которые приходится принимать в быстро меняющихся ситуациях . В итоге вероятность определённой альтернативы невозможно оценить с достаточной степенью достоверности.
Сталкиваясь с неопределённостью, финансовый менеджер может использовать две основные возможности:
1) попытаться получить дополнительную информацию и ещё раз проанализировать проблему с целью уменьшить её новизну и сложность. В сочетании с опытом и интуицией это даст ему возможность оценить субъективную , предполагаемую вероятность возможных результатов;
2) когда не хватает времени и / или средств на сбор дополнительной информации, при принятии решений приходится полагаться на прошлый опыт и интуицию.
Заключение
На наш взгляд в этом реферате была показана актуальность изучения методов разработки финансовых решений. В заключение можно сделать ряд выводов: