У вас вопросы?
У нас ответы:) SamZan.net

ЛАБОРАТОРНАЯ РАБОТА 4 Освоение технологии структурного программирования и применения стандартных м

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

ЛАБОРАТОРНАЯ РАБОТА № 4

Освоение технологии структурного программирования

и применения стандартных методов работы с одномерными массивами

при разработке и создании программы на языке Турбо Паскаль.

Цели работы:

1. Освоение методики нисходящей разработки (проектирования) программы методом пошаговой детализации с помощью псевдокода при решении задач с помощью ПК.

2. Освоение методов структурного программирования при разработке и создании программы на языке Турбо Паскаль для обработки одномерных массивов.

3. Овладение выразительными средствами графики языка ТП для повышения читаемости программы.

4. Овладение навыками введения в программу необходимого количества комментариев.

5. Приобретение навыков алгоритмизации и программирования на алгоритмическом языке Паскаль

6. Освоение средств исследования программы.

7. Освоение методики тестирования программы.

Теоретические сведения

Циклом называется многократно повторяемый участок вычислений. Вычислительный процесс, содержащий один или несколько циклов, называется циклическим. Циклы (операторы повторения) предусматривают повторяющееся выполнение некоторых операторов. Если число повторений известно заранее (до начала повторений), то в этом случае всегда используется оператор цикла с параметром for. Такой оператор предусматривает изменение управляющей переменной (параметра цикла) по правилу прогрессии с шагом 1 и повторное выполнение некоторого оператора (в том числе составного) до достижения конечного значения.

Конечно, удобно , если алгоритм, который Вам необходимо реализовать, выполняется с заранее известным количеством повторений цикла n. Но, что делать, если заранее количество повторений цикла вообще неизвестно, а заданы лишь некоторые условия его завершения. Например, Вам поставлена задача вычислить с некоторой погрешностью ε сумму членов ряда:

(4.1)

Для упрощения рассуждений, будем считать, что условием завершения вычисления заданной суммы будет условие, когда n-тый член ряда удовлетворяет условию:

(4.2)

Тогда количество членов ряда будет зависеть от ε и их количество заранее определить невозможно. К счастью, для програмной реализации таких вычислительных процессов в языке ТП существуют две структуры:

 структура while-do (ЦИКЛ-ПОКА);

 структура repeat-until (ЦИКЛ-ДО).

В начале расмотрим программную реализацию алгоритма решения задачи (4.1) с использованием структуры while-do (ЦИКЛ-ПОКА) (рис. 4.1)

Расмотрим подробнее конструирование цикла с предусловием while-do, используемого для вычисления суммы членов бесконечного ряда по формуле (4.1) (рис. 4.2):

Блок-схему работы структуры while-do, приведенной на рис. 4.2 можно изобразить так (рис. 4.3):

Если при входе в структуру while-do значение member равно 1, чтобы условие member>eps было равно True, то выполняется тело цикла. По мере увеличения в цикле величины n , значение member уменьшается, пока не станет меньше заданной точности ε . В этом случае условие member>eps становится ложным, что и вызывает завершение цикла.

Сформулируем основные особенности структуры «цикл с предусловием» while-do (ЦИКЛ-ПОКА), имеющей следующую общую форму записи:

while <условие> do

<оператор>;

где:

 слова while (пока) и do (выполнять) являются служебными;

 <условие> – логическое выражение любой степени сложности, которое управляет процессом выполнения цикла: если <условие> равно True – цикл выполняется, но как только оно принимает значение False – цикл завершается и выполняется следующий за циклом оператор программы;

 <оператор> – любой оператор языка ТП и в том числе составной. Обратите внимание на то, что в этой структуре может использоваться либо только один(!) оператор (присваивания, условный, выбора, и т.д.), либо составной, т.е. совокупность операторов, взятая в операторные скобки begin ... end;

 если <условие> имеет значение False до начала выполнения цикла, то не выполнится ни один из операторов тела цикла;

 как правило, подготовку к выполнению цикла while Вы должны организовывать сами, поскольку он выполняет только проверку заданного Вами условия;

 цикл while используйте тогда и только тогда, когда число повторений заранее неизвестно! Иначе используйте цикл с параметром for.

А теперь давайте ту же самую задачу (4.1) программно реализуем с использованием структуры «цикл с постусловием» repeat-until (ЦИКЛ-ДО). А за основу новой программы возьмём программу рис. 4.1. Полученная программа приведена на рис. 8.64.

Как Вы видите, чтобы вычислить сумму членов бесконечного ряда (4.1) с использованием структуры repeat-until (ЦИКЛ-ДО) с постусловием, нам понадобилось в программе (рис. 4.1) только произвести замену операторов while member > eps do и begin на repeat, а оператора end – на until member < eps, оставив вложенные операторы без изменения. А в операторе until условие завершения цикла поменяеть на противоположное.

Теперь давайте сравним, чем же отличается структура цикла repeat-until (ЦИКЛ-ДО) (рис. 4.5) от структуры while-do (ЦИКЛ-ПОКА) (рис. 4.2).

Блок-схему работы структуры repeat-until, приведенной на рис. 4.5 можно изобразить так (рис. 4.6).

Если при входе в структуру repeat-until значение member равно 1, чтобы условие member<eps было равно False, то выполняется тело цикла. По мере увеличения в цикле величины n , значение member уменьшается, пока не станет меньше заданной точности ε . В этом случае условие member>eps становится ложным, что и вызывает завершение цикла.

Сформулируем основные особенности структуры «цикл с постусловием» repeat-until (ЦИКЛ-ДО), имеющей следующую общую форму записи:

repeat

      <оператор_1>;

      <оператор_2>;

          ...

      <оператор_N>

until  <условие>;

где:

 слова repeat (повторять) и until (до тех пор, пока...) являются служебными;

 <оператор_i> (і=1,2, ..., N) – любой оператор языка ТП (простой либо сложный);

 <условие> – логическое выражение любой степени сложности, которое управляет процессом выполнения цикла: если <условие> равно False – цикл выполняется, но как только оно принимает значение True – цикл завершается и выполняется следующий за структурой цикла оператор программы;

 если <условие> имеет значение True до начала выполнения цикла, то тело цикла выполняется один раз, после чего выполняется следующий за циклом оператор программы;

 как правило, подготовку к выполнению цикла repeat Вы должны организовывать сами, поскольку он выполняет только проверку заданного Вами условия;

 цикл repeat используйте тогда и только тогда, когда число повторений заранее неизвестно! Иначе используйте цикл с параметром for.

Теперь, когда Вам стала понятна работа обоих структур: while-do (ЦИКЛПОКА) и repeat-until (ЦИКЛ-ДО), Вы должны хорошо представлять себе, что в работе структуры repeat-until имеется несколько важных отличий:

 проверка значения логического выражения <условие> реализуется после однократного выполнения тела цикла. То есть все операторы оператор_1, оператор_2, ... оператор_N> будут выполнены хотя бы один раз при любых условиях;

 операторы repeat ... until подобны операторным скобкам begin ... end, поэтому между ними можно размещать группы операторов, отделяя их между собой точкой с запятой;

 цикл repeat ... until выполняется, в отличие от цикла while ... do, до тех пор, пока логическое выражение <условие> имеет значение False и завершает свою работу когда оно принимает значение True;

 за последним оператором <оператор_N> перед служебным словом until разделительный символ  ; точка с запятой может не ставиться.

При проектировании алгоритма циклического вычислительного процесса в структурном программировании используется структура цикл, которая в контексте синтаксиса языка ТП для рассматриваемого случая может представляться в виде while-do (ЦИКЛПОКА) (рис. 4.7).

Либо для структуры repeat-until (ЦИКЛ-ДО) (рис. 4.8):

Рассмотрим последовательно все этапы создания программы бесконечного циклического вычислительного процесса на конкретном примере.

1. Условие задачи:

Вычислить значение бесконечной суммы с заданной точностью :

.

(4.2)

2. Решение задачи в ее предметной области, в данном случае – это высшая математика:

.

(4.3)

Здесь Вы должны обратить внимание на то, что n в (4.3) заранее не известно.

3. Проектируем структуры данных (их имена и типы). Понятно, что все имена, входящие в (4.3), нужно описать в программе, т.е. S, x, i, eps. Кроме того, нам понадобится некоторая переменная, в которой будет храниться текущее вспомогательное значение для члена ряда. Назовем ее part. Поскольку S, x, eps, power могут иметь дробную часть, то их тип выбираем Real. Для iзначения не имеет: это может быть Real либо Integer.

Значит в разделе описаний программы, назовем ее Summa, с учетом требований о необходимости обеспечения легкочитаемости программы и размещения необходимых комментариев, поместим следующие описания:

Var

 S,            { сумма }

 x,            { значение x }

 i,            { число в знаменателе }

 eps,          { точность вычислений }

 part : Real; { текущее значение части члена ряда }

4. Проводим нисходящую разработку (проектирование) программы методом пошаговой детализации с помощью псевдокода. Воспользуемся результатами (рис. 1) для получения первой версии алгоритма:

Ввести данные Summa

Выполнить вычисления Summa

Вывести результаты Summa

С учетом требований к «дружественности» интерфейса, детализация псевдокода Ввести данные Summa дает следующее:

Вывести на экран приглашение для ввода x

Ввести x

Вывести на экран приглашение для ввода eps

Ввести eps

Детализация псевдокода Выполнить вычисления Summa дает следующее:

S присвоить 0

part присвоить 1

i присвоить 1

ЦИКЛ ПОКА (part/i)>eps

 part умножить на x-1 и разделить на x

 к S добавить part деленное на i

 i увеличить на единицу

Детализация псевдокода Вывести результаты Summa дает следующее:

Вывести название и содержимое ячейки S

5. Выполняем структурное программирование с использованием структуры ЦИКЛ-ПОКА:

BEGIN

 ClrScr; { Очищаем экран }

 Write(‘Введите значение x = ’);

 ReadLn(x);

 Write(‘Введите значение eps = ’);

 ReadLn(eps);

 { Подготовка к циклу }

 S := 0; { Подготовка к циклу }

 part := 1; { Начальное значение }

 i := 1;    { Начальное значение }

 while (part/i)>eps do

   begin

     part := part*(x-1)/x; { Получаем часть члена ряда }

     S := S+ part/i;       { Суммируем в S }

     i := i+1              { Увеличиваем i на 1 }

   end;

 WriteLn(‘S = ’, S:4:2);

 ReadLn

END.

6. Отладка программы. Отладка программы – это процесс поиска и устранения синтаксических ошибок в готовой программе. Обычно отладка предшествует стадии тестирования. В этом пункте необходимо привести скриншот результата работы готовой программы (см. п. 5 Лаб. раб № 1).

7. Тестирование программы. Цель тестирования всякой программы состоит в том, чтобы убедиться, что она решает действительно ту задачу, для которой предназначена, и выдаёт правильный ответ при любых значениях из области решений. Тестовые данные должны обеспечивать проверку всех возможных условий возникновения ошибок. Подготовьте тестовый пример для своей задачи и вычислите конечный результат с помощью калькулятора, имеющегося в среде Windows.

Тестовый пример для нашей задачи будет включать вычисление S при x=2.5 и eps=0.00001:

Исследуйте Вашу программу при необходимых тестовых значениях.

Создайте программу с использованием структуры repeat-until (ЦИКЛ-ДО) и исследуйте ее.

8. Перед защитой лабораторной работы Вам необходимо подготовить отчет (Приложение 2). Перед распечаткой обязательно продемонстрируйте его преподавателю в электронном виде, чтобы избежать ошибок в оформлении!

9. Для защиты лабораторной работы:

9.1. Представить отчет по лабораторной работе в печатном виде.

9.2. Продемонстрировать умение исследовать свою программу.

9.3. Решить любую другую задачу из списка заданий.

9.4. Ответить на вопросы:

9.4.1. Чем отличаются циклы с условиями от циклов с параметром?

9.4.2. Что собой представляет условие у этих обоих циклах?

9.4.3. Какое значенне должно иметь условие в цикле while, чтобы он выполнялся?

9.4.4. Какое значение должно иметь условие в цикле repeat, чтобы он выполнялся?

9.4.5. Чем вообще отличаетсяся цикл while от цикла repeat?


ЗАДАНИЯ К

ЛАБОРАТОРНОЙ РАБОТЕ № 4

  1.  Вычислить приближенное значение бесконечной суммы с точностью до =0.001.
  2.  Вычислить приближенное значение бесконечной суммы с точностью до =0.005.
  3.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0001.
  4.  Вычислить приближенное значение бесконечной суммы с точностью до =0.05.
  5.  Вычислить приближенное значение бесконечной суммы с точностью до =0.00005.
  6.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0001.
  7.  Вычислить приближенное значение бесконечной суммы с точностью до =0.001.
  8.  Вычислить приближенное значение бесконечной суммы с точностью до =0.005.
  9.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0005.
  10.  Вычислить приближенное значение бесконечной суммы с точностью до =0.01.
  11.  Вычислить приближенное значение бесконечной суммы с точностью до =0.05.
  12.  Вычислить приближенное значение бесконечной суммы с точностью до =0.005.
  13.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0001.
  14.  Вычислить приближенное значение бесконечной суммы с точностью до =0.00001.
  15.  Вычислить приближенное значение бесконечной суммы с точностью до =0.00001.
  16.  Вычислить приближенное значение бесконечной суммы с точностью до =0.05.
  17.  Вычислить приближенное значение бесконечной суммы с точностью до =0.001.
  18.  Вычислить приближенное значение бесконечной суммы с точностью до =0.01.
  19.  Вычислить приближенное значение бесконечной суммы с точностью до =0.05.
  20.  Вычислить приближенное значение бесконечной суммы с точностью до =0.05.
  21.  Вычислить приближенное значение бесконечной суммы с точностью до =0.00005.
  22.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0005.
  23.  Вычислить приближенное значение бесконечной суммы с точностью до =0.0001.
  24.  Вычислить приближенное значение бесконечной суммы с точностью до =0.001.
  25.  Вычислить приближенное значение бесконечной суммы с точностью до =0.005.


Тело цикла –
cледование простых либо сложных ператоров ТП

Проверка, не достигнуто ли значение

True

Конструирование условия, которое для выполнения цикла

должно быть = False

Ключевое слово repeat

Следование простых либо сложных ператоров ТП, повторяемых в цикле до тех пор, пока условие станет = True

Подготовка исходных данных к выполнению цикла с послеусловием

 S:=1

 n:=1

 member:=1

 repeat

   member:=member/n;

   S:=S+member;

   n:=n+1

 until member < eps; 

Рисунок 4.5 Конструкция цикла с постусловием repeat-until

ЦИКЛ ПОКА member > eps

 Выполнять действия

Ложь

Истина

Рис. 4.7. Псевдокод для цикла while-do (ЦИКЛПОКА) для (4.1)

Рис. 4.8. Псевдокод для цикла repeat-until (ЦИКЛ-ДО) для (4.1)

repeat

 member:=member/n;

 S:=S+member;

 n:=n+1

until member <= eps; 

ЦИКЛ

 Выполнять действия

ДО member < eps

member<eps

member>eps

 begin

   member:=member/n;

   S:=S+member;

   n:=n+1

 end;

Составной либо простой оператор, повторяемый в цикле до тех пор, пока условие не станет = False

Рисунок 4.4 Вычисления ряда (4.1) с использованием структуры repeat-until (ЦИКЛ-ДО) (окончание)

 { Подготовка к циклу }

 S:=1;      { В ссумму сразу заносим единицу }

 n:=1;      { Первый элемент факториала }

 member:=1; { Первый член ряда }

 { Начало цикла с предусловием }

 repeat

   member:=member/n;  { В цикле получаем 1/n! }

   S:=S+member;       { В S суммируем члены ряда }

   n:=n+1             { В n получаем очередной элемент факториала }

 until member < eps; { Условие выполнения цикла: (member<eps) = False }

 WriteLn(‘ Сумма = ’, S, ‘  Число членов ряда = ’, n-1);

 ReadLn

End.

Рисунок 4.4 Вычисления ряда (4.1) с использованием структуры repeat-until (ЦИКЛ-ДО)

Program EndingCondition;

Uses Crt;

Var

 eps,         { Точность вычисления суммы членов ряда }

 member,      { Текущий член ряда }

 S : Real;    { Сумма членов ряда }

 n : Integer; { Очередной сомножитель факториала }

Begin

 ClrScr;

 Write(‘Введите eps = ’);

 ReadLn(eps);

Рисунок 4.3 Блок-схема цикла while-do, приведенного на рис. 4.2

Тело цикла. Как правило, составной оператор, реже – простой

Ложь

Истина

Рисунок 4.6 Блок-схема структуры repeat-until, приведенной на рис. 4.5

Ключевое слово while

Конструкция условия выполнения цикла, которое для входа в цикл должно быть = True

Подготовка исходных данных к выполнению цикла с предусловием

 S:=1;

 n:=1;

 member:=1;

 while member > eps do

   begin

     member:=member/n;

     S:=S+member;

     n:=n+1

   end;

Рисунок 4.2 Конструкция цикла с предусловием while-do

     member:=member/n;  { Обратите внимание! В цикле мы «доделиваем» }

     { единицу последовательно на 1, 2, 3 и т.д., получая каждый раз член ряда 1/n! }

     S:=S+member;       { В S суммируем члены ряда }

     n:=n+1             { В n получаем очередной элемент факториала }

   end;

 WriteLn(‘ Сумма = ’, S, ‘  Число членов ряда = ’, n-1);

 ReadLn

End.

Рисунок 4.1 Вычисление бесконечного ряда с точностью ε с использованием структуры while-do (ЦИКЛ-ПОКА)

Program StartingCondition;

Uses Crt;

Var

 eps,         { Точность вычисления суммы членов ряда }

 member,      { Текущий член ряда }

 n,           { Очередной сомножитель факториала }

 S : Real;    { Сумма членов ряда }

Begin

 ClrScr;

 Write(‘Введите eps = ’);

 ReadLn(eps);

 { Подготовка к циклу }

 S:=1;      { В сумму сразу заносим первый член ряда }

 n:=1;      { Первый элемент факториала }

 member:=1; { Первый член ряда }

 { Начало цикла с предусловием }

 while member > eps do { Условие выполнения цикла: (member>eps) = True }

   begin




1. Русские княжества в 13-14 веках
2. Лабораторная работа 203 ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ КОНДЕНСАТОРА С ПОМОЩЬЮ БАЛЛИСТИЧЕСКОГО ГАЛЬВА
3. Курсовая работа на тему- Поиск неисправностей Выполнил- студент Куршев В
4. А. ока сферична ~ спотворене зображення на сітківці внаслідок недосконалості оптичної системи кришталика;.html
5. txt на html недостатньо.html
6. Нравственные ценности античной культуры
7. вагон станция отправления Б
8. 1 Вибір способу переробки пластмас і технологічного процесу
9. да не за горами тот час когда вы станете не просто женщиной и даже не просто женой и матерью а ~ свекровью
10. Система естественного оздоровлени
11. предмет История1
12. тема- Мережне адміністрування ВСТУП Засоби мережного і системного адміністрування ніколи не з
13. тематическая модель ЭММ
14. БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТЕКАМСКИЙ ФИЛИАЛ Кафедра экономической теории и мен
15. Концепция маркетингового менеджмента
16. Управленческие решения в гостиничном бизнесе
17. Мочевыделительная система
18. Детали машин для студентов специальности 150411 Монтаж и техническая эксплуатация промышленного оборудо
19. Индийский штат Ориссу
20. а 1 день Личность- ~ развитие качеств личности для перехода в индивидуальность