Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Билет 9
1. Фазовый и структурный анализ диаграммы Fe-FeзС. Использование полиморфизма железа при термической обработке сталей.
Обозначения на диаграмме.
А аустенит ограниченный твердый раствор внедрения углерода в кристаллической решетке Feg. Тип решетки ГЦК. Максимальная растворимость углерода 2,14% при температуре 1147° C (точка Е на диаграмме). Устойчива от температуры плавления сплавов до tmin = 727° C. Особенность: с понижением температуры устойчивость А обеспечивается во все более сужающемся диапазоне растворимости углерода. При температуре tmin = 727° C А устойчив только при определенном содержании углерода (0,8%) точка S. При падении температуры ниже 727° C А распадается и переходит в П.
П перлит эвтектоидная механическая смесь феррита и цементита. Содержание углерода 0,8% .Образуется в результате перераспределения углерода в А при t < 727° C. Строение: слоистая структура из пластинок Ф и Ц.
Ф феррит ограниченный твердый раствор внедрения углерода в кристаллической решетке Fea; ОЦК-решетка; содержание углерода меньше 0,006% при t=20° C. Из-за малого содержания углерода по свойствам Ф аналогична чистому железу.
Ц цементит химическое соединение Fe3C карбид (сложная кристаллическая решетка). С = 6,67%. Ц самая высокоуглеродсодержащая фаза. Это самый твердый и прочный из всех сплавов.
ЛА ледебурит аустенитный эвтектическая смесь фаз А и Ц. Образуется при температуре 1147° C (линия ECD).
ЛП ледебурит перлитный эвтектическая смесь фаз П и Ц. Образуется из ЛА при температуре <727° C в результате распада А.
Основные линии на диаграмме.
ACB линия ликвидус.
AECD линия солидус.
ECD линия эвтектического превращения; С точка эвтектики (ледебурит).
SE линия предельной растворимости С в А; ниже линии С выделяется в виде ЦII.
GS нижняя граница устойчивости А; ниже линии часть кристаллов А теряет С и превращается в Ф, остальные кристаллы получают С и остаются устойчивыми.
PSK линия эвтектического превращения; ниже линии А переходит в П.
PM линия предельной растворимости С в Ф; избыточный углерод в виде ЦIII
GP верхняя граница ферритной области; для любой двухфазной области диаграммы применимо правило отрезков.
Диаграмма делится на области по содержанию углерода: 02,14% сталь (00,8% доэвтектоидная сталь, 0,82,14% заэвтектоидная сталь); 2,146,67% чугун (2,144,3% доэвтектический чугун, 4,36,67% заэвтектический чугун).
Превращения в сплавах Fe и С.
В технике применяется железо с содержанием углерода до 2,14%.
1) Доэвтектоидная сталь:
Для 44': k = 2; f = 3 (Ф + А + Ц); с = 23+1=0 (t = const).
12 первичная кристаллизация А из жидкости
23 охлаждение А (превращений нет)
34 диффузионное перераспределение углерода, образование Ф, повышение содержания углерода в А.
44' распад А, образование П.
Ниже 4' охлаждение сплава, выделение избыточного углерода из Ф (ЦIII).
Полиморфизм свойство металла изменять свою кристаллическую решётку под влиянием внешних факторов (температура, давление). Feα Feγ
2. Конструкционные материалы малой плотности: пластмассы, их состав, применение. Преимущества и недостатки пластмасс как конструкционных материалов.
Пластмассы. Классификация и состав пластических масс.
Пластмассы это органические вещества, связующими которых являются полимеры. Они состоят из: 1) связующее (матрица) - полимеры; 2) наполнители (низкомолекулярные в-ва), их вводят для придания специальных св-в: понижения усадки, повышения мех. св-в (твёрдость HB, σВ, σТ). Наполнители: порошковые (сажа, графит, древесная мука), волокниты (волокна, стекловолокна, асбоволокна), слоистые (геминакс, текстолит), стеклоткань (стеклотекстолиты), газовые (газонаполненные: поропласты, пенопласты, сотопласты); 3) пластификаторы жидкие вещества, для повышения эластичности материала; 4) отвердители; 5) краски (оксиды металлов), их вводят для изменения цвета пластмасс. Пластмассы: термопластичные, термореактивные и газонаполненные.
Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).
1. Полиэтилен (ПЭ). Состав мономера: [CH2CH2]n. Этилен [CH2CH2] при комнатной t находится в газовом состоянии, t кипения составляет -140°C. ПЭ бывает двух видов: 1)Низкой плотности высокого давления ПЭНП (ПЭВД), разветвлённая структура, плотность ρ = 0,91-0,92 г/см3, tэкспл = -70120-140°C, tплавл = 110-125°C; 2) ПЭВП (ПЭНД), линейная структура, ρ = 0,96 г/см3, tэкспл = -70140-150°C, tплавл = 150°C. Недостаток старение ПЭ. При воздействии ионизованного излучения увеличивается прочность материала и теплостойкость. Применение: упаковочная плёнка, литьё бутылок, трубы, электроизоляционный кабель.
2. Фторопласт (ФП). Состав мономера: [CF2CF2]n. ФП обладает аморфной кристаллической структурой. Плотность ρ = 0,25, tэкспл. = -269 +250°C. Химически стоек к действию растворителей. ФП обладает очень низким коэффициентом трения μ = 0,04. Недостаток ФП: трудность его переработки. Применение: насосы, винтили, антифрикционные покрытия.
51. Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).
Текстолит относят к слоистым пластикам. Связующее в этом полимере это термореактивные смолы. Наполнители: хлопчатобумажные ткани. Среди всех слоистых пластиков этот материал обладает наибольшей способностью поглощать вибрационные нагрузки. Кроме этого хорошо сопротивляется раскалыванию. Применяют для зубчатых колёс и как вкладыши для подшипников. Температура эксплуатации: -60 60-80°C.
52. Газонаполненные пластмассы. Строение. Область применения.
Это гетерогенные (сост. из нескольких фаз) химически сложные системы, состоящие из твёрдой и газообразной фаз. В качестве связывающего используются термопласты (или реактопласты), которые образуют стенки ячеек или пор. В качестве наполнителей используют газообразные в-ва. В зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Пенопласт система, в которой присутствуют замкнутая ячеистая структура, а газовый наполнитель изолирован от окр. среды тонкими слоями полимерного связующего. Замкнутая ячеистая структура обеспечивает высокие теплоизоляционные св-ва и хорошую плавучесть. Прочность таких материалов низкая и зависит от плотности материала. ρ = 20-300 кг/м3. Применяется для изоляции кабин, холодильников, рефрижераторов, труб (поропласт), в авиа-, кораблестроении, на ж/д транспорте. Поропласт материал с открыто-пористой структурой. Применяется для впитывания жидкости. ρ = 130-500 кг/м3. Сотопласты тонкие листовые материалы, выполненные в форме гофра, которые затем сшиваются в виде пчелиных сот. Материалом для гофров служат ткани, которые пропитываются различными связующими. Применение: тепло- и звукоизоляционные материалы (авиация), обладают радиопрозрачностью, используются для заполнения многослойных панелей в авиа- и судостроении.