Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Реферат на тему
Аварии на радиационно-опасных объектах
Выполнил : Толенов Дамир
Факультет ГиМу 143 Групп
Введение
В первой половине двадцатого века мир столкнулся с новой технологией, связанной с атомной энергией. С того времени атомные технологии совершили большой рывок в развитии, открывая миру новые перспективы в основном в области снабжения электроэнергией как крупного производства, так и большей части населения страны. В настоящее время в мире эксплуатируется 442 атомных энергоблока общей мощностью около 369 МВт. Картина распределения АЭС по странам мира проиллюстрирована данными на 15/06/2006 службы информации по энергетическим реакторам PRIS (Power Reactor Information Service) на рис.1. Серьезно рассматривают развитие атомной
энергетики страны, не имеющие собственной атомной генерации: Италия, Польша, Белоруссия, Турция, Египет, Марокко, Казахстан, Чили, Нигерия, Бангладеш, Индонезия, Вьетнам, Таиланд, Австралия, Новая Зеландия.
Однако помимо перспектив в научно-технической и экономической областях, атомные технологии таят в себе чрезвычайную опасность для экологии всей планеты. Так, например, последствия аварии на Чернобыльской АЭС, произошедшей более двадцати лет назад (1986 г), сказываются до сих пор (загрязнено большое количество почв в Украине, Белоруссии, Европе, увеличилось количество заболевших раком, загрязнен воздух, вода, нанесен колоссальный экономический ущерб странам, подвергшимся загрязнению радиоактивными выбросами).
Поэтому, для заблаговременной разработки мер защиты и предотвращения в России, предпринимаются меры по повышению уровня безопасности на АЭС и РОО. (Для АЭС: Усовершенствование конструкции реакторов, создание аварийных систем, повышение ресурсной стойкости АЭС, применение современных технологий, усиление контроля безопасности.)
В настоящее время практически в любой отрасли хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. За последние четыре десятилетия атомная энергетика и использование расщепляющих материалов прочно вошли в жизнь человечества. В настоящее время в мире работает более 450 ядерных реакторов. Атомная энергетика позволила существенно снизить “энергетический голод” и оздоровить экологию в ряде стран. Так, во Франции более 75% электроэнергии получают от АЭС и при этом количество углекислого газа, поступающего в атмосферу, удалось сократить в 12 раз. В условиях безаварийной работы АЭС атомная энергетика - пока самое экономичное и экологически чистое производство энергии и альтернативы ей в ближайшем будущем не предвидится. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды, о чем свидетельствуют аварии на атомных станциях в США, Англии, Франции, Японии и в СССР (Чернобыльская). Атомные установки эксплуатируются на ледоколах и лихтеровозах, на крейсерах и подводных лодках, в космических аппаратах. Ядерные материалы приходится возить, хранить, перерабатывать. Все эти операции создают дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира. Радиационная опасность может возникать при авариях на радиационно опасных объектах (РОО). РОО - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества и при аварии, на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов народного хозяйства, а также окружающей природной среды. К типовым радиационно-опасным объектам следует отнести:
- атомные станции,
- предприятия по изготовлению ядерного топлива,
- предприятия по переработке отработавшего топлива и захоронению радиоактивных отходов,
- научно-исследовательские и проектные организации, имеющие ядерные реакторы,
- ядерные энергетические установки на транспорте.
В настоящее время в России функционирует более 700 крупных радиационно-опасных объектов, которые в той или иной степени представляют радиационную опасность, но объектами повышенной опасности являются атомные станции. Практически все действующие АЭС расположены в густонаселенной части страны, а в их 30-километровых зонах проживает около 4 млн. человек. Общая площадь радиационно-дестабилизированной территории России превышает 1 млн. км2, на ней проживает более 10 млн. человек. Аварии на РОО могут привести к радиационной чрезвычайной ситуации (РЧС) - неожиданной опасной радиационной ситуации, которая привела или может привести к незапланированному облучению людей или радиоактивному загрязнению окружающей среды сверх установленных гигиенических нормативов и требующей экстренных действий по защите людей и среды обитания. Аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные и запроектные:
- Проектная авария - для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности.
- Запроектная авария - вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям. При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм. В тяжелых случаях могут произойти тепловые и ядерные взрывы. Тепловой может возникнуть тогда, когда вследствие быстрого неуправляемого развития реакции резко нарастает мощность и происходит накопление энергии, приводящей к разрушению реактора со взрывом.
При этом под нормальной эксплуатацией АЭС понимается все ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.
Причиной ядерной аварии может быть также образование критической массы при перегрузке, транспортировке и хранении твэлов.
В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на шесть типов: локальная, местная, территориальная, региональная, федеральная, трансграничная.
- Локальная - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.
- Местная - нарушение в работе РОО. при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия.
- Общая - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.
Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1 000 человек, или материальный ущерб превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной.
При трансграничных авариях радиационные последствия аварии выходят за территорию Российской Федерации, либо данная авария произошла за рубежом, и затрагивает территорию Российской Федерации.
За суммарный срок эксплуатации всех имеющихся в мире реакторов АЭС, равный 6 000 лет, произошли лишь 3 крупные аварии: в Англии (Уиндекейл, 1957 г.), в США (Три-Майл-Айланд, 1979 г.) и в СССР (Чернобыль, 1986 г.). Авария на Чернобыльской АЭС была наиболее тяжелой. Эти аварии сопровождались человеческими жертвами, радиоактивным загрязнением больших площадей и огромным материальным ущербом. В результате аварии в Уиндекейле погибло 13 человек и оказалась загрязнена радиоактивными веществами территория площадью 500 км2. Прямой ущерб аварии в Три-Майл-Айланде составил сумму свыше 1 млрд. долл. При аварии на Чернобыльской АЭС погибло 30 человек, свыше 500 было госпитализировано и 115 тыс. человек эвакуировано. Международным агентством по атомной энергетике (МАГАТЭ) разработана международная шкала событий на АЭС, включающая 7 уровней. По ней авария в США относится к 5 уровню (с риском для окружающей среды), в Великобритании - к 6 уровню (тяжелая), Чернобыльская авария - к 7 уровню (глобальная).
На радиационно-опасных объектах производится классификация с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной ликвидации, которая проводится по двум признакам: во-первых, по типовым нарушениям нормальной эксплуатации и, во-вторых, по характеру последствий для персонала, населения и окружающей среды.
Первый тип аварии - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.
Второй тип - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.
Третий тип - нарушение всех трех барьеров безопасности. При нарушенных первом и втором теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третим барьером - защитной оболочкой реактора. Под ней понимается совокупность всех конструкций, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.
При анализе аварий их принято характеризовать цепочкой: исходное событие - пути протекания - последствия.
Долгосрочные последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер, оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними. Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.
Особенности радиационной защиты населения
Радиационная защита это комплекс мер, направленных на ослабление или исключение воздействия ионизирующего излучения на население, персонал радиационно-опасных объектов, биологические объекты природной среды, а также на предохранение природных и техногенных объектов от загрязнения радиоактивными веществами и удаление этих загрязнений (дезактивацию). Мероприятия радиационной защиты, как правило, осуществляются заблаговременно, а в случае возникновения радиационных аварий, при обнаружении локальных радиоактивных загрязнений - в оперативном порядке. В превентивном порядке проводятся следующие мероприятия радиационной защиты:
разрабатываются и внедряются режимы радиационной безопасности;
создаются и эксплуатируются системы радиационного контроля за радиационной обстановкой на территориях атомных станций, в зонах наблюдения и санитарно-защитных зонах этих станций;
разрабатываются планы действий по предупреждению и ликвидации радиационных аварий;
накапливаются и содержатся в готовности средства индивидуальной защиты, йодной профилактики и дезактивации;
поддерживаются в готовности к применению защитные сооружения на территории АЭС, противорадиационные укрытия в населенных пунктах вблизи атомных станций;
проводятся подготовка населения к действиям в условиях радиационных аварий, профессиональная подготовка персонала радиационно опасных объектов, личного состава аварийно-спасательных сил и др.
К мероприятиям, способам и средствам, обеспечивающим защиту населения от радиационного воздействия при радиационной аварии, относятся:
- обнаружение факта радиационной аварии и оповещение о ней;
- выявление радиационной обстановки в районе аварии;
- организация радиационного контроля;
- установление и поддержание режима радиационной безопасности;
- проведение при необходимости на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта и участников ликвидации последствий аварии;
- обеспечение населения, персонала, участников ликвидации последствий аварии необходимыми средствами индивидуальной защиты и использование этих средств;
- укрытие населения в убежищах и противорадиационных укрытиях;
санитарная обработка;
- дезактивация аварийного объекта, технических средств и др;
- эвакуация или отселение населения из зон, в которых уровень загрязнения или дозы облучения превышают допустимые для проживания населения.
Выявление радиационной обстановки проводится для определения масштабов аварии, установления размеров зон радиоактивного загрязнения, мощности дозы и уровня радиоактивного загрязнения в зонах оптимальных маршрутов движения людей, транспорта, а также определения возможных маршрутов эвакуации населения и сельскохозяйственных животных. Радиационный контроль в условиях радиационной аварии проводится с целью соблюдения допустимого времени пребывания людей в зоне аварии, контроля доз облучения и уровней радиоактивного загрязнения. Режим радиационной безопасности обеспечивается установлением особого порядка доступа в зону аварии, зонированием района аварии; проведением аварийно-спасательных работ, осуществлением радиационного контроля в зонах и на выходе в “чистую” зону и др. Использование средств индивидуальной защиты заключается в применении изолирующих средств защиты кожи (защитные комплекты), а также средств защиты органов дыхания и зрения (ватно-марлевые повязки, различные типы респираторов, фильтрующие и изолирующие противогазы, защитные очки и др.). Они защищают человека в основном от внутреннего облучения. Для защиты щитовидной железы взрослых и детей от воздействия радиоактивных изотопов йода на ранней стадии аварии проводится йодная профилактика. Она заключается в приеме стабильного йода, в основном йодистого калия, который принимают в таблетках в следующих дозах: детям от двух лет и старше, а также взрослым по 0,125 г, до двух лет по 0,04 г., прием внутрь после еды вместе с киселем, чаем, водой 1 раз в день в течение 7 суток. Раствор йода водно-спиртовой (5%-ная настойка йода) показан детям от двух лет и старше, а также взрослым по 3капель на стакан молока или воды в течение 7 суток. Детям до двух лет дают 1капли на 100 мл молока или питательной смеси в течение 7 суток. Максимальный защитный эффект (снижение дозы облучения примерно в 100 раз) достигается при предварительном и одновременном с поступлением радиоактивного йода приеме его стабильного аналога. Защитный эффект препарата значительно снижается при его приеме более чем через два часа после начала облучения. Однако и в этом случае происходит эффективная защита от облучения при повторных поступлениях радиоактивного йода.
Защиту от внешнего облучения могут обеспечить только защитные сооружения, которые должны оснащаться фильтрами-поглотителями радионуклидов йода. Временные укрытия населения до проведения эвакуации могут обеспечить практически любые герметизированные помещения.
Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз. На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии. На федеральном уровне государственный учёт и контроль ядерных материалов осуществляют Министерство по атомной энергии (Минатом России) и Министерство обороны РФ. На ведомственном уровне эти функции выполняют федеральные органы исполнительной власти, в непосредственном распоряжении которых находятся ядерные материалы. На уровне эксплуатирующей организации, деятельность которой связана с производством, хранением или использованием ядерных материалов, их учёт и контроль осуществляет её администрация. Надзор же за самой системой учёта и контроля ядерных материалов для использования в мирных целях осуществляет Федеральный надзор России по ядерной и радиационной безопасности. Государственный таможенный комитет РФ контролирует перемещение ядерных материалов через таможенную границу. Особо подчёркивается, что вмешательство в деятельность эксплуатирующей организации в части использования ядерной установки не допускается. При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо. В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности. Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри. В Москве имеются радиационно-опасные объекты, аварии на которых могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы (см. Приложение 3). В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.
Все вышеперечисленное требует соответствующей учебно-материальной базы, основанной на реальных документах, максимально приближенных к реальной технике тренажерах, макетах, муляжах. Процесс обучения целесообразно проводить комплексным методом в ограниченных по количеству группах, сочетая привитие глубоких знаний и твердых практических навыков. Максимальные наглядность, доступность и научность необходимо сочетать без взаимного ущерба и без угрозы стать заложниками финансового дефицита.
Список литературы
Безопасность жизнедеятельности - Учебник для вузов. Автор: Ушаков К.З. Издательство «Нефть-газ» 2000. с. Электронная библиотека http://www.bezo.oglib.ru/bgl/7642.html
Безопасность жизнедеятельности: Учебник для вузов. Беспамятных Т.А., Закревский Н.В., Киселева Э.М., Михайлов А.Л., Михайлов Л.А., Соломин В.П., Старостенко А. В., Шатровой О.В. 1 издание, Издательский дом: Питер, 2007. - 304 с.
Сычев Ю.Н. Безопасность жизнедеятельности: Учебно-методический комплекс М.: Изд. центр ЕАОИ, 2008. - 311 с
Словарь чрезвычайных ситуаций
Энциклопедический словарь медицинских терминов: В 3-х томах. Около 60 000 терминов. / Гл. ред. Б.В. Петровский. - М.: Советская энциклопедия, Т. 1. А - Йореса способ. 1982, 464 с.
Размещено на Allbest.ru