У вас вопросы?
У нас ответы:) SamZan.net

тема состоящая из взаимодействующих электронов и ядер может находиться в различных состояниях и переходит

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.6.2025

Молекула (новолат. molecula, уменьшит. от лат. moles-масса), микрочастица, образованная из двух или большего числа атомов и способная к самостоятельному существованию. Имеет постоянный состав (качественный и количественный) входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать одну молекулу от других, в том числе от молекул того же состава. Молекула, как система, состоящая из взаимодействующих электронов и ядер, может находиться в различных состояниях и переходить из одного состояния в другое вынужденно (под влиянием внешних воздействий) или самопроизвольно. Для всех молекул данного вида характерна некоторая совокупность состояний, которая может служить для идентификации молекул. Как самостоятельное образование молекула обладает в каждом состоянии определенным набором физических свойств, эти свойства в той или иной степени сохраняются при переходе от молекул к состоящему из них веществу и определяют свойства этого вещества. При химических превращениях молекула одного вещества обмениваются атомами с молекулами другого вещества, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции других типов. Поэтому химия изучает вещества и их превращения в неразрывной связи со строением и состоянием молекул

Обычно молекулой называют электрически нейтральную частицу; если молекула несет электрический заряд (положительный или отрицательный), то говорят о молекулярных ионах (катионах или анионах соответственно). В веществе положительные ионы всегда сосуществуют вместе с отрицательными. Молекулы, находящиеся в состояниях с мультиплетностью, отличной от единицы (как правило, в дублетных состояниях), называют радикалами. Свободные радикалы в обычных условиях, как правило, не могут существовать длительное время. Известны, однако, свободные радикалы сравнительно сложного строения, которые являются достаточно стабильными и могут существовать при обычных условиях.

По числу входящих в молекулу атомных ядер различают молекулы двухатомные, трехатомные и т.д. Если число атомовв молекуле превосходит сотни и тысячи, молекула называется макромолекулой. Сумма масс всех атомов, входящих в состав молекулы, рассматривается как молекулярная масса (смотри также Молекулярная масса полимера. Молекулярно-массовое распределение). По величине молекулярной массы все вещества условно делят на низко- и высокомолекулярные.

А́том (от др.-греч. ἄτομος — неделимый) — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. ЛавуазьеМ. В. Ломоносова и других ученых была доказана реальность существования атомов.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженныхэлектронов. Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~8см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. Атомные радиусы). Ядро атома состоит из Z протонов и N нейтронов, удерживаемых ядерными силами (см. Ядро атомное). Положит. заряд протона и отрицат. заряд электрона одинаковы по абс. величине и равны е= 1,60*10-19 Кл; нейтрон не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. Порядковый номер элемента в периодич. системе Менделеева (атомный номер) равен числу протонов в ядре.

В электрически нейтральном атоме число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соотв. в положит. или отрицат. ион, напр. Li+, Li2+ или О-, О2-. Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и ионы этого элемента.

Строение атома и свойства веществХим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов.(1) При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают электроны в замкнутой оболочке. Поэтому атомы с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. Атомы благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, электроны которых связаны гораздо прочнее (энергия связи 102-104 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов,нейтронов) на атомах (см. Дифракционные методы). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты (ЯМРЯКР, сверхтонкая структура спектральных линий, см Спектроскопия).

1сноска: Электро́нво́льт (редко электроновольт; русское обозначение: эВ, международное: eV) — внесистемная единица энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и в близких и родственных областях науки (биофизике, физической химии, астрофизике и т. п.). В Российской Федерации электронвольт допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения.

Ядерная модель атома

В начале 20 века в результате изучения катодных лучей были обнаружены отрицательные частицы – электроны с зарядом 1,6.1019 Кл, массой 9,11.1031 кг, открыто рентгеновское электромагнитное излучение. Обобщив эти открытия, Дж.Томсон в 1897 году предложил свою модель атома – это положительно заряженная сфера, в которую вкраплены отрицательные электроны (подобно изюму в пудинге). Если эта модель верна, тогда металлическая фольга – это пленка положительного электричества, содержащая электроны и поток α- частиц должен легко проникать через нее, не меняя направление.

В 1909 г. сотрудники англ. ученого Э. Резерфорда это проверили. 1 из 100000 α - частиц при прохождении через золотую фольгу рассеивались на большие углы и даже поворачивали обратно. Анализируя результаты эксперимента, Резерфорд сделал вывод, что масса и заряд атома сконцентрированы в малой части объема, называемой ядром. Отклоняются те α - частицы, которые сталкиваются с ядрами. Большинство же α - частиц проходит через пространство между ядрами. Модель строения атома, предложенная Э. Резерфордом, напоминала солнечную систему. Ее называют планетарной моделью. Согласно ей, в центре атома находится положительное ядро, в котором сосредоточена вся масса атома. Вокруг ядра по круговым орбитам движутся электроны. Заряд ядра и число электронов одинаковы, т.е. атом нейтральная частица.

В 1913г. английский физик Мозли измерил длины волн рентгеновских лучей, испускаемых разными металлами в катодной трубке, и построил график зависимости обратного значения квадратного корня из длины волны рентгеновских лучей от порядкового номера элемента. Этот график (рис.1) показывает, что порядковый номер отражает какую-то важную характеристику элемента. Мозли предположил, что этой характеристикой является заряд ядра атома, и что он возрастает на единицу при переходе от одного элемента к следующему за ним по порядку. Он назвал порядковый номер атомным номером - Z.

Закон Мозли:

Корень квадратный из величины, обратной длине волны рентгеновских лучей, испускаемых атомами различных элементов, находится в линейной зависимости от порядкового номера элемента.

Это  закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером. 

,

где - длина волны, а – постоянная величина, Z– порядковый номер элемента (заряд ядра).

Позже стало известно, что порядковый номер равен числу протонов в ядре. Таким образом, порядковый (атомный) номер равен заряду ядра и он же определяет наличие в нем протонов (положительных частиц). А так как атомы нейтральны, то число электронов в атоме должно быть равно числу протонов. Но массы атомов оказались больше суммарной массы протонов. Для объяснения избытка массы было высказано предположение о существовании нейтронов. Эти частицы должны были иметь ту же массу, что и протон, но нулевой заряд (1,675.10-27 кг). Нейтрон был открыт сотрудником Резерфорда Чедвигом в 1932 г. Было окончательно установлено, что атом состоит из ядра и электронов, а ядро – из протонов и нейтронов. Их сумму называютнуклонным числом или массовым - А.

А N,

Z- число протонов, N- число нейтронов.

Атомы с различным числом протонов (Z) и нейтронов (N), но с одинаковым числом нуклонов А, называют изобарами. Например,

Изотопы – атомы с одинаковым числом протонов (Z), но с разным числом нуклонов

Изотоны – атомы с одинаковым числом нейтронов (N)

Таким образом, дробные значения атомных масс в периодической системе объясняются наличием изотопов для одного и того же элемента.

А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Спектра́льная ли́ния — особенность участка спектра, выражающаяся в локальном повышении (светлые, эмиссионные линии, спектральные максимумы) или понижении (тёмные линии, линии поглощения, спектральные минимумы) уровня сигнала.

Остаточной интенсивностью называют усиление/ослабление излучения в спектральной линии по сравнению с непрерывным спектром.

Функция, характеризующая зависимость остаточной интенсивности от частоты, называется профилем линии.

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 102 Å (от 10−12 до 10−8 м).

Фото́н (от др.-греч. φῶςрод. пад. φωτός, «свет») — элементарная частицаквант электромагнитного излучения (в узком смысле —света). Это безмассовая частица, способная существовать в вакууме только двигаясь со скоростью света.




1. Тема 311 Час- 90 хвилин
2. Казанский национальный исследовательский технологический университет НХТИ ФГБОУ ВПО КНИТУ
3. на тему- Финансовый контроль в Республике Беларусь
4. ВП 5 2013 Стрітення
5. ТАЛАНТ2014 15 ФЕВРАЛЯ
6. Опека и попечительство
7. Солнечная система (Солнце, Земля, Марс)
8. 1.Содержание финансовой политики
9. тема реализации управленческих решений для эффективного функционирования производственного процесса на пе
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата філологічних наук2