Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
В дифференциальной геометрии, кривизна́ собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость,евклидово пространство и т. д.).
Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт локальное совпадение изучаемого «объекта» с «плоским» объектом.
В этой статье приводятся только несколько простейших примеров определений понятия кривизны.
Пусть регулярная кривая в -мерном евклидовом пространстве, параметризованная длиной. Тогда
называется кривизной кривой в точке , здесь обозначает вторую производную по . Вектор
называется вектором кривизны в точке .
Очевидно, это определение можно переписать через вектор касательной :
где одна точка над буквой означает первую производную по t.
Для кривой, заданной параметрически в общем случае кривизна отображается формулой
,
где и соответственно обозначают первую и вторую производную радиус-вектора в требуемой точке по параметру (при этом под крестом для кривой в трехмерном пространстве можно понимать векторное произведение, для кривой в двумерном пространстве псевдоскалярное произведение, а для кривой в пространстве произвольной размерности внешнее произведение).
Для кривой на декартовой плоскости, заданной уравнением , кривизна вычисляется по формуле:
Для того чтобы кривая совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю.
Величина, обратная кривизне кривой (), называется радиусом кривизны; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется центром кривизны. Если кривизна кривой равна нулю, то соприкасающаяся окружность вырождается в прямую.
Соприкасающаяся плоскость
в точке М кривой l, плоскость, имеющая с l в точке М касание порядка n ≥ 2 (см. Соприкосновение). С. п. может быть также определена как предел переменной плоскости, проходящей через три точки кривой /, когда эти точки стремятся к точке М. С механической точки зрения С. п. может быть охарактеризована как плоскость ускорений: при произвольном движении материальной точки по кривой l вектор ускорения лежит в С. п. Обычно кривая, кроме исключит, случаев, пронизывает свою С. п. в точке соприкосновения (см. рис.). Если кривая l задана уравнениями х = х (u), у = у (u), z = z (u), то уравнение С. п. имеет вид:
<="" em="" style="border-style: none;">
где X, Y, Z текущие координаты, а х, у, z, х', у', z', х, у, z вычисляются в точке соприкосновения; если все три коэффициента при X, У, Z в уравнении С. п. исчезают, то С. п. делается неопределённой (может совпадать с любой плоскостью, проходящей через касательную). См. также Дифференциальная геометрия.
Лит.: Рашевский П. К., Курс дифференциальной геометрии. 4 изд., М., 1956.
Рис. к ст. Соприкасающаяся плоскость.