У вас вопросы?
У нас ответы:) SamZan.net

приведена произвольная функция времени Амплитуда произвольной звуковой волны

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.4.2025

ВЕЙВЛЕТ – АНАЛИЗ.

Разрешающая способность спектральных методов анализа существенно зависит от базиса по которому осуществляется разложение функции.

Современные методы анализа базируются на разложении функций по специальным базисам Wavelet – базисам. В дословном переводе с французского – волночка (маленькая волна).

ОСНОВНЫЕ ПОЛОЖЕНИЯ

ВЕЙВЛЕТ – АНАЛИЗА.

Рассмотрим разложение произвольной функции по произвольному базису на локальном интервале времени.

Например – Рис.1. приведена произвольная функция времени (Амплитуда произвольной звуковой волны).

Рис.1. АМПЛИТУДА ЗВУКОВОЙ ВОЛНЫ.

Рассмотрим на Рис2. произведение амплитуд звуковой волны и двух маленьких волн

Рис.2. Пример работы вейвлетов.

Если взять и перемножить зеленую кривую и красную (звуковую), то их произведение на интервале от 200 до 1100 (Рис.1.) будет иметь некоторую ненулевую величину. За пределами этого интервала  - это значение – ноль.

Если сделать тоже самое для синей кривой и красной – то их произведение на тех же интервалах будет – ноль (за пределами интервала ненулевых значений синей кривой) и гораздо меньшее значение внутри интервала – от 200 до 1100.

Можно сделать вывод, что сродство зеленой кривой на интервале времени от 200 до 1100 с выше по отношению к звуковой волне, чем сродство голубой кривой.

Сместим кривые (голубую и зеленую.

Рис.3.

Рис.3. Работа вейвлетов.

Очевидно, что если проделать ту же операцию перемножения маленьких локальных волн со сдвинутыми значениями по отношению к звуковой волне, то значение произведений измениться. Причем, в данном случае уменьшиться ввиду изменения сроства.

Важным моментом в данном случае являются виды маленьких волн.

Если взять и перемножить их между собой в данном случае, то окажется, что сумма их произведения межу собой равна нулю.

Это характерно для большинства вейвлетных базисов – они ортогональны.

Другой важной особенностью применения вейвлетов является разложение по различным масштабным составляющим в локальный момент времени.

  (1.1)

где Nчисло точек выборки

xj,  – коэффициенты вейвлет-преобразования.

F(i,j) – вейвлет-базис

При этом вейвлет-коэффициенты вычисляются по формулам:

 (1/2/)

 (1.3)

При i~=k не равно к

Типы ВЕЙВЛЕТ-БАЗИСОВ.

СКЕЙЛОГРАММА.




1. Реферат- Преступления против политических, социальных прав и свобод человека и гражданина, семьи и несовершеннолетних
2. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата хімічних наук Дніпр
3. Россия в годы Первой Мировой войны Нарастание общенационального кризиса
4. Самое общее представление о внутренней среде организации дает ознакомление с целевым назначением о
5. Башкирский государственный медицинский университет Министерства здравоохранения и социального развити
6. Горный Кафедра БП Измерение параметров микроклимата
7. Административная ответственность за налоговые правонарушения в Республике Беларусь.html
8. Византия и арабы
9. Общественное здоровье и здравоохранение как наука и предмет преподавания.html
10. Платіжна система України та стратегія її розвитку