Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ВВЕДЕНИЕ
Учебное пособие «Котельные установки и парогенераторы» написано в соответствии c программой одноименной учебной дисциплины по специальности 140104 (100700) «Промышленная теплоэнергетика».
Основную направленность содержания настоящего учебника авторы видят в раскрытии и анализе рабочих процессов, протекающих в энергетических котлах, что соответствует характеру подготовки специалистов как инженеров эксплуатационно наладочного профиля.
В учебном пособии приводится общее устройство парового котла и раскрывается современное конструктивное выполнение его поверхностей нагрева, позволяющее показать характер аэродинамических, гидравлических, механических и физико химических процессов в различных элементах котла.
Раздел, связанный с котельным топливом и технологией его сжигания, изложен в несколько сокращенном объеме в части подготовки топлив к сжиганию, поскольку в учебном плане эти вопросы изучаются в дисциплине «Топливо и теория горения». Основное внимание уделено организации сжигания, конструкции топочных устройств и экономичности работы парового котла.
В учебном пособии отсутствует раздел, связанный с методикой теплового и аэродинамического расчета элементов котельного агрегата, так как эти вопросы изложены в учебном пособии С.Н. Смородина, А.Н. Иванова «Тепловой и аэродинамический расчеты котельных установок».
Учебное пособие сопровождается большим числом иллюстраций и принципиальных схем для лучшего усвоения материала.
1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
В котельной технике применяют следующие термины и определения:
Котел устройство, в котором для получения пара или нагрева воды с давлением выше атмосферного, потребляемых вне этого устройства, используется теплота, выделяющаяся при сгорании органического топлива, а также теплота отходящих газов. Котел состоит из топки, поверхностей нагрева, каркаса, обмуровки. В котел могут также входить: пароперегреватель, поверхностный экономайзер и воздухоподогреватель.
Котельная установка совокупность котла и вспомогательного оборудования, включающего: тягодутьевые машины, сборные газоходы, дымовую трубу, воздухопроводы, насосы, теплообменные аппараты, автоматику, водоподготовительное оборудование.
Топка (топочная камера) устройство, предназначенное для преобразования химической энергии топлива в физическую теплоту высокотемпературных газов с последующей передачей теплоты этих газов поверхностям нагрева (рабочему телу).
Поверхность нагрева элемент котла для передачи теплоты от факела и продуктов сгорания теплоносителю (вода, пар, воздух).
Радиационная поверхность поверхность нагрева котла, получающая теплоту в основном излучением.
Конвективная поверхность поверхность нагрева котла, получающая теплоту в основном конвекцией.
Экраны поверхности нагрева котла, расположенные на стенках топки и газоходов и ограждающие эти стенки от воздействия высоких температур.
Фестон испарительная поверхность нагрева, располагаемая в выходном окне топки и образованная, как правило, трубами заднего экрана, разведенными на значительные расстояния путем образования многорядных пучков. Назначение фестона заключается в организации свободного выхода из топки топочных газов в поворотный горизонтальный газоход.
Барабан устройство, в котором осуществляется сбор и раздача рабочей среды, обеспечение запаса воды в котле, разделение пароводяной смеси на пар и воду. Для этой цели используются размещенные в нем паросепарационные устройства.
Котельный пучок конвективная поверхность нагрева котла, представляющая собой группу труб, соединенных общими коллекторами или барабанами.
Пароперегреватель устройство для повышения температуры пара выше температуры насыщения, соответствующей давлению в котле.
Экономайзер устройство для предварительного нагрева воды продуктами сгорания до подачи ее в барабан котла.
Воздухоподогреватель устройство для подогрева воздуха продуктами сгорания до подачи его в горелки.
НА ПЫЛЕВИДНОМ ТВЕРДОМ ТОПЛИВЕ
Общая схема котельной установки с естественной циркуляцией, работающей на твердом топливе, представлена на рис. 1.
Газовый тракт. Угольная пыль из системы пылеприготовления 1 через горелку 2 поступает в топочную камеру 3, сгорает во взвешенном состоянии, образуя факел, температура которого составляет 1600-2200 °С (в зависимости от вида сжигаемого топлива). Шлак, образующийся в процессе горения топлива, через так называемую холодную воронку 4 поступает в специальный бункер, оттуда водой смывается в шлакопроводы, а затем багерными насосами шлак направляется на золоотвал. От факела тепло излучением передается топочным экранам, при этом дымовые газы охлаждаются и температура их на выходе из топки составляет 900-1100 °С. Проходя последовательно через поверхности нагрева (фестон 27, пароперегреватель 29, расположенный в горизон-тальном газоходе 5, водяные экономайзеры 20, 21 и воздухоподогреватели 14, 15, расположенные в конвективной шахте 6), дымовые газы отдают свое тепло рабочему телу (пар, вода, воздух) и охлаждаются до температуры 120-170 °С за первой ступенью воздухоподогревателя. Затем дымовые газы по газоходу 7 поступают в золоуловитель 8, где происходит улавливание золовых частиц из потока дымовых газов. Зола, уловленная из дымовых газов в золоуловителе воздухом или водой, транспортируется на золоотвал. Очищенные от золы дымовые газы дымососом 9 направляются в дымовую трубу 10. С помощью дымовой трубы происходит рассеивание вредных пылегазовых выбросов в атмосфере.
Воздушный тракт. Холодный воздух из верхней части помещения котельного цеха с температурой 20-30 °С забирается вентилятором 12 через воздухозаборную шахту 11 и направляется в воздухоподогреватель 1-й ступени 14. В некоторых случаях холодный воздух может подогреваться до температуры 50-90 °С. При этом подогрев воздуха до 50 °С осуществляется за счет рециркуляции части горячего воздуха во всасывающий патрубок вентилятора, а до температуры 85-90 °С - в паровом или водяном калорифере 13. Проходя последовательно 1-ю и 2-ю ступени воздухоподогревателя (14, 15), воздух нагревается до температуры 300-350 °С. После воздухоподогревателя 2-й ступени воздух поступает в воздухопровод горячего воздуха 16 и часть его (первичный воздух) по воздухопроводу 17 направляется на мельницу для сушки и транспортировки угольной пыли. Другая часть (вторичный воздух) по воздухопроводу 18 направляется к пылеугольным горелкам.
Рис.1. Общая схема котельной установки с естественной циркуляцией,
работающей на твердом топливе:
топливный тракт:
1 система пылеприготовления; 2 пылеугольная горелка;
газовый тракт:
3 топочная камера; 4 холодная воронка; 5 горизонтальный газоход; 6 конвективная шахта; 7 газоход; 8 золоуловитель; 9 дымосос; 10 дымовая труба;
воздушный тракт:
11 воздухозаборная шахта; 12 вентилятор; 13 калорифер; 14 воздухоподогреватель 1-й ступени; 15 воздухоподогреватель 2-й ступени; 16 воздуховоды горячего воздуха; 17 первичный воздух; 18 вторичный воздух;
пароводяной тракт:
19 подвод питательной воды; 20 водяной экономайзер 1-й ступени; 21 водяной экономайзер 2-й ступени; 22 трубопровод питательной воды; 23 барабан; 24 опускные трубы; 25 нижние коллекторы; 26 экранные (подъемные) трубы; 27 фестон; 28 паропровод сухого насыщенного пара; 29 пароперегреватель; 30 пароохладитель; 31 главная паровая задвижка (ГПЗ)
Вторичный воздух служит для регулирования топочного процесса с целью поддержания оптимального режима горения в топке. Количество первичного и вторичного воздуха определяется характеристиками топлива.
Пароводяной тракт. Питательная вода после предварительной подготовки (умягчение, деаэрация) питательным насосом подается в коллектор экономайзера 1-й ступени. Температура ее после регенеративного подогревателя 145-220 °С. Если для регулирования температуры пара установлен поверхностный пароохладитель 30, то часть воды предварительно направляется туда, чтобы обеспечить регулирование температуры перегретого пара. Проходя последовательно 1-ю и 2-ю ступени водяного экономайзера 20, 21, вода нагревается либо до температуры кипения (tпв = tкип) экономайзер кипящего типа, либо до температуры ниже температуры кипения (tпв < tкип) экономайзер некипящего типа. Затем по трубопроводу 22 питательная вода подается в барабан котла 23, откуда по опускным трубам 24 вода поступает в нижние коллекторы 25 фронтового, заднего и боковых экранов топочной камеры, а из них в экранные (подъемные) трубы. За счет тепловосприятия экранами лучистого тепла от факела вода в них сначала нагревается до температуры кипения, так как в опускных трубах температура ее несколько ниже, а затем образуется пароводяная смесь, которая поступает в барабан 23. Такое движение воды называется естественной циркуляцией и происходит за счет разности плотностей воды в опускных трубах и пароводяной смеси в экранных (подъемных) трубах.
В барабане котла происходит разделение пароводяной смеси на пар и воду. В паровом пространстве барабана установлены сепарационные устройства, с помощью которых происходит улавливание капелек влаги из потока пара. Полученный в барабане сухой насыщенный пар по паропроводу 28 поступает в пароперегреватель 29, сначала в его противоточную часть, затем в прямоточную, где пар перегревается до заданной температуры. Между противоточной и прямоточной частью пароперегревателя устанавливается пароохладитель 30, который служит для регулирования температуры пара. Пар с заданными параметрами через главную паровую задвижку 31 поступает в паропровод и далее к потребителю (паровые турбины, технологические потребители).
Котел с внешней стороны имеет наружное ограждение обмуровку, которая включает в себя обшивку из стального листа 3-4 мм со стороны помещения котельной, вспомогательный каркас, и собственно огнеупорную обмуровку тепловую изоляцию толщиной 50-200 мм. Основное назначение обмуровки и обшивки заключается в уменьшении тепловых потерь в окружающую среду и обеспечении газовой плотности.
Каждый паровой котел снабжается гарнитурой и арматурой. К гарнитуре относятся все приспособления и устройства - лючки, лазы, шиберы, обдувочные устройства и т. п.; к арматуре - все приборы и устройства, связанные с измерением параметров и регулированием рабочего тела (манометры, водоуказатели, задвижки, вентили, предохранительные и обратные клапаны и др.), обеспечивающие возможность и безопасность обслуживания агрегата.
Конструкции котла опираются на несущий стальной каркас, основными элементами которого являются стальные балки и колонны.
3. МАТЕРИАЛЬНЫЙ БАЛАНС ПРОЦЕССА ГОРЕНИЯ. ОБЪЕМЫ И ЭНТАЛЬПИИ ВОЗДУХА И ПРОДУКТОВ СГОРАНИЯ
Материальный баланс процесса горения устанавливает математическую связь между веществами, вступившими в реакцию (топливо и окислитель), и конечными продуктами (продукты сгорания).
Материальный баланс составляется на один килограмм твердого или жидкого топлива или на один кубометр газа.
Горючие составляющие топлива вступают в химическую реакцию с кислородом в определенном количественном соотношении, определяемым законом Дальтона.
Реакции полного горения:
С + О2 = СО2 ;
S + О2 = SО2 ;
2Н2 + О2 = 2Н2О .
Расход кислорода и количество образующихся продуктов сгорания определяются из стехиометрических соотношений реакций горения. Суммируя затраты кислорода на сжигание горючих составляющих на 1 кг топлива и учитывая кислород, содержащийся в топливе, получают теоретически необходимое количество кислорода для сжигания 1 кг (1 м3) топлива. Учитывая, что содержание кислорода в воздухе 21 % по объему, теоретически необходимое количество воздуха для горения Vо составляет:
- для твердого и жидкого топлива:
, м3/кг ;
- для газа:
, м3/м3.
Минимальный объем дымовых газов при полном сгорании 1 кг (1 м3) топлива с теоретически необходимым количеством воздуха (α=1) находят по формулам:
- объем сухих трехатомных газов:
для твердого и жидкого топлива:
, м3/кг ;
для газа:
, м3/м3 ;
- объем азота:
для твердого и жидкого топлива:
, м3/кг ;
для газа:
, м3/м3 ;
- объем водяных паров:
для твердого и жидкого топлива:
, м3/кг .
При наличии парового дутья или парового распыливания мазута с расходом пара Gф, кг/кг, к величине добавляется величина 1,24 Gф
для газа:
, м3/м3 ,
где dr.тл - влагосодержание газообразного топлива, отнесенное к 1 м3 сухого газа, принимается равным 10г/м3.
Полный объем дымовых газов
, м3/кг (м3/м3) .
В процессе горения по мере расходования топлива и кислорода и уменьшения действующих концентраций выгорание замедляется. В камерах сгорания котлов условия реагирования ухудшаются из-за несовершенства аэродинамики топочных устройств и, как следствие, недостаточно полного смешения вступающих в процесс горения больших масс топлива и воздуха. Поэтому воздуха для горения подается больше его теоретически необходимого количества.
Отношение количества воздуха, действительно поступающего в топку Vв , к теоретически необходимому его количеству называется коэффициентом избытка воздуха
.
Коэффициент избытка воздуха в топке должен обеспечить практически полное сгорание топлива, он выбирается в зависимости от типа топочного устройства и вида сжигаемого топлива. Избыток воздуха включает в себя коэффициент избытка воздуха, подаваемого в горелку , и присосы холодного воздуха извне при работе топки под разрежением . Под присосами воздуха понимают ту часть балластного воздуха, которая поступает в газоходы котла, находящиеся обычно под разряжением, через неплотности в обмуровке.
Избыток воздуха за каждой поверхностью нагрева после топочной камеры i получают прибавлением к т соответствующих присосов воздуха в отдельных поверхностях нагрева
.
Действительные объемы продуктов сгорания определяются по среднему значению коэффициента избытка воздуха ср в поверхностях нагрева, равному полусумме значений на входе и выходе из нее, м3/кг или м3/м3 .
Действительный объем водяных паров
.
Полный объем газов
.
Безразмерная концентрация золовых частиц в потоке дымовых газов определяется по формуле
,
где аун - доля золы, уносимая потоками газов, зависит от вида топки и способа сжигания:
для камерных топок с твердым шлакоудалением аун = 0,95;
при жидком шлакоудалении аун = 0,5- 0,7;
при слоевом сжигании аун = 0,15- 0,2;
в циклонных топках аун = 0,1- 0,15.
Gг - масса дымовых газов на килограмм топлива, при сжигании твердого топлива и мазута составляет
, кг/кг .
Объемные доли трехатомных газов и водяных паров, равные парциальным давлениям газов
; ; .
Расчет энтальпий воздуха и продуктов сгорания. Для всех видов топлив энтальпии теоретических объемов воздуха и продуктов сгорания (кДж/кг или кДж/м3) при коэффициенте избытка воздуха α=1
;
.
Энтальпия продуктов сгорания при избытке воздуха > 1 равна
.
В приведенных формулах: (с)в , , , энтальпии 1 м3 при постоянном давлении соответственно воздуха, трехатомных газов, водяных паров и азота.
Энтальпия золы рассчитывается по формуле
,
где (с )зл энтальпия 1 кг золы, кДж/кг.
Энтальпия золы невелика по сравнению с другими составляющими и учитывается, когда приведенный унос летучей золы с потоком газов значителен aун > 1,4 (% ·кг)/МДж, где - приведенная зольность топлива.
= , ( % ∙кг)/МДж .
4. ТЕПЛОВОЙ БАЛАНС КОТЕЛЬНОГО АГРЕГАТА
При составлении теплового баланса котельного агрегата устанавливается равенство между поступившим в агрегат количеством тепла, называемым располагаемым теплом , и суммой полезно использованного тепла Q1 и тепловых потерь Q2-6. На основании теплового баланса вычисляются КПД котельного агрегата и необходимый расход топлива.
Тепловой баланс составляется на 1кг твёрдого (жидкого) или 1м3 газообразного топлива при установившемся тепловом состоянии котельного агрегата.
Общее уравнение теплового баланса имеет вид
= Q1 + Q2 + Q3 + Q4 + Q5 + Q6 , кДж/кг или кДж/м3 .
Располагаемая теплота 1 кг твердого (жидкого) топлива определяется по формуле
, кДж/кг ,
где - низшая теплота сгорания рабочей массы топлива, кДж/кг; iтл - физическая теплота топлива, кДж/кг; Qф - теплота, вносимая в топку с паровым дутьем или при паровом распылении мазута, кДж/кг; Qв.вн - теплота, внесенная в топку воздухом при его подогреве вне котла, кДж/кг.
Для большинства видов достаточно сухих и малосернистых твёрдых топлив принимают Qр = , а для газового топлива принимается . Для сильно влажных твёрдых топлив и жидких топлив учитывается физическая теплота топлива iтл , которая зависит от температуры и теплоёмкости поступающего на горение топлива
iтл = стл tтл .
Для твёрдых топлив в летний период времени принимают tтл = 20 °С , а теплоёмкость топлива рассчитывают по формуле
, кДж/(кг· К) .
Теплоёмкость сухой массы топлива составляет:
- для бурых углей - 1,13 кДж/(кг∙ К);
- для каменных углей - 1,09 кДж/(кг·К);
- для углей А, ПА, Т - 0,92 кДж/(кг·К).
В зимний период принимают tтл =0 °С и физическую теплоту не учитывают.
Температура жидкого топлива (мазута) должна быть достаточно высокой для обеспечения тонкого распыла в форсунках котельного агрегата. Обычно она составляет = 90-140 °С.
Теплоёмкость мазута
, кДж/(кг ·К) .
В случае предварительного (внешнего) подогрева воздуха в калориферах перед его поступлением в воздухоподогреватель котельного агрегата теплоту такого подогрева Qв.вн включают в располагаемую теплоту топлива и рассчитывают по формуле
, кДж/кг ,
где гв - отношение количества горячего воздуха к теоретически необходимому; Δαвп присосы воздуха в воздухоподогревателях; - энтальпия теоретического объема холодного воздуха; - энтальпия теоретического объема воздуха на входе в воздухоподогреватель.
При использовании для распыла мазута паромеханических форсунок в топку котельного агрегата вместе с разогретым мазутом поступает пар из общестанционной магистрали. Он вносит в топку дополнительную теплоту Qф , определяемую по формуле
Qф = Gф (iф 2380) , кДж/кг ,
где Gф удельный расход пара на 1 кг мазута, кг/кг; iф - энтальпия пара, поступающего в форсунку, кДж/кг.
Параметры пара, поступающего на распыл мазута, обычно составляют 0,3-0,6 МПа и 280-350 °С ; удельный расход пара при номинальной нагрузке находится в пределах Gф = 0,03 - 0,05 кг/кг.
Полное количество теплоты, полезно использованной в котле:
- для водогрейного котла
Q = Dв , кВт ,
где Dв - расход воды через котел, кг/с; , - энтальпия воды на входе и на выходе из котла, кДж/кг;
- для парового котла
, кВт ,
где Dпе - расход перегретого пара, кг/с; Dпр - расход продувочной воды (под непрерывной продувкой понимают ту часть воды, которая удаляется из барабана котла для снижения солесодержания котловой воды), кг/с; iпе - энтальпия перегретого пара, кДж/кг; iпв - энтальпия питательной воды, кДж/кг; iкип - энтальпия кипящей воды, кДж/кг.
Энтальпии определяются по соответствующим температурам пара и воды с учетом изменения давления в пароводяном тракте котельного агрегата.
Расход продувочной воды из барабанного парового котельного агрегата составляет
, кг/с ,
где р - непрерывная продувка котельного агрегата, % ; при р < 2 % теплота продувочной воды составляет менее 0,4 % полезного тепловыделения и может не учитываться.
Коэффициент полезного действия проектируемого парового котельного агрегата определяется из обратного баланса
= 100 - (q2 + q3 + q4 + q5 + q6) , %.
Задача расчета сводится к определению тепловых потерь для принятого типа парового котельного агрегата и сжигаемого топлива.
Потери теплоты с уходящими газами q2 (5-12%) возникают из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает теплоту поступающего в котел воздуха и определяется по формуле
, % ,
где Iух - энтальпия уходящих газов, кДж/кг или кДж/м3, определяемая по ух при избытке воздуха в продуктах сгорания за воздухоподогревателем первой ступени; Iохв - энтальпия холодного воздуха.
Потери теплоты с уходящими газами зависят от выбранной температуры уходящих газов и коэффициента избытка воздуха, так как увеличение избытка воздуха приводит к увеличению объема дымовых газов и, следовательно, возрастанию потерь.
Одним из возможных направлений снижения потерь теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах, величина которого зависит от коэффициента избытка воздуха в топке и присосов воздуха в газоходы котла
ух = + .
Выбор оптимального значения коэффициента избытка воздуха в топке. Для различных топлив и способов сжигания топлива рекомендуется принимать определенные оптимальные значения αт.
Увеличение избытка воздуха (рис. 2) приводит к росту потерь теплоты с уходящими газами ( q2 ), а снижение - к повышению потерь с химическим и механическим недожогом топлива (q3 , q4 ).
Оптимальное значение коэффициента избытка воздуха будет соответствовать минимальному значению суммы потерь q2 + q3 + q4 .
Рис. 2. К определению оптимального значения коэффициента
избытка воздуха
Так, оптимальные значения коэффициента избытка воздуха в топке αт при сжигании:
мазута 1,05 1,1;
природного газа 1,05 1,1;
твердого топлива:
камерное сжигание 1,15 1,2;
слоевое сжигание 1,3 1,4.
Присосы воздуха по газовому тракту котла в идеале могут быть сведены к нулю, однако полное уплотнение различных лючков и гляделок затруднено, и для котлов, работающих под разряжением, присосы составляют Δα = 0,15 0,3.
Важнейшим фактором, влияющим на потерю теплоты с уходящими газами, является температура уходящих газов. Температура уходящих газов оказывает решающее влияние на экономичность работы парового котельного агрегата, так как потеря теплоты с уходящими газами является при нормальных условиях эксплуатации наибольшей даже в сравнении с суммой других потерь. Снижение температуры уходящих газов на 12-16 °С приводит к повышению КПД котельного агрегата примерно на 1,0 %. Температура уходящих газов находится в пределах 120-170 °С. Однако глубокое охлаждение газов требует увеличения размеров конвективных поверхностей нагрева и во многих случаях приводит к усилению низкотемпературной коррозии.
Низкотемпературной коррозии подвержены, как правило, трубы нижних пакетов воздухоподогревателя I-й ступени. Это связано с тем, что трубы воздухоподогревателя расположены в зоне низких температур уходящих газов и воздуха.
Низкотемпературная коррозия будет происходить, если температура стенки трубы будет ниже температуры точки росы tр дымовых газов.
Температура точки росы это температура, при которой начинается конденсация водяных паров или паров серной кислоты из дымовых газов.
При полном сгорании топлива дымовые газы состоят из водяных паров Н2О, углекислого газа СО2 , двуокиси серы SO2 , азота N2 и избыточного кислорода О2 . Сернистый ангидрид SO2 , соединяясь с кислородом, образует серный ангидрид
SO2 + O2 → SO3 .
Таким образом, количество серного ангидрида будет определяться количеством избыточного кислорода в продуктах сгорания, то есть коэффициентом избытка воздуха.
В свою очередь, серный ангидрид, соединяясь с водяными парами, образует пары серной кислоты, которые, конденсируясь на поверхности труб, будут вызывать коррозию металла:
Н2О + SO3 → H2SO4 ,
H2SO4 + Fe → FeSO4 + H2 .
При сжигании топлив, не содержащих серы (природный газ, древесное топливо), коррозия будет происходить при конденсации водяных паров
3Н2О + 2Fe → Fe2O3 + 3H2 .
Поэтому температура стенки труб воздухоподогревателя должна быть выше температуры точки росы на 10-15 °С
tст = tр + 10-15 °С ,
и определяется как , °С , где - температура уходящих газов, °С; - температура воздуха на входе в воздухоподогреватель, °С.
Исходя из этого, выбирается температура уходящих газов.
Температура точки росы зависит от парциального давления водяных паров и паров серной кислоты, т.е. зависит от влажности топлива и содержания в нем серы .
При сжигании твердых топлив в пылевидном состоянии температура точки росы дымовых газов tр рассчитывается в зависимости от температуры конденсации влаги при парциальном давлении в газах tкон , которая определяется по «I d» диаграмме, и приведенного содержания серы и золы в топливе по формуле
tр = tкон + Δtр , °С,
где Δtр определяется по рис. 3.
Рис. 3. Разность температур точки росы дымовых газов и конденсации
содержащихся в них водяных паров при сжигании твердых
топлив
При сжигании мазута с коэффициентом избытка воздуха в топке αт >1,03 температура точки росы дымовых газов определяется по рис. 4.
Рис. 4. Точка росы дымовых газов при сжигании мазута (αт > 1,03)
Продукты сгорания высоковлажных топлив из-за повышенного объема газов требуют для своего охлаждения увеличенных размеров конвективных поверхностей, поэтому при сжигании влажных топлив экономически оправдывается более высокая температура уходящих газов. Рекомендуемые температуры уходящих газов в зависимости от приведенной влажности твердого топлива , (%·кг)/МДж, и температуры питательной воды приведены в табл. 1. Высокая температура уходящих газов при сжигании сернистых мазутов обусловлена защитой воздухоподогревателя от интенсивной низкотемпературной коррозии.
Таблица 1
Рекомендуемые температуры уходящих газов, оС
при сжигании твердых топлив
Топливо, приведенная влажность, (%·кг)/МДж |
Расход пара Dпе < 20 кг/с |
Расход пара Dпе > 20 кг/с |
||
tпв <180 °С |
tпв=180÷230 °С |
tпв>230 °С |
||
Сухое, Wrпр ≤ 0,7 Влажное, Wrпр = 1-5 Сильновлажное, Wrпр > 5 |
120-140 140-150 150-160 |
110-120 120-130 130-140 |
120-130 140-150 160-170 |
130-140 150-160 170-180 |
при сжигании мазута и природного газа
Топливо |
ух , °С |
Мазут, содержание серы Sr, % высокосернистый, Sr > 3,0 высокосернистый, Sr = 2,0÷3,0 сернистый, Sr = 1,0÷2,0 малосернистый, Sr < 1,0 Природный газ |
165 160 150 140 120-130 |
Предварительный подогрев воздуха перед воздухоподогревателем до повышает температуру стенки, следовательно, позволяет снизить температуру уходящих газов и повысить КПД котла.
В любом случае оптимальные температуры уходящих газов для различных топлив и параметров пара котельного агрегата устанавливаются на основании технико-экономических расчетов.
Существенное влияние на выбор температуры уходящих газов оказывает также температура питательной воды. С ее ростом увеличивается КПД термодинамического цикла, а КПД котельного агрегата падает. Температуры уходящих газов и питательной воды должны быть выбраны такими, чтобы сумма эксплуатационных и капитальных затрат была минимальной.
Температура воздуха на входе в воздухоподогреватель выбирается на уровне, предотвращающем развитую сернокислотную коррозию металла и забивание низкотемпературной части поверхности нагрева липкими отложениями. Таким образом, выбор также зависит от влажности топлива и содержания в нем серы.
Для трубчатых воздухоподогревателей температура воздуха на входе принимается:
- твердое топливо при:
< 0,7 %·кг/МДж и < 2 % → = 20÷30 °С;
= 1÷5 %·кг/МДж и = 2÷3 % → = 45÷55 °С;
> 5 %·кг/МДж и > 3 % → = 60÷70 °С;
природный газ и мазут (кроме высокосернистого): = 20÷30 °С;
Схемы подогрева воздуха перед воздухоподогревателем представ-лены на рис. 5.
Предварительный подогрев воздуха до 50 °С обычно осуществляют рециркуляцией части горячего воздуха на всас дутьевых вентиляторов (рис. 5а).
Более высокую температуру получают подогревом воздуха в паровых или водяных калориферах, установленных перед воздухоподогревателем (рис. 5б, в).
При схемах рис. 5а,в подогрев воздуха происходит за счет теплоты собственных продуктов сгорания (“внутренней” теплоты), поэтому в уравнении теплового баланса этот подогрев не учитывается, и расчет потерь теплоты с уходящими газами производится при = 20-30 °С.
В случае калориферного подогрева воздуха отборным паром турбины (внешний подогрев) потери теплоты с уходящими газами также считаются по отношению к = 20-30 °С, однако располагаемая теплота топлива в уравнении теплового баланса увеличивается на теплоту подогрева воздуха Qв.вн от до .
При сжигании мазута с Sr > 2 % и твердого топлива с Sr >3 % необходима дополнительная проверка надежности работы холодной части воздухоподогревателя с позиции исключения интенсивной сернокислотной коррозии. В этих целях минимальная температура стенки воздухоподогревателя должна составлять °С (верхний предел - при сжигании мазута).
Рис. 5. Схемы подогрева воздуха перед воздухоподогревателем:
1 дутьевой вентилятор; 2 шибер, регулирующий рециркуляцию;
3 калорифер; 4 экономайзер низкого давления; 5 циркуляцион-
ный насос; 6 экономайзер; 7 вход воздуха; 8 воздухо-
подогреватель
Рекомендуется определять значение в зависимости от типа воздухоподогревателя и предварительно выбранных температур уходящих газов и воздуха на входе в воздухоподогреватель.
Для трубчатого воздухоподогревателя
, °С .
При ≤ 110 °С во всех случаях наблюдается интенсивная коррозия поверхности нагрева. Если расчетные не удовлетворяют требованиям надежной эксплуатации, необходимо несколько увеличить выбранные температуры и .
Потери теплоты с химическим недожогом топлива q3 (0 2 %) возникают при появлении в продуктах сгорания горючих газообразных составляющих (СО, Н2, СН4), что связано с неполным сгоранием топлива в пределах топочной камеры. Догорание же этих горючих газов за пределами топочной камеры практически невозможно из-за относительно низкой их температуры.
Химическая неполнота сгорания топлива может являться следствием:
- общего недостатка воздуха (αт),
- плохого смесеобразования (способ сжигания топлива, конструкция горелочного устройства),
- низких или высоких значений теплонапряжения топочного объема (в первом случае низкая температура в топке; во втором уменьшение времени пребывания газов в объеме топки и невозможности в связи с этим завершения реакции горения).
Потеря теплоты с химическим недожогом зависит от вида топлива, способа его сжигания и принимается на основании опыта эксплуатации паровых котельных агрегатов.
Потери теплоты с химическим недожогом определяются суммарной теплотой сгорания продуктов неполного окисления горючей массы топлива
100, % .
Потери теплоты от механической неполноты сгорания q4 (1-6 %) связаны с недожогом твердого топлива в топочной камере. Часть его в виде горючих частиц, содержащих углерод, уносится газообразными продуктами сгорания, другая часть удаляется вместе со шлаком. При слоевом сжигании возможен также провал части топлива через прозоры колосниковой решетки. Величина их зависит от способа сжигания топлива, способа шлакоудаления, выхода летучих, грубости помола, зольности топлива и рассчитывается по формуле
где ашл + пр, аун - доли золы топлива в шлаке, провале и уносе; Гшл+пр, Гун - содержание горючих в шлаке, провале и уносе, % .
Потери теплоты от наружного охлаждения через внешние поверхности котельного агрегата q5 , %, невелики и с ростом номинальной производительности котла Dном уменьшается. Потери теплоты от наружного охлаждения возникают потому, что температура наружной поверхности котла превышает температуру окружающей среды.
На рис. 6 представлена зависимость q5 от производительности котла.
Рис. 6. Потеря теплоты от наружного охлаждения
При нагрузках, отличающихся от номинальной, потеря теплоты q5 пересчитывается по формуле
, % .
Распределение суммарной потери от наружного охлаждения по отдельным газоходам котла (топка, пароперегреватель и т.д.) производится пропорционально количеству тепла, отдаваемого газами в соответствующих газоходах, и учитывается коэффициентом сохранения тепла
.
Потери теплоты с физической теплотой удаляемых шлаков q6 при твёрдом шлакоудалении весьма невелики и учитываются только для многозольных топлив, когда Аr > 2,5 , где выражено в МДж/кг.
В случае жидкого шлакоудаления определение потерь с теплотой шлаков обязательно при любой зольности топлива.
Расчёт потерь с физической теплотой шлаков ведётся по формуле
, % ,
где ашл = 1 - аун - доля шлакоулавливания в топочной камере; (сt)шл -энтальпия шлака, при твёрдом шлакоудалении принимается tшл = 600 °С и (сt)шл = 560 кДж/кг.
В случае жидкого шлакоудаления температура вытекающего шлака принимается равной температуре жидкоплавкого состояния.
Расход топлива В, кг/с, подаваемого в топочную камеру котельного агрегата, можно определить из баланса между полезным тепловыделением при горении топлива и тепловосприятием рабочей среды в паровом котельном агрегате
, кг/с или м3/с .
Расчетный расход топлива с учетом механической неполноты сгорания
, кг/с .
Коэффициент полезного действия котла (брутто) по прямому балансу
Коэффициент полезного действия (нетто) котельной установки
где Qсн - расход электроэнергии (в переводе на теплоту) на собственные нужды котельной установки, кВт.
5. КЛАССИФИКАЦИЯ КОТЛОВ И ИХ ОСНОВНЫЕ ПАРАМЕТРЫ
Котлы различают по следующим признакам:
По назначению:
Энергетические вырабатывающие пар для паровых турбин; их отличает высокая производительность, повышенные параметры пара.
Промышленные вырабатывающие пар как для паровых турбин, так и для технологических нужд предприятия.
Отопительные производящие пар для отопления промышленных,жилых и общественных зданий. К ним относятся и водогрейные котлы. Водогрейный котел устройство, предназначенное для получения горячей воды с давлением выше атмосферного.
Котлы-утилизаторы - предназначены для получения пара или горячей воды за счет использования тепла вторичных энергетических ресурсов (ВЭР) при переработке отходов химических производств, бытового мусора и т.д.
Энерготехнологические предназначены для получения пара за счет ВЭР и являющиеся неотъемлемой частью технологического процесса (например, содорегенерационные агрегаты).
По конструкции топочного устройства (рис. 7):
Рис. 7. Общая классификация топочных устройств
Различают топки слоевые для сжигания кускового топлива и камерные для сжигания газового и жидкого топлива, а также твердого топлива в пылевидном (или мелкодробленом) состоянии.
Слоевые топки подразделяются на топки с плотным и кипящим слоем, а камерные на факельные прямоточные и циклонные (вихревые).
Камерные топки для пылевидного топлива подразделяют на топки с твердым и жидким шлакоудалением. Кроме того, по конструкции они могут быть однокамерными и многокамерными, а по аэродинамическому режиму под разрежением и под наддувом.
В основном используется схема под разряжением, когда в газоходах котла дымососом создается давление меньше атмосферного, то есть разряжение. Но в некоторых случаях при сжигании газа и мазута или твердого топлива с жидким шлакоудалением может использоваться схема под наддувом.
Схема котла под наддувом. В этих котлах высоконапорная дутьевая установка обеспечивает избыточное давление в топочной камере 4 5 кПа, которое позволяет преодолеть аэродинамическое сопротивление газового тракта (рис. 8). Поэтому в этой схеме отсутствует дымосос. Газоплотность газового тракта обеспечивается установкой мембранных экранов в топочной камере и на стенах газоходов котла.
Достоинства данной схемы:
- сравнительно низкие капитальные затраты на обмуровку;
- более низкий по сравнению с котлом, работающим под
разряжением, расход электроэнергии на собственные нужды;
- более высокий КПД за счет снижения потерь с уходящими газами из-за отсутствия присосов воздуха в газовый тракт котла.
Недостаток сложность конструкции и технологии изготовления мембранных поверхностей нагрева.
По виду теплоносителя, генерируемого котлом: паровые и водогрейные.
По перемещению газов и воды (пара):
Стальные водогрейные котлы имеют горизонтальную реверсивную камеру сгорания с концентрическим расположением дымогарных труб (рис. 9). Для оптимизации тепловой нагрузки, давления в камере сгорания и температуры отходящих газов дымогарные трубы оснащены турбулизаторами из нержавеющей стали.
Рис. 8. Схема котла под «наддувом»:
1 воздухозаборная шахта; 2 высоконапорный вентилятор;
3 воздухоподогреватель 1-й ступени; 4 водяной экономайзер
1-й ступени; 5 воздухоподогреватель 2-й ступени; 6 воздуховоды
горячего воздуха; 7 горелочное устройство; 8 газоплотные
экраны, выполненные из мембранных труб; 9 газоход
Рис. 9. Схема топочной камеры жаротрубных котлов:
1 передняя крышка;
2 топка котла;
3 дымогарные трубы;
4 трубные доски;
5 каминная часть котла;
6 люк каминной части;
7 горелочное устройство
По способу циркуляции воды все разнообразие конструкций паровых котлов на весь диапазон рабочих давлений можно свести к трем типам:
- с естественной циркуляцией рис. 10а ;
- с многократной принудительной циркуляцией рис. 10б ;
- прямоточные рис. 10в.
а) б)
в)
Рис. 10. Способы циркуляции воды
В котлах с естественной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет разности плотностей столбов рабочей среды: воды в опускной питательной системе и пароводяной смеси в подъемной испарительной части циркуляцион-ного контура (рис. 10а). Движущий напор циркуляции в контуре можно выразить формулой
, Па ,
где h высота контура, g ускорение свободного падения, , плотность воды и пароводяной смеси.
При критическом давлении рабочая среда является однофазной и ее плотность зависит только от температуры, а так как последние близки между собой в опускной и подъемной системах, то движущий напор циркуляции будет очень мал. Поэтому на практике естественная циркуляция применяется для котлов только до высоких давлений, обычно не выше 14 МПа.
Движение рабочего тела по испарительному контуру характери-зуется кратностью циркуляции К, которая представляет собой отношение часового массового расхода рабочего тела через испарительную систему котла к его часовой паропроизводительности. Для современных котлов сверхвысокого давления К=5-10, для котлов низких и средних давлений К составляет от 10 до 25.
Особенностью котлов с естественной циркуляцией является способ компоновки поверхностей нагрева, заключающийся в следующем:
В котлах с многократной принудительной циркуляцией движение рабочего тела по испарительному контуру осуществляется за счет работы циркуляционного насоса, включаемого в опускной поток рабочей жидкости (рис. 10б). Кратность циркуляции поддерживается невысокой (К=4-8), поскольку циркуляционный насос гарантирует ее сохранение при всех колебаниях нагрузки. Котлы с многократной принудительной циркуляцией позволяют экономить металл для поверхностей нагрева, так как допускаются повышенные скорости воды и рабочей смеси, частично улучшая, таким образом, охлаждение стенки труб. Габариты агрегата при этом несколько снижаются, так как диаметр трубок можно выбирать меньшим, чем для котлов с естественной циркуляцией. Эти котлы могут применяться вплоть до критических давлений 22,5 МПа, наличие барабана дает возможность хорошо осушать пар и продувать загрязненную котловую воду.
В прямоточных котлах (рис. 10в) кратность циркуляции равна единице и движение рабочего тела от входа в экономайзер и до выхода из агрегата перегретого пара принудительное, осуществляемое питательным насосом. Барабан (достаточно дорогой элемент) отсутствует, что дает при сверхвысоком давлении известное преимущество прямоточным агрегатам; однако это обстоятельство вызывает при сверхкритическом давлении удорожание станционной водоподготовки, поскольку повышаются требования к чистоте питательной воды, которая должна в этом случае содержать примесей не больше, чем выдаваемый котлом пар. Прямоточные котла универсальны по рабочему давлению, а на закритическом давлении вообще являются единственными генераторами пара и находят широкое применение в современной электроэнергетике.
Существует разновидность циркуляции воды в прямоточных парогенераторах комбинированная циркуляция, осуществляемая за счет особого насоса или дополнительного параллельного циркуляционного контура естественной циркуляции в испарительной части прямоточного котла, позволяющая улучшить охлаждение экранных труб при малых нагрузках котла за счет увеличения на 2030 % массы циркулируемой через них рабочей среды.
Схема котла с многократной принудительной циркуляцией на докритическое давление представлена на рис. 11.
Рис. 11. Конструктивная схема котла с многократной принудительной циркуляцией:
1 экономайзер; 2 барабан;
3 опускная питательная труба; 4 циркуляционный насос; 5 раздача воды по циркуляционным контурам;
6 испарительные радиа-ционные поверхности нагрева;
7 фестон; 8 пароперегреватель;
9 воздухоподогреватель
Циркуляционный насос 4 работает с перепадом давления 0,3 МПа и позволяет применять трубы малого диаметра, что дает экономию металла. Малый диаметр труб и невысокая кратность циркуляции (4 8) вызывают относительное снижение водяного объема агрегата, следовательно, снижение габаритов барабана, уменьшение сверлений в нем, а отсюда общее снижение стоимости котла.
Малый объем и независимость полезного напора циркуляции от нагрузки позволяют быстро растапливать и останавливать агрегат, т.е. работать в регулировочно-пусковом режиме. Область применения котлов с многократной принудительной циркуляцией ограничивается сравнительно невысокими давлениями, при которых можно получать наибольший экономический эффект за счет удешевления развитых конвективных испарительных поверхностей нагрева. Котлы с многократной принуди-тельной циркуляцией нашли распространение в теплоутилизационных и парогазовых установках.
Прямоточные котлы. Прямоточные котлы не имеют зафиксированной границы между экономайзером и испарительной частью, между испарительной поверхностью нагрева и пароперегревателем. При изменении температуры питательной воды, рабочего давления в агрегате, воздушного режима топки, влажности топлива и других факторов соотношения между поверхностями нагрева экономайзера, испарительной части и перегревателя меняются. Так, при понижении давления в котле снижается теплота жидкости, повышается теплота испарения и снижается теплота перегрева, поэтому уменьшается зона, занимаемая экономайзером (зона подогрева), растет зона испарений и уменьшается зона перегрева.
В прямоточных агрегатах все примеси, поступающие с питательной водой, не могут удаляться с продувкой подобно барабанным котлам и откладываются на стенках поверхностей нагрева или уносятся с паром в турбину. Поэтому прямоточные котлы предъявляют высокие требования к качеству питательной воды.
Для уменьшения опасности пережога труб из-за отложения солей в них зону, в которой испаряются последние капли влаги и начинается перегрев пара, на докритических давлениях выносят из топки в конвективный газоход (так называемая вынесенная переходная зона).
В переходной зоне идет энергичное выпадение и отложение примесей, а так как температура стенки металла труб в переходной зоне ниже, чем в топке, то опасность пережога труб значительно снижается и толщину отложений можно допускать большей. Соответственно удлиняется межпромывочная рабочая кампания котла.
Для агрегатов закритических давлений переходная зона, т.е. зона усиленного выпадения солей, также имеется, но она сильно растянута. Так, если для высоких давлений ее энтальпия измеряется величиной 200-250 кДж/кг, то для закритических давлений возрастает до 800 кДж/кг, и тогда выполнение вынесенной переходной зоны становится нецелесообразным, тем более, что содержание солей в питательной воде здесь так мало, что практически равно их растворимости в паре. Поэтому, если котел, спроектированный на закритическое давление, имеет вынесенную переходную зону, то делается это только из соображений обычного охлаждения дымовых газов.
Из-за малого аккумулирующего объема воды у прямоточных котлов важную роль играет синхронность подачи воды, топлива и воздуха. При нарушении этого соответствия в турбину можно подать влажный или чрезмерно перегретый пар, в связи с чем для прямоточных агрегатов автоматизация регулирования всех процессов является просто обязательной.
Прямоточные котлы конструкции профессора Л.К. Рамзина. Особенностью котла является компоновка радиационных поверхностей нагрева в виде горизонтально-подъемной навивки трубок по стенам топки с минимумом коллекторов (рис. 12).
Рис. 12. Конструктивная схема прямоточного котла Рамзина:
1 экономайзер; 2 перепускные необогреваемые трубы;
3 нижний распределительный коллектор воды; 4 экранные
трубы; 5 верхний сборный коллектор смеси; 6 вынесенная
переходная зона; 7 - настенная часть перегревателя;
8 конвективная часть перегревателя; 9 воздухоподогреватель;
10 горелка
Как в дальнейшем показала практика, такое экранирование имеет как положительные, так и отрицательные стороны. Позитивным является равномерный обогрев отдельных трубок, включенных в ленту, так как трубки проходят по высоте топки все температурные зоны в одинаковых условиях. Негативным невозможность выполнения радиационных поверхностей заводскими крупными блоками, а также повышенная склонность к теплогидравлическим разверкам (неравномерное распределение температуры и давления в трубах по ширине газохода) при сверхвысоком и сверхкритическом давлении из-за большого приращения энтальпии в длинном змеевике.
Для всех систем прямоточных агрегатов соблюдаются некоторые общие требования. Так, в конвективном экономайзере питательная вода до поступления в топочные экраны не догревается до кипения примерно на 30 °С, что устраняет образование пароводяной смеси и неравномерное ее распределение по параллельным трубкам экранов. Далее, в зоне активного горения топлива, в экранах обеспечивается достаточно высокая массовая скорость ρω ≥ 1500 кг/(м2·с) при номинальной паропроизводительности Dн , что гарантирует надежное охлаждение трубок экранов. Около 70 80 % воды превращается в пар в экранах топки, а в переходной зоне испаряется оставшаяся влага и весь пар перегревается на 10-15 °С во избежание отложения солей в верхней радиационной части перегревателя.
Кроме того, паровые котлы классифицируются по давлению пара и по паропроизводительности.
По давлению пара:
По производительности:
Маркировка котлов
Для маркировки котлов установлены следующие индексы:
вид топлива: К каменный уголь; Б бурый уголь; С сланцы; М мазут; Г газ (при сжигании мазута и газа в камерной топке индекс типа топки не указывается); О отходы, мусор; Д другие виды топлива;
тип топки: Т камерная топка с твердым шлакоудалением; Ж камерная топка с жидким шлакоудалением; Р слоевая топка (индекс вида топлива, сжигаемого в слоевой топке, в обозначении не указывается); В вихревая топка; Ц циклонная топка; Ф топка с кипящим слоем; в обозначение котлов с наддувом вводится индекс Н; при сейсмически стойком исполнении индекс С.
способ циркляции: Е естественная; Пр многократная принудительная;
Пп прямоточные котлы.
Цифрами указывается :
для паровых котлов паропроизводительность (т/ч), давление перегретого пара (бар), температура перегретого пара (°С);
для водогрейных теплопроизводительность (МВт).
Например: Пп1600255570 Ж. Прямоточный котел паропроизводи-тельностью 1600 т/ч, давление перегретого пара 255 бар, температура пара 570 °С, топка с жидким шлакоудалением.
Компоновка котлов
Под компоновкой котла подразумевается взаимное расположение газоходов и поверхностей нагрева (рис. 13).
Рис. 13. Схемы компоновки котлов:
а П-образная компоновка; б двухходовая компоновка; в компоновка с двумя конвективными шахтами (Т-образная); г компоновка с U-образными конвективными шахтами; д компоновка с инверторной топкой; е башенная компоновка
Наиболее распространена П-образная компоновка (рис.13а одноходовая, 13б двухходовая). Преимуществами ее являются подача топлива в нижнюю часть топки и вывод продуктов сгорания из нижней части конвективной шахты. Недостатки этой компоновки неравномерное заполнение газами топочной камеры и неравномерное омывание продуктами сгорания поверхностей нагрева, расположенных в верхней части агрегата, а также неравномерная концентрация золы по сечению конвективной шахты.
Т-образная компоновка с двумя конвективными шахтами, расположенными по обе стороны топки с подъемным движением газов в топке (рис. 13в), позволяет уменьшить глубину конвективной шахты и высоту горизонтального газохода, но наличие двух конвективных шахт усложняет отвод газов.
Трехходовая компоновка агрегата с двумя конвективными шахтами (рис. 13г) иногда применяется при верхнем расположении дымососов.
Четырехходовая компоновка (Т-образная двухходовая) с двумя вертикальными переходными газоходами, заполненными разряженными поверхностями нагрева, применяется при работе агрегата на зольном топливе с легкоплавкой золой.
Башенная компоновка (рис. 13е) используется для пиковых парогенераторов, работающих на газе и мазуте в целях использования самотяги газоходов. При этом возникают затруднения, связанные с креплением конвективных поверхностей нагрева.
U образная компоновка с инверторной топкой с нисходящим в ней потоком продуктов сгорания и подъемным их движением в конвективной шахте (рис. 13д) обеспечивает хорошее заполнение топки факелом, низкое расположение пароперегревателей и минимальное сопротивление воздушного тракта вследствие малой длины воздуховодов. Недостаток такой компоновки ухудшенная аэродинамика переходного газохода, обусловленная расположением горелок, дымососов и вентиляторов на большой высоте. Такая компоновка может оказаться целесообразной при работе котла на газе и мазуте.
6. КЛАССИФИКАЦИЯ ТОПОЧНЫХ УСТРОЙСТВ И ОБЩИЕ ХАРАКТЕРИСТИКИ ПРОЦЕССОВ
6.1. Показатели работы топочных устройств
К современным топочным устройствам котлов предъявляется ряд требований:
Основными показателями топочного устройства являются:
Большинство из приводимых показателей относится к камерным топкам, некоторые характерны лишь для твердого топлива (), другие только для слоевого его сжигания () и т.п. До рассмотрения особенностей и оптимальных схем сжигания различных топлив отметим, что выбор соответствующих характеристик топочного устройства связан с качеством сжигаемого топлива и принятым способом его сжигания.
6.2. Способы сжигания твердого топлива
Принципиальные схемы организации сжигания твердого топлива в плотном и кипящем слое, а также в факельном прямоточном и циклонном процессах показаны на рис. 14.
Сжигание в плотном фильтрующем слое. При слоевом процессе свободно лежащее на решетке топливо продувается снизу воздухом (рис. 14а). Скорость газовоздушного потока в слое такова, что устойчивость слоя не нарушается. Для обеспечения этого необходимо, чтобы сила тяжести топливных частиц была больше развиваемого газовым потоком динамического напора.
а) б) в) г)
Рис. 14. Схемы организации топочных процессов:
а в плотном фильтрующем слое; б в кипящем слое;
в факельный прямоточный процесс; г циклонный процесс
Для повышения устойчивости слоя и уменьшения потери с уносом было бы целесообразно увеличение размеров топливных частиц. Однако с увеличением относительной поверхности реагирования скорость сгорания топлива повышается, т.е. будет большей для частиц меньших размеров. На практике в слоевых топках сжигают твердое топливо с частицами 20-30 мм и более.
При слоевом процессе количество горящего топлива на решетке составляет около 700-1000 кг на 1 м3 объема слоя. Значительный запас топлива на решетке, часто вполне соизмеримый с часовым его расходом, определяет как большую тепловую инерцию, так и устойчивость слоевого процесса.
Для горящего слоя характерны высокая температура, а также преобладание в нем крупных частиц, поэтому процесс горения в слоевых топках находится преимущественно в диффузионной области, где скорость горения определяется скоростью подвода окислителя, т.е. скоростью обтекания частиц воздушным потоком. Поэтому, несмотря на значительную тепловую инерцию слоевых топок, удается регулировать их нагрузку в первую очередь изменением количества подаваемого воздуха.
Процесс в кипящем слое. При увеличении скорости дутья развиваемый потоком динамический напор может достигнуть значения, равного силе тяжести частиц, и устойчивость частиц в слое нарушается; соответствующая этому скорость дутья называется критической. С дальнейшим увеличением интенсивности дутья начинается «кипение» слоя (рис. 14б), состоящее в том, что основная масса топливных частиц поднимается над решеткой и совершает возвратно-поступательное движение вверх и вниз; при этом происходит интенсивное перемешивание топлива с окислителем.
В кипящем слое скорость дутья превышает предел устойчивости плотного слоя, однако средняя скорость газа в топке над слоем Wп далека от скорости витания основной массы частиц, т.е. скорости, при которой частицы оказываются взвешенными в потоке.
По сравнению с исходным (плотным) слоем при «кипении» слой увеличивается в объеме в 1,5 - 2 раза. Частицы топлива совершают в слое возвратно-поступательные движения до тех пор, пока их масса не уменьшится настолько, что они выносятся из слоя газовым потоком.
На практике процессы в кипящем слое осуществляются для материалов с возможно более равномерным составом мелких частиц. Топки с кипящим слоем применяют для парогенераторов малой и средней мощности. Широкое применение они находят также при обжиге различных серосодержащих материалов (колчедана, медной и цинковой руд и др.).
Факельный прямоточный процесс. При скорости газового потока в топочной камере, превышающей скорость витания частиц, последние оказываются взвешенными в газовоздушном потоке и вместе с ним начинают перемещаться, сгорая в полете в пределах топочной камеры (рис. 14в). Такой топочный процесс называют факельным. Так как время пребывания газа в топочной камере весьма ограничено, то для обеспечения выгорания за короткое время применяют топливо, измельченное до пылевидного состояния (размер пылинок измеряется десятками микрон).
Измельчение топлива при факельном процессе горения увеличивает поверхность реагирования и облегчает транспорт топливных частиц по топочному объему. Вместе с тем относительная скорость пылинок в газовом потоке здесь ничтожно мала, что ухудшает условия горения топлива.
В отличие от процессов с плотным и кипящим слоем при факельном прямоточном процессе в топочной камере находится и одновременно сгорает ничтожное количество твердого топлива. В связи с этим факельный процесс весьма чувствителен к различным нарушениям теплового режима.
Циклонный процесс. При циклонном топочном процессе (рис. 14г) транспорт частиц твердого топлива, как и в факельном процессе, осуществляется газовоздушным потоком. Скорость несущего потока здесь значительно больше критической.
При циклонном процессе, в отличие от факельного, частица циркулирует по организованному обтекаемому контуру столько, сколько необходимо для ее сгорания. Циркуляция газового потока в циклонной топке сопровождается организацией на внутренней ее поверхности за счет центробежных сил подвижного уплотненного слоя, подверженного интенсивному обдуванию. В результате имеют место интенсивное выгорание частиц топлива (кокса), а также весьма эффективная сепарация жидкого шлака. В циклонной камере улавливается 80 95 % золы топлива. При циклонном процессе время пребывания и интенсивность обдувания частиц газовоздушным потоком увеличены, поэтому здесь могут сжигаться более крупные частицы топлива (2 - 5 мм), что приводит к снижению расхода энергии на его размол.
Количество одновременно горящего топлива при циклонном процессе в топке меньше, чем при слоевом, однако больше, чем при факельном. Это придает относительно большую устойчивость циклонному процессу по сравнению с факельным при переменном режиме работы установки.
6.2.1. Слоевое сжигание
Организация слоевого сжигания осуществляется принудительным движением воздуха через неподвижный или движущийся горизонтально слой твердого топлива, в котором воздух превращается в поток горячих продуктов сгорания. В слоевых топках имеется значительный запас топлива, соизмеримый с его часовым расходом. Наличие значительного количества горящего топлива стабилизирует процесс горения. Интенсивность слоевого сжигания зависит от форсировки воздушного потока. Форсировка дутья, а, следовательно, и интенсификация сжигания ограничивается аэродинамической устойчивостью слоя и появлением значительного уноса штыбовых фракций. Для слоевого сжигания опти-мальными являются куски 25-50 мм (так называемый класс «орех»), при которых обеспечиваются достаточно устойчивое залегание частиц в слое и достаточно развитая поверхность реагирования. Топки со слоевым сжиганием из-за недостаточной производительности, надежности и экономичности работы на мощных паровых котлах не применяются. К тому же слоевые топки сложны, слабо механизированы и трудно поддаются автоматизации управления.
Процесс горения твердого топлива в топочных устройствах состоит из трех основных фаз.
Первая фаза процесса горения заключается в подогреве топлива и испарении из него влаги, на что расходуется тепло, выделяемое ранее введенным топливом. После нагревания топлива до температуры 300-400 °С из него начинают выделяться летучие горючие вещества.
Вторая фаза топливо воспламеняется по достижении определенной температуры, которая для разных топлив различна: для торфа 225°С, дров 300°С, бурого угля 300°С, каменного угля 325°С, антрацита 700 °С. В первую очередь воспламеняются газообразные летучие горючие вещества, затем твердая часть топлива.
Третья фаза является основной в ней завершается окончательный процесс газификации и горение твердого остатка топлива (кокса) с выделением наибольшего количества тепла.
Процесс горения заканчивается выделением негорючего остатка (золы и шлака).
Общая классификация слоевых топок
Слоевой способ сжигания твердого топлива получил широкое распространение для котлов малой и средней мощности.
Соответствующие топочные устройства:
Для сжигания твердого топлива в слое применяют разнообразные топочные устройства, различающиеся как в теплотехническом отношении (режим подачи топлива и воздуха, организация смесеобразования, тепловая подготовка), так и по конструктивному выполнению.
Обслуживание топки, в которой топливо сжигается в слое, связано с выполнением следующих операций:
В зависимости от степени механизации указанных операций топочные устройства подразделяются на:
а) топки немеханизированные - все три операции выполняются вручную;
б) топки полумеханические - механизированы одна или две операции;
в) топки механические - механизированы все три операции.
По режиму подачи топлива в слой различают топочные устройства с периодической и непрерывной загрузкой топлива. Характер подачи топлива в топку оказывает решающее влияние на показатели работы топочного устройства.
По организации тепловой подготовки и воспламенения топлива в слое различают топки с нижним, верхним и смешанным воспламенением.
По способу смесеобразования топлива и воздуха в слое различают следующие схемы, отличающиеся друг от друга сочетанием направлений газовоздушного и топливно-шлакового потоков: встречные, параллельные, поперечные, смешанные (рис. 15).
Эффективность и производительность слоевых топочных устройств зависят в основном от рациональной организации тепловой подготовки топлива, его зажигания и горения.
а) б) в)
Рис. 15. Способы смесеобразования в слое:
а параллельный; б поперечный; в встречный
Топки немеханизированные и полумеханические
Простейшим немеханизированным топочным устройством, сохранившимся еще и сейчас в отдельных установках малой мощности (паропроизводительностью до 0,3 кг/с), является топка с ручной периодической подачей топлива на колосниковую решетку. Колосниковая решетка поддерживает сжигаемое топливо и одновременно служит для распределения воздуха, поступающего через нее в слой. Решетка набирается из отдельных чугунных балочных или плиточных колосников.
Отношение площади всех зазоров Rз в колосниковой решетке, через которые поступает в слой воздух, ко всей площади решетки R называют живым сечением решетки и обычно выражают в процентах.
Необходимая величина живого сечения решетки зависит от рода сжигаемого топлива и крупности кусков. Так, при сжигании кускового торфа и дров применяются балочные колосники, для которых живое сечение колеблется в пределах 25-40 % . Для антрацита и бурых углей применяются плиточные колосники с живым сечением 12-18 % .
Характерной особенностью тепловой работы топки с ручным обслуживанием являются периодическая подача топлива и, в связи с этим, цикличность процесса горения. Периодическая загрузка топлива на решетку определяет ряд существенных принципиальных недостатков такой топки, одним из которых является чередование по времени фаз горения топлива. Существенным недостатком является и то, что эксплуатация такой топки связана с тяжелым ручным трудом. Учитывая серьезные недостатки ручных топок, их повсеместно заменяют полумеханизированными или полностью механизированными топочными устройствами.
Ручные топки типа РПК. Топки типа РПК с ручным обслуживанием (рис. 16) имеют неподвижную колосниковую решетку с поворотными колосниками трех моделей. Угол поворота колосников решетки по отношению к горизонтальной плоскости равен 60°, живое сечение для прохода воздуха через решетку составляет 5 % от активной площади решетки.
Рис. 16. Ручная топка с неподвижной колосниковой решеткой и опрокидными колосниками:
1 - привод колосников;
2 - опрокидной колосник;
3 - шлаковый затвор;
4 - патрубок для входа воздуха
Частичная механизация ручной топки может быть достигнута установкой поворотных или качающихся колосников. Этим значительно облегчается одна из наиболее трудоемких операций - очистка решетки от шлака. Облегчение труда кочегара, а также улучшение условий работы слоя достигаются механизацией загрузки топлива на решетку с применением различных забрасывателей. В этом случае перед фронтом топки устанавливается бункер, из которого топливо поступает к забрасывателю, загружающему его на слой. Используемые на практике забрасыватели топлива подразделяются на механические, пневматические (паровые) и пневмомеханические. Схемы забрасывателей показаны на рис. 17. Обычно по ширине топки устанавливают несколько забрасы-вателей топлива, часто по числу секций в колосниковой решетке.
Механический забрасыватель (рис. 17а) осуществляет подачу топлива на решетку непрерывно вращающимся (550-800 об/мин) лопастным метателем, к которому топливо поступает из дозирующего устройства.
В пневматическом забрасывателе (рис. 17б) топливо с разгонной плиты сдувается на решетку воздухом, выходящим из сопл круглой или щелевидной формы. Расход воздуха 0,2-0,25 м3/кг топлива, скорость истечения воздуха 30-80 м/с. В паровых забрасывателях используется пар, выходящий из сопл со скоростью около 400 м/с.
Забрасыватели дают неравномерное по фракционному составу распределение топлива по длине решетки. Механические забрасыватели подают более крупные куски топлива на заднюю половину решетки, а более мелкие - на переднюю. Пневматические (паровые) забрасыватели, наоборот, загружают более крупное топливо ближе к фронту топки, а более мелкое - в заднюю ее часть.
а) б) в)
Рис. 17. Схемы забрасывателей топлива:
а - механический забрасыватель; б пневматический забрасыватель;
в пневмомеханический забрасыватель; 1 дозирующее устройство;
2 метатель; 3 разгонная плита; 4 распределительная плита
В пневмомеханическом забрасывателе (рис. 17в) сочетается механическое и пневматическое воздействие на кусочки топлива. Воздух здесь способствует более равномерному распределению мелочи по длине решетки.
Механизация подачи топлива и очистки слоя от шлака позволяет значительно уменьшить затраты физического труда и повысить экономичность топочного устройства. На рис. 18 в качестве примера показана полумеханическая топка с пневмомеханическим забрасывателем и решеткой с поворотными колосниками.
Топка ПМЗ-РПК относится к факельно-слоевым устройствам с неподвижной горизонтальной колосниковой решеткой, непрерывным забросом топлива на неподвижный горящий слой и периодическим удалением шлака. Количество вторичного воздуха, подводимого к забрасывателю, составляет около 15 % общего количества воздуха, необхо-димого для горения топлива. Давление вторичного воздуха до 800 Па. Топки ПМЗ-РПК рекомендуются для агрегатов паропроизводительностью до 1,8 кг/с.
Рис. 18. Полумеханизированная топка с пневмомеханическим забрасывателем
(ПМЗ):
1 - неподвижная колосниковая решетка; 2 - шлаковый бункер с
затвором; 3 - воздухоподводящая труба; 4 - забрасыватель в
цилиндрическом лотке; 5 - питатель; 6 - распределительная плита;
7 - бункер для топлива; 8 - топочная камера; 9 - воздушный короб;
10 - гляделки; 11 - труба для подачи вторичного воздуха
В топках с механическим забрасывателем подача топлива осуществляется с помощью вращающегося ротора с лопостями, а при пневматической заброске топливо подается в топку струей воздуха. Полумеханизированная топка с пневмомеханическими забрасывателями типа ПМЗ работает по принципу верхней подачи топлива на неподвижный горящий слой. Горение топлива происходит частично во взвешенном состоянии (мелкие фракции) и частично в слое на решетке. Накапливающийся шлак удаляется с помощью периодического покачивания колосников. Дробленое топливо из бункера 7 поступает на распределительную плиту 6, откуда с помощью питателя 5 подается к лопастному забрасывателю 4. Плунжер питателя имеет возвратно-поступательное движение, сообщаемое ему с помощью кулисного механизма. Воздух для развеивания мелких фракций топлива поступает из короба 9 в воздушные каналы кожуха забрасывателя и через специальные сопла подается в топку. Полотно решетки 1 состоит из поворотных колосников беспровального профиля. Такие топки применяются для сжигания каменных углей, бурых углей и сортированного антрацита.
Интенсивность выгорания топлива в слое, где горение обычно протекает в диффузионной области, зависит от скорости подвода окислителя. Для обычных слоевых топок пределом дутьевой форсировки слоя является нарушение его устойчивости. При повышенной скорости дутья мелкие частицы топлива начинают выноситься из слоя. В местах выноса сопротивление слоя падает.
Механические слоевые топки с цепными решетками
Значительное распространение в промышленности имеют слоевые топки с цепными решетками. Характерной особенностью таких топок является непрерывное перемещение топлива вместе с колосниковой решеткой, представляющей собой транспортер, выполненный в виде бесконечного полотна.
На рис. 19 показан продольный разрез чешуйчатой цепной решетки ЧЦР прямого хода (полотно с топливом перемещается от фронта топки к задней стенке). Решетка ЧЦР выпускается взамен изготавливавшихся ранее у нас цепных беспровальных решеток БЦР и устанавливается под котлами малой и средней мощности (10-20 т/ч) для сжигания антрацитов марки АС и АМ. Живое сечение колосникового полотна для прохода воздуха составляет 7-8 %. Скорость движения колосникового полотна решетки может регулироваться от 2 до 15 м/ч.
В топку с чешуйчатой цепной решеткой прямого хода типа ЧЦР топливо из бункера 2 поступает на непрерывно движущееся от фронта топки колосниковое полотно 4. Последнее состоит из нескольких шарнир-ных цепей, на которые набираются профильные колосники. Колосники перекрывают друг друга, образуя подобие чешуи. Движение колоснико-вому полотну сообщает передний вал 1, звездочки которого перемещают ролики колосникового полотна и толкают его. Колосниковое полотно в хвостовой части опирается на шкивы заднего вала 5. В конце решетки установлен шлакосниматель 6, сбрасывающий шлак в бункер 8. Толщина слоя топлива, поступающего на решетку, регулируется шибером 3. Кусочки провала собираются в карманах нижней части колосников. При сходе цепи вниз колосники опрокидываются и уловленный провал сбрасывается в бункер. Воздух проходит в слой через узкие щели в местах прилегания колосников друг к другу. Чешуйчатые цепные решетки имеют длину 5600-8000 мм при ширине 2330-4550 мм.
Рис. 19. Топка с цепной решеткой прямого хода типа ЧЦР:
1 - передний вал; 2 - угольный ящик; 3 - регулятор толщины слоя;
4 - колосниковое полотно; 5 - задний вал; 6 - шлакосниматель;
7 - окна для подвода воздуха; 8 шлаковый бункер
Секционное дутье. Процесс горения в топке с цепной решеткой в отличие от топки с периодической загрузкой топлива протекает непрерывно. Однако по длине решетки процесс горения достаточно четко разделяется на следующие этапы: подготовка топлива (прогрев, подсушка, выделение летучих); горение кокса и летучих; выжиг и удаление шлака. Так как для различных этапов горения требуется различное количество воздуха, применяется позонное (секционное) дутье. Через последнюю, шлаковую зону, имеющую слой малой толщины, воздух подают в большем количестве, чем это необходимо для дожигания шлака, чтобы обеспечить охлаждение решетки. Позонное дутье улучшает горение топлива. Одновременно снижаются и потери тепла с уходящими газами в связи с понижением общего для всей топки коэффициента расхода воздуха.
Зажигание слоя. Особенностью горения топлива в топке с цепной решеткой является одностороннее верхнее его зажигание, так как свежее топливо из загрузочного ящика ложится на относительно холодные колосники. В данном случае получается схема поперечного движения топливного и газовоздушных потоков. Схема зажигания слоя на цепной решетке показана на рис. 20.
Основным источником тепла, определяющим прогрев и воспламенение свежего топлива, является излучение газов из топочного объема. Скорость распространения слоя высокой температуры и скорость распространения горения ωрг направлены поперечно движению слоя, перемещающегося со скоростью движения решетки ωреш . Поэтому фронт начала выхода летучих и фронт воспламенения располагаются с наклоном в сторону движения решетки.
Рис. 20. Схема зажигания слоя на цепной решетке
Зажигание топлива от непосредственного его соприкосновения с горящими частицами играет небольшую роль в общем процессе воспламенения топлива. Так, скорость распространения горения от непосредственного контакта частиц составляет всего 0,2-0,5 м/ч, в то время как перемещение слоя вместе с решеткой имеет скорость, в десятки раз большую. В связи с указанной особенностью прогрева и воспламенения топлива при сжигании малореакционных и влажных топлив значительная часть цепной решетки может оказаться занятой предварительной подготовкой топлива. При сжигании таких топлив на цепной решетке приходится принимать меры для интенсификации подготовительных этапов.
Так, для интенсификации зажигания антрацита - топлива с малым выходом летучих - применяют топочную камеру специальной конфигурации (рис. 21а). Топка выполняется с сильно развитым и низко расположенным задним сводом, благодаря чему горячие газы, образующиеся в зоне наиболее активного горения, направляются к начальному участку слоя, способствуя зажиганию свежего топлива. Кроме того, имеющийся после шлаковой зоны избыточный горячий воздух при таком расположении свода направляется в зону наиболее активного горения. Свод выполняют из кирпича, раскаляющегося во время работы, что также способствует более полному выгоранию горючих из шлака.
При сжигании кускового торфа, имеющего значительную влажность (Wр = 40-50 %), для интенсификации подготовительных этапов применяют специальные предтопки. На рис. 21б показана схема шахтно-цепной топки, открывшей возможность эффективно сжигать кусковой торф в агрегатах малой и большой производительности. Торф из загрузочной воронки 1 поступает в кирпичный предтопок 2. По мере опускания торф в предтопке подсушивается и затем поступает на цепную решетку. Подсушка торфа происходит благодаря очагам горения, образующимся на ступеньках 3 предтопка. Газы, образовавшиеся при горении задержавшегося на ступеньках торфа, пронизывают массу топлива, подсушивают его и уходят в топочную камеру. Основная часть воздуха, необходимого для горения торфа, поступает из воздухоподогревателя при температуре около 250 ºС позонно через колосниковую решетку в слой. Часть горячего воздуха направляется в предтопок для поддержания горения торфа на ступеньках. Толщина слоя на решетке определяется положением балки 4. Для регулирования слоя балку можно перемещать по вертикали.
а) б)
Рис. 21. Схемы топок с цепной решеткой:
а для антрацитов; б для торфа
В качестве подсушивающей шахты в топках с цепными решетками для торфа применяют также предтопок Померанцева, отличающийся наклонным расположением ступенек, чем обеспечивается их самоочистка от золы. Для предварительной подсушки влажного топлива перед решеткой применяют также отсос специальным вентилятором горячих газов из топки через слой топлива со сбросом этих газов под решетку.
Острое дутье в слоевых топках. Газы, выходящие из горящего на цепной решетке слоя топлива, наряду с инертными продуктами полного горения содержат горючие составляющие, а также кислород.
Во избежание значительных потерь тепла от химического недожога продукты горения, содержащие горючие компоненты и кислород, необходимо в топочной камере хорошо перемешать для завершения горения. Весьма эффективным способом интенсификации процесса перемешивания газов в топке является применение «острого» дутья, т.е. ввод в топочную камеру относительно тонких струй воздуха с большой скоростью (50-70 м/с). Расход воздуха на острое (вторичное) дутье составляет 5-10 % от общего количества воздуха. Место ввода острого дутья в слоевую топку показано стрелками на рис. 21.
Выжиг и удаление шлака. Для уменьшения потери химически связанного тепла шлака необходимо максимально интенсифицировать его выжиг на шлаковом участке решетки. Эффективными в этом отношении являются низко расположенные горячие кирпичные своды. При налаженном процессе горение на решетке должно полностью заканчиваться примерно на расстоянии 0,3-0,5 м от места сброса шлака с решетки. В месте схода шлака устанавливается шлакосниматель (см. рис. 19), который несколько замедляет движение шлака, способствуя его выжигу, а также защищает решетку от оголения. Чтобы избежать образования наростов шлака на боковых стенах топочной камеры, на уровне верхнего полотна цепной решетки с боковых ее сторон устанавливаются водоохлаждаемые панели, представляющие собой круглые коллекторы, включенные в систему циркуляции котла.
Применение горячего дутьевого воздуха способствует интенсифи-кации горения топлива в слое. Предел подогрева воздуха лимитируется условиями работы решетки. Так, при сжигании на решетке антрацита - топлива с малым выходом летучих, для которого тепловыделение происходит, в основном, в слое, воздух подогревается до 150-170 ºС. При сжигании топлив с большим выходом летучих, для которых тепловыделение в значительной степени переносится в топочный объем, температура горячего воздуха составляет 200-250 ºС.
Слоевые топки с цепными решетками прямого хода применяются для сжигания сортированных антрацитов (АС и АМ), несортированных каменных углей с умеренной спекаемостью, кускового торфа, а также бурых углей с небольшой влажностью и зольностью.
Для сжигания рядовых каменных и бурых углей и сланца с содержанием мелочи размером 0-6 мм до 40 % находят применение факельно-слоевые механические топки. В таких топках на движущееся колосниковое полотно топливо подается пневмомеханическими или пневматическими забрасывателями. Характерной отличительной особенностью факельно-слоевых топок является комбинированное сжигание топлива: крупные кусочки сгорают в слое, а мелкие - во взвешенном состоянии в объеме топки.
Для топок ПМЗ-ЧЦР с цепной решеткой обратного хода (полотно со слоем топлива движется от задней стенки топки к фронту агрегата) конструкция колосникового полотна аналогична полотну топки ЧЦР (рис. 19). Топливо подается на решетку при помощи пневмомеханических забрасывателей. Более крупные фракции топлива, попадая на дальнюю от фронта топки часть решетки, проходят более длинный путь. Мелкие частицы ложатся на горящий слой топлива ближе к фронту. Воздух для горения топлива подводится под колосниковую решетку. Сжигание топлива происходит в тонком слое. Имеются также топки с ленточной цепной решеткой (ЛЦР) обратного хода. Ленточное полотно решетки набирается из ребристых колосников.
При сжигании в таких топках каменных углей типа кузнецких Г и Д, донецких Г и Д, бурых типа артемовского и других работа топки характеризуется следующими показателями: qR = 1,4-1,75 МВт/м2 ; qV = 0,28-0,47 МВт/м3 ; αт = 1,3-1,4 ; q3 = 0,5-1,0 % ; q4 = 3-7 % .
Давление воздуха под решеткой - около 500 Па, температура 150-200 ºС (для каменных углей используется также холодный воздух).
Топки с кипящим (псевдоожиженным) слоем (КС)
Одним из направлений совершенствования слоевого способа сжигания является использование топок с кипящим слоем. Топка с кипящим слоем (рис. 22) выполняется с вертикальными стенками и подом в виде горизонтальной решетки (рис. 23).
Рис. 22. Топка котла с кипящим слоем
Технология основана на сжигании топлива в объеме раскаленных частиц инертного материала, «кипящих» в восходящем потоке воздуха. В качестве инертного материала обычно используется фракционированный песок с размером фракций 0,5 - 2 мм.
Кипящий слой характеризуется скоростью дутья, превышающей предел устойчивости плотного слоя, однако не достигающей скорости витания средних частиц. Скоростью витания называется скорость среды, при которой частица находится в состоянии динамического равновесия.
Wвит = ,
где и - плотность частицы и среды, кг/м3; g ускорение свободного падения, м/с2; - коэффициент лобового сопротивления; d диаметр частицы, м.
При этих условиях все частицы песка в слое интенсивно перемешиваются, двигаясь колебательно вверх и вниз, причем в целом слой имеет относительно четкую верхнюю границу.
Рис. 23. Распределительная решетка типа HYBEX
Небольшое процентное отношение массы подаваемого топлива к инертной массе кипящего слоя (2-3 %) и интенсификация процесса горения обеспечивают эффективное сжигание низкореакционных углей, тощих углей с низким выходом летучих, высокозольных топлив, кору деревьев с влажностью до 65 % и других низкосортных топлив, сжигание которых традиционными способами затруднительно.
Размеры частиц топлива, предназначенного для сжигания в КС, средние между размерами частиц топлива для пылевидного сжигания и для механических топок. Максимальный размер их зависит от реакционной способности топлива и составляет от 6 до 25 мм. В котлах с КС характерная плотность слоя составляет 750 кг/м3 при температуре 800-900 °С. Благодаря длительному времени пребывания топлива в слое и высокой интенсивности процессов тепломассообмена эффективность сжигания в топке с КС довольно велика, несмотря на относительно низкую температуру процесса 800-900 °С.
В пузырьковом слое наблюдается незначительный вынос частиц из топки. Время пребывания крупных кусков топлива велико, а мелких частиц примерно соответствует расчетному по скорости газа. Это зачастую приводит (по крайней мере для низкореакционных топлив) к повышенному содержанию углерода в слое и уносе и, соответственно, к увеличению механического недожога. Для его уменьшения вынесенные из топки частицы улавливаются и возвращаются в слой.
Технология КС обеспечивает:
Необходимым условием организации КС является установка высоконапорного вентилятора с мощным электродвигателем для преодоления сопротивления колпачковой воздухораспределительной решетки и самого кипящего слоя, а также возврат унесенных частиц на дожигание, с помощью которого может быть организован циркулирующий кипящий слой (ЦКС). Мелкие фракции древесных отходов (опилки и стружка) требуют организации сжигания их в топке над слоем за счет направленной подачи вторичного воздуха.
Снижение уровня выбросов NOx в топках с кипящим слоем происходит благодаря эффективной ступенчатой подаче воздуха, высокой степени смешения и низком коэффициенте избытка воздуха. Использование добавок (например, известняка, добавляемого для связывания серы) дает хорошие результаты благодаря эффективному смешению, обеспечиваемому в псевдоожиженном слое.
Недостатком установок, предназначенных для сжигания топлива в КС, является унос большого количества пыли с топочными газами, что делает необходимым использование эффективных золоуловителей и регулярную чистку систем котлоагрегата. Материал псевдоожиженного слоя также теряется с золой, что делает необходимым регулярное пополнение материала слоя.
Увеличение скорости потока воздуха до 5-10 м/с и использование более мелких частиц песка (0,2-0,4 мм) позволяет создать циркулирующий псевдоожиженный слой (ЦКС). Частицы песка, увлекаемые топочным газом, улавливаются в горячем циклоне и подаются обратно в камеру сгорания (рис. 24) .
Рис. 24. Топка котла с циркулирующим кипящим слоем
Недостатками топок с ЦКС являются их большие размеры и, соответственно, более высокая стоимость, еще более высокая по сравнению с установками со стационарным КС. Для этих топок так же характерны унос большего количества пыли с топочными газами и большие потери материала слоя. Кроме того, необходимость использования мелких частиц топлива (эквивалентным диаметром до 40 мм) часто увеличивает затраты на предварительную подготовку топлива.
6.2.2. Сжигание твердого топлива в пылевидном состоянии
Твердое топливо при сжигании в камерных топках предварительно измельчают и в виде пыли в смеси с воздухом вдувают в топочную камеру, где оно сгорает, находясь в потоке газов во взвешенном состоянии.
Превращением кускового топлива в пыль достигается многократное увеличение поверхности реагирования, благодаря чему существенно улучшаются условия его сжигания, так как горение твердого топлива является гетерогенным процессом, происходящим на поверхности частиц топлива. Так, если кусочек угля диаметром 20 мм раздробить на частицы диаметром 40 мкм, то суммарная поверхность полученных пылинок будет в 500 раз больше поверхности исходной частицы.
Основные преимущества сжигания топлива в виде пыли заключаются в следующем:
Недостатками сжигания топлива в пылевидном состоянии являются:
Последнее обусловливается малой массовой концентрацией топлива в единице объема такой топки (20-30 г/м3), а также неблагоприятными условиями подвода окислителя к поверхности реагирования вследствие низкой относительной скорости горящих частиц в газовоздушном потоке.
При сжигании пыли в циклонных топках, характеризующихся более благоприятными условиями для тепло- и массообмена, объемная плотность тепловыделения камеры горения имеет значительно более высокие значения.
Системы пылеприготовления
Приготовление угольной пыли из кускового топлива производится в системе специальных устройств, в которых последовательно осуществляются первоначальное грубое дробление на куски размером в несколько десятков миллиметров, сушка и, наконец, его размол до пылевидного состояния с размером частиц в несколько десятков или сотен микрон. В циклонных и вихревых топках применяют также дробленку частицы топлива размером в несколько миллиметров. Часто размол и сушку топлива совмещают в одном устройстве.
Крупность топлива после предварительного дробления влияет на последующие этапы его сушки и размола. С увеличением крупности топлива возрастает расход энергии на приготовление пыли, увеличивается износ мелющих органов, а производительность мельницы снижается.
Рекомендуются следующие характеристики дробления топлива:
- остаток на сите 5×5 мм R5 = 20% ;
- остаток на сите 10×10 мм R10 = 5% ;
- максимальный размер куска не больше 15 мм.
Для влажных топлив в случае замазывания дробильного оборудования максимальный размер куска принимается до 25 мм.
Предварительное грубое дробление сырого топлива дополняется отделением металлических частей и щепы, которые могут попасть в него при добыче и транспортировке.
Для размола топлива применяют следующие системы пылеприготовления: центральную, индивидуальную с прямым вдуванием и индивидуальную с промежуточным пылевым бункером.
Центральная схема пылеприготовления отличается большой сложностью и высокой стоимостью, поэтому целесообразно рассматривать индивидуальную схему пылеприготовления. Индивидуальная система пылеприготовления характеризуется приготовлением пыли непосредственно у котла с использованием для сушки топлива и его пневмотранспорта горячего воздуха или продуктов сгорания.
Индивидуальная система пылеприготовления с прямым вдуванием (рис. 25а) отличается жесткой связью мельничного оборудования с котлом. Изменение нагрузки требует и изменения работы мельницы. При снижении нагрузки котла мельница оказывается недогруженной.
Индивидуальная система пылеприготовления с промежуточным пылевым бункером (рис. 25б) независима от работы котла, что является ее основным достоинством. Наличие промежуточного пылевого бункера повышает надежность установки. Этому способствует также связь мельничных устройств отдельных агрегатов с помощью пылевых шнеков, позволяющих передавать пыль в случае необходимости от одного котельного агрегата к другому. В системе пылеприготовления с промежуточным бункером также имеется возможность полностью загружать мельничное оборудование. К недостаткам схемы с промежуточным пылевым бункером относится, в частности, увеличение затрат на оборудование.
Индивидуальная система пылеприготовления с прямым вдуванием применяется при сжигании высокореакционных бурых и каменных углей, допускающих грубый помол. Индивидуальная система пылеприготовления с промежуточным бункером применяется для мощных котлов при работе на тощих и малореакционных углях, требующих тонкого помола.
а) б)
Рис. 25. Принципиальные схемы систем пылеприготовления:
а индивидуальная с прямым вдуванием; б индивидуальная
с промежуточным пылевым бункером;
1 бункер сырого дробленого угля; 2 сушилка; 3 мельница;
4 мельничный вентилятор; 5 топка; 6 промежуточный бункер;
7 шнек для пыли
Сушка топлива
Для улучшения размола топлива, хранения и транспорта пыли, а также интенсификации ее зажигания и горения топливо подсушивается. Однако чрезмерная подсушка пыли не допускается по условиям самовозгорания и взрывобезопасности.
Влажность рабочего топлива Wr может быть представлена как сумма гигроскопической влажности Wh и внешней влажности Wex. Значения Wh зависят от топлива: например, для антрацита 2,5 %, для подмосковного угля 7,5 %, для торфа 11 %.
Для относительно сухих углей, внешняя влажность которых не превышает 10 %, сушка топлива производится одновременно с размолом в мельничном устройстве путем подачи внутрь мельницы горячего воздуха или продуктов сгорания.
Для влажных топлив с внешней влажностью 15-20 % частичная предварительная подсушка топлива может осуществляться непосредственно перед мельничным устройством в коротких сушильных трубах. Окончательная досушка топлива проводится в мельнице в процессе размола.
Для высоковлажных топлив с внешней влажностью более 20 % возможно применение сушки топлива в отдельном сушильном устройстве с разомкнутой сушкой, т.е. с выбросом отработавшего сушильного агента вместе с водяными парами в атмосферу.
Для предварительной подсушки топлива перед мельницей применяют различные типы сушилок: газовые барабанные, паровые, трубчатые, пневматические (трубы-сушилки), с кипящим слоем и др.
Значительно интенсивнее, чем в обычных сушилках, протекает сушка при совмещении ее с размолом топлива, что связано с резким увеличением при этом суммарной поверхности частиц угля.
В настоящее время в большинстве случаев подсушка топлива проводится, в основном, в самом мельничном устройстве, часто в сочетании с короткой трубой-сушилкой, располагаемой перед мельницей.
Различают сушку топлива по замкнутой и разомкнутой схемам (рис. 26). При замкнутой схеме отработавший в системе пылеприготовления сушильный агент вместе с пылью сбрасываются в топку. При разомкнутой схеме отработавшие сушильные газы сбрасываются в атмосферу.
Влажность подсушенной пыли для углей марки АШ Wr = 0,5-1 % ; подмосковного угля Wr = 11-16 %; торфа Wr = 35-40 %. По условиям взрывобезопасности конечная влажность пыли сланцев, а также бурых углей, у которых Wh < 0,4 Wr , не должна быть ниже гигроскопической. Для бурых углей с Wh ≥ 0,4 Wr и каменных углей влажность пыли не должна быть менее 50 % гигроскопической влажности.
Для регулирования подачи топлива к мельницам применяют различные питатели: дисковые (тарельчатые), ленточные, скребковые, скребково-барабанные, пластинчатые.
Для отделения готовой пыли от крупных частиц угля, вынесенных из мельницы вместе с пылью, служат сепараторы. Выпавшие в сепараторе частицы направляются в мельницу для дальнейшего размола, а вынесенная пылевоздушная смесь поступает в циклон, где пыль отделяется от воздуха. Слабо запыленный воздух отсасывается из циклона, а пыль поступает в пылевой бункер.
По тракту системы пылеприготовления для взрывоопасных топлив предусматривается установка предохранительных взрывных клапанов.
а) б)
Рис 26. Схема пылеприготовления с шаровой барабанной мельницей
(ШБМ) при подаче пыли горячим воздухом:
а замкнутая схема пылеприготовления; б разомкнутая схема
пылеприготовления; 1 бункер угля; 2 питатель; 3 течка сырого
угля; 4 устройство для нисходящей сушки; 5 мельница;
6 мигалка; 7 сепаратор; 8 взрывной клапан; 9 циклон;
10 мельничный вентилятор; 11 сбросная горелка;
12 промежуточный бункер угольной пыли;
13 питатель пыли; 14 основная пылеугольная горелка;
15 топочная камера; 16 вентилятор; 17 воздухоподогреватель;
18 линия отбора горячих газов на сушку;
19 подвод горячего воздуха к основной горелке (вторичный воздух);
20 первичный воздух; 21 электрофильтр
Размол топлива
В процессе размола топлива образуется смесь мельчайших пылинок (от нескольких микрон) с более крупными (размером до 300-500 мкм). Основными качественными характеристиками пыли являются ее тонкость помола и влажность. Согласно ГОСТ тонкость пыли характеризуется остатком на ситах с ячейками 90, 200 и 1000 мкм. Остаток обозначается буквой R. Так, обозначение R90 = 10 % указывает, что на сите с размером ячеек 90 мкм остается 10 % пыли, а вся остальная пыль проходит через это сито. При расчетах мельничных устройств тонкость пыли определяется остатком на сите 90 мкм, R90 .
Представление о фракционном составе пыли дает так называемая ситовая или зерновая характеристика, которая может быть построена на основе определения остатков пыли на ряде сит. Вид зерновой характеристики показан на рис. 27.
Рис. 27. Зерновая характеристика пыли
Размольные свойства топлива характеризуются коэффициентом размолоспособности, т.е. сопротивляемостью топлива размолу. Лабораторный относительный коэффициент размолоспособности Кло - это отношение расхода электроэнергии при размоле угля, принятого за эталон, к расходу электроэнергии при размоле данного угля, находящегося в воздушно-сухом состоянии. Размол сравниваемых топлив производится от одинаковой крупности до одной и той же тонкости помола. Практический коэффициент Кло показывает, во сколько раз производительность мельницы при размоле данного топлива выше, чем при размоле эталонного топлива, близкого по свойствам к АШ. Коэффициент размолоспособности Кло по шкале ВТИ для некоторых топлив имеет следующие значения:
Егоршинский полуантрацит 1,5
Донецкий тощий уголь 1,8
Кизеловский газовый 1,0
Подмосковный бурый 1,7
Сланцы эстонские 2,5
Целесообразная тонкость помола топлива находится в зависимости от его стоимости и реакционной способности, характеризуемой в основном выходом летучих. С повышением выхода летучих, способствующих более интенсивному горению топлива, применяется более грубый помол. Тонкость помола для различных углей выбирается на основе технико-экономических соображений. Уменьшение размеров пылинки приводит к росту удельной поверхности топлива, что благоприятствует его горению, однако это связано с увеличением расхода энергии на пылеприготовление. С угрублением помола расход энергии на пылеприготовление уменьшается, однако увеличивается потеря тепла от механического недожога.
Потеря тепла от механического недожога в основном зависит от содержания в пыли грубых фракций, количество которых для АШ, полуантрацитов, тощих и каменных углей определяется остатками на сите 200 мкм, а для бурых углей и сланцев на сите 1000 мкм.
С учетом выхода летучих для получения минимальных потерь рекомендуются следующие остатки на ситах:
Топливо R90 R200 R1000
АШ, ПА и тощий уголь 7 15 0,3 1,2 -
Каменный уголь 15 40 1,3 13 -
Бурый уголь и сланцы 40 60 15 35 0,5 1,5
Для размола топлива применяют различные мельничные устройства, использующие в работе принципы удара и раскалывания, раздавливания и истирания. В отличие от дробилок, где кратность измельчения, т.е. отношение средних размеров куска до измельчения и после, доходит до 20, в мельницах эта величина достигает 200 - 500.
Для приготовления угольной пыли применяются следующие мельничные устройства:
Особенности горения угольной пыли
Угольная пыль для сжигания подается в топочную камеру котла воздухом через горелочное устройство. Воздух, поступающий в топку вместе с пылью, называется первичным. Остальной воздух, необходимый для горения, подаваемый в топку через горелки или помимо них, называется вторичным.
В топочной камере угольные пылинки, находясь в полете, проходят последовательно этапы тепловой подготовки (прогрева), горения летучих и кокса и выделения шлакозолового остатка. Поступающая в топку угольная пыль состоит из частиц различной крупности. Более мелкие частицы воспламеняются и сгорают в первую очередь. Для более крупных пылинок этапы тепловой подготовки и собственно горения несколько затягиваются. В связи с этим по длине пылеугольного факела имеет место совмещение отдельных этапов горения.
Пылеугольный факел представляет собой неизотермическую запыленную струю, развивающуюся в ограниченной среде высоко-температурных топочных газов. Если учесть, что объем горящего топлива по сравнению с объемом необходимого для горения воздуха ничтожно мал, а пылинки топлива взвешены в потоке, то закономерности и характер развития газовой струи можно с достаточной степенью точности применить и к пылеугольному факелу.
Запыленная струя, расширяясь в топочном объеме, увлекает горячие топочные газы, перемешивается с ними и нагревается. Прогреву пылевоздушного потока способствует передача тепла излучением от раскаленной окружающей среды, а также в некоторой степени и теплопроводность газового потока.
Воспламенению струи предшествует тепловая подготовка топлива. Воспламенение пылевой струи начинается с ее наиболее прогретого пограничного слоя и распространяется в поперечном направлении от поверхности к оси струи, образуя факел. Время, необходимое для воспламенения пылевоздушной струи, зависит от ряда факторов: тонкости помола и выхода летучих, начальной температуры пылевоздушной смеси и концентрации в ней пыли, соотношения первичного и вторичного воздуха, способа подвода вторичного воздуха и др.
Уменьшение размеров пылинок приводит к увеличению относительной поверхности реагирования топлива, что обеспечивает на данном участке струи большее тепловыделение, интенсифицирующее прогрев и воспламенение пылевоздушной смеси. Выделяющиеся при нагреве топлива летучие, имеющие более низкую температуру воспламенения, чем коксовый остаток, способствуют ускорению зажигания пыли. Чем больше в топливе летучих, тем легче его воспламенить. Полидисперсность пыли также способствует улучшению ее воспламенения. Мельчайшие пылинки быстро прогреваются и воспламеняются. Выделяющееся при этом тепло интенсифицирует воспламенение более крупных пылинок.
Воспламенение пылевоздушной смеси улучшается также при повышении начальной ее температуры, что осуществляется на практике применением подогретого (до 300 - 400 °С) воздуха. Особенно целесообразно применение высокоподогретого воздуха при сжигании малореакционных труднозажигаемых углей (антрацит, тощий уголь).
Ускорение воспламенения пыли может быть получено также путем уменьшения количества первичного воздуха, что равносильно соответствующему повышению концентрации пыли. Уменьшение количества первичного воздуха в пылевоздушной смеси приводит к снижению ее теплоемкости, что обеспечивает прогрев смеси до более высокой температуры. Вместе с тем количество первичного воздуха должно быть достаточным для окислительных реакций в начальной стадии горения воспламенившейся смеси. Для малореакционных углей интенси-фикация воспламенения может быть достигнута также раздельным вводом в топку пылевоздушной смеси и вторичного воздуха. Подача вторичного воздуха в корень факела может привести к понижению здесь температуры и отдалению начала воспламенения от устья горелки. Вторичный воздух следует подмешивать к факелу уже после его воспламенения.
Время распространения воспламенения от периферии до оси струи связано с размерами горелки. Чем больше выходное сечение горелки, тем дальше от него завершится воспламенение смеси. В связи с этим для интенсификации зажигания пылевоздушной смеси целесообразно вместо одной - двух горелок большого размера применять несколько меньших горелок; этим достигается наряду с увеличением поверхности зажигания также и меньшая дальнобойность струи.
После воспламенения пылегазовой смеси она интенсивно сгорает, образуя факел. Часть выделяющегося при горении тепла идет на прогрев и воспламенение поступающего пылевого потока.
По конфигурации факела различают топки с U-образным факелом (рис. 28а) и L-образным факелом (рис. 28б).
Наибольшее распространение нашли топки с L - образным факелом.
а б
Рис. 28. Схема топок с U-образным и L-образным факелами
По способу удаления шлака различают пылеугольные топки с твердым (гранулированным) и жидким шлакоудалением.
Топки для факельного сжигания угольной пыли с твердым шлакоудалением
В пылеугольных топках поведение шлакозолового остатка оказывает решающее влияние на производительность и экономичность топочного устройства. Развитие и совершенствование пылеугольных топок в основном были связаны с решением вопроса улавливания и удаления шлака. В отличие от слоевого сжигания твердого топлива, где до 80 % золы остается в слое и только незначительная ее часть выносится в объем топочной камеры, а затем уносится газовым потоком в газоходы, при факельном сжигании вся зола проходит через топочный объем. Основная масса золы (85 95 %) уносится вместе с газовым потоком, а меньшая часть (5 - 15 %) выпадает в топочной камере.
Температура пылеугольного факела, особенно его ядра, превышает температуру плавления золы tф > tз. В связи с этим при выгорании горючего зола топлива плавится и в виде мельчайших капелек в жидком состоянии перемещается с газообразными продуктами сгорания. Следует подчеркнуть, что частицы топлива, выносимые в небольшом количестве в топочный объем при слоевом сжигании, имеют размер 200 300 мкм, в то время как при факельном сжигании средний размер частиц составляет всего 15 30 мкм. Поступление в топочный объем всего количества золы топлива при сжигании пыли и малый размер самих пылинок предопределяют большую суммарную поверхность оплавленных частиц. Расплавленный шлак, попадая на кирпичные стенки топочной камеры, зашлаковывает их и способствует их износу. При попадании на холодные конвективные поверхности нагрева котла расплавленный шлак оседает на трубах, постепенно образуя шлаковые наросты. При этом резко возрастает сопротивление газового потока, а также ухудшается передача тепла поверхностям нагрева.
Широкое применение пылевидного сжигания стало возможным лишь при установке в топочной камере охлаждаемых водой экранов, обеспечивающих защиту как стенок топки от разрушающего воздействия высокой температуры и химического взаимодействия с жидким шлаком, так и конвективных поверхностей нагрева от зашлаковывания. Кроме непосредственной защиты стенок топочной камеры от шлака, экраны воспринимают от газа и летящих частиц тепло радиации, снижая их температуру так, что при входе в конвективные элементы частицы шлака находятся уже в затвердевшем состоянии и не налипают на трубы. Пылеугольные топки, в которых выпадающая зола удаляется в твердом (гранулированном) виде, называются топками с твердым шлакоудалением (рис. 29). Топочные экраны наряду с выполнением указанных защитных функций являются наиболее эффективно работающими поверхностями нагрева с тепловой нагрузкой 0,1 - 0,3 МВт/м2. Для охлаждения оседающих в топке жидких шлаковых частиц нижнюю часть топки выполняют в виде полностью экранированной холодной шлаковой воронки. Наклон стенок воронки к горизонту составляет около 60° для обеспечения сползания гранулированного шлака в шлаковую шахту, которая находится под холодной воронкой.
Серьезным недостатком пылеугольных топок с твердым шлакоудалением является вынос из топочной камеры в газоходы агрегата основной массы золы топлива, что не позволяет значительно интенсифицировать передачу теплоты конвекцией во избежание истирания труб золой при увеличении скорости потока. При твердом шлакоудалении холодная воронка неблагоприятно влияет на процесс горения, так как зона низкой температуры оказывается при этом в непосредственной близости от горелок. В связи с этим стремятся отдалить горелки от холодной воронки, что приводит к увеличению высоты топки. Повышение температуры в области холодной воронки может привести к получению не гранулированного (сыпучего) шлака, а вязкой массы, что вызовет шлакование холодной воронки.
Рис. 29. Схема топки с твердым шлакоудалением
При высокой степени экранирования топочной камеры воспламенение топлива вообще затрудняется; особенно это относится к малореакционным углям типа АШ. Для интенсификации зажигания, а также повышения устойчивости горения малореакционных углей применяется зажигательный пояс, представляющий собой часть топочных экранов (в области горелок), покрытых огнеупорными материалами (рис. 30). Применяют два типа зажигательных поясов: покрытие гладких экранных труб фасонными кирпичами и обмазку ошипованных труб огнеупорной карборундовой или хромитовой массой. Высота пояса зависит от производительности котла и достигает 3 - 4 м.
Для более полного выгорания пыли в хвостовой части факела необходимо иметь высокую температуру. Особенно это важно при сжигании малореакционных углей, для которых здесь требуется температура 1250 - 1300 °С. Такое требование, однако, всегда приходит в противоречие с необходимостью охладить газы в топочной камере до температуры, исключающей шлакование конвективных поверхностей нагрева. Это противоречие, так же как и ряд других недостатков, присущих топкам с твердым шлакоудалением, устраняется при переходе на жидкое шлакоудаление.
Рис. 30. Зажигательный пояс
Топки для факельного сжигания угольной пыли с жидким шлакоудалением
В отличие от топок с твердым шлакоудалением, в топках с жидким шлакоудалением температуру в нижней части топочной камеры поддерживают такой, чтобы обеспечить не только полное расплавление шлаков, но и удаление их в жидком виде из топки. Схемы пылеугольных факельных топок с жидким шлакоудалением показаны на рис. 31.
В однокамерной открытой топке (рис. 31а) пылевидное топливо через горелку поступает в камеру, стенки которой покрыты ошипованными футерованными экранными трубами. В связи с этим в камере при горении топлива развивается достаточно высокая температура, обеспечивающая плавление шлака. Расплавленный и уловленный здесь шлак через летку стекает в ванну (на рис. не показана), где гранулируется водой и затем удаляется.
В камере охлаждения, имеющей открытые экранные поверхности и являющейся непосредственным продолжением камеры плавления, происходит охлаждение газов и содержащегося в них расплавленного шлакового уноса. На выходе из камеры плавления при поступлении в последующие конвективные поверхности унос должен иметь температуру, исключающую его налипание на поверхности нагрева.
В отличие от топок с твердым золоудалением, где в топочной камере оседает около 5 % золы, а остальная зола уносится газообразными продуктами горения, в однокамерной открытой топке с жидким шлакоудалением улавливается и удаляется 15 30 % общего количества золы. Следует, однако, отметить, что для такой открытой топки в области перехода от «горячей» к «холодной» зоне, где температура снижается и шлак теряет текучесть, наблюдается интенсивное шлакование экранных поверхностей нагрева. Это усложняет эксплуатацию и снижает эффективность поверхностей нагрева.
а) б) в)
Рис. 31. Схемы пылеугольных факельных топок с жидким шлакоудалением:
1 поверхность топки, покрытая огнеупорной обмазкой;
2 холодная радиационная поверхность; 3 подача топлива;
4 шлакоулавливающий пучок труб, покрытых огнеупорной
футеровкой
Значительно более благоприятны условия работы полуоткрытой однокамерной топки с жидким шлакоудаленяем (рис. 31б). Здесь, благодаря специально выполненному пережиму, зона плавления и зона охлаждения в значительной степени разделены. В камере горения экранные трубы ошипованы и покрыты огнеупорной обмазкой. Процесс сжигания топлива почти полностью завершается в этой камере; объем ее относительно ограничен, в связи с чем объемная плотность тепловыделения составляет здесь 0,5 - 0,8 МВт/м2, а температура 1700 1800 °С. В камере улавливается 20 - 40 % золы топлива, удаляемой в жидком состоянии через летку. В верхней части топки расположены открытые экранные поверхности, обеспечивающие охлаждение газа и уноса.
В двухкамерной топке с жидким шлакоудалением (рис. 31в) камера горения и камера охлаждения разделены шлакосепарационной решеткой, выполненной из разведенных ошипованных экранных труб, имеющих огнеупорную обмазку. Основное количество расплавленного шлака улавливается в камере горения. Дополнительно уловленный в шлакосепараторе шлак стекает на под топки, откуда через летку весь шлак поступает в водяную ванну для грануляции.
В двухкамерной топке улавливается до 70 % всей золы. Еще большего улавливания золы (80 - 95 %) в пределах топочной камеры достигают при применении рассматриваемых далее циклонных топок.
Улавливание значительного количества золы в пределах топочной камеры уменьшает загрязнение поверхностей нагрева, а также их износ летучей золой. При этом возможно повышение скорости дымовых газов, что интенсифицирует передачу тепла конвективным поверхностям нагрева. При жидком шлакоудалении благодаря высокой температуре в топочной камере снижаются потери тепла от механического недожога. Так, при сжигании АШ, при переходе от твердого шлакоудаления к жидкому потери тепла от механического недожога снижаются с 6 - 7 до 3 - 4 %.
К недостаткам топок с жидким шлакоудалением можно отнести повышенные потери с физическим теплом шлака. При многозольном топливе эта потеря может достигать 2 - 3 %. Однако следует отметить, что тепло жидких шлаков, так же как и сами шлаки, может использоваться для различных технологических процессов. Кроме того, высокая температура горения приводит к увеличению концентрации оксидов азота в дымовых газах.
Топки с жидким шлакоудалением применяют для низкореакционных топлив, имеющих благоприятные температурные и вязкостные характеристики золы и шлака, и топлив с относительно легкоплавкой золой.
Циклонные и вихревые топки
Значительная интенсификация процесса горения твердого топлива, а также максимальное улавливание золы в пределах топочной камеры достигаются в циклонных топках. Циклонный принцип организации горения твердого топлива был предложен Г. Ф. Кнорре еще в начале 30-х годов.
В промышленности применяются различные типы горизонтальных (малонаклонных) и вертикальных циклонных топок для сжигания мелкодробленого топлива или грубой пыли с жидким шлакоудалением дробленого топлива или грубой пыли с жидким шлакоудалением.
Принципиальная схема циклонной топки с горизонтальным расположением камеры и жидким шлакоудалением показана на рис. 32а. Топливо (дробленый уголь, грубая угольная пыль) подается в циклонную камеру с первичным воздухом. На схеме показан ввод топливно-воздушной смеси через улитку в центральную часть камеры. По оси вводится только дробленка. При сжигании угольной пыли она вводится через тангенциальные сопла.
Вторичный воздух подается в камеру тангенциально через сопла-щели с большой скоростью (более 100 м/с), обеспечивая вихревое движение топливных частиц. В отдельных схемах (при сжигании пыли) топливно-воздушная смесь вводится в камеру также тангенциально. Образующиеся в циклонной камере вихри способствуют интенсивному смесеобразованию и увеличению времени пребывания частиц в зоне горения.
Развиваемая в циклонной камере высокая температура (1700 - 1800 °С) приводит к расплавлению золы и образованию на стенках шлаковой пленки. Жидкий шлак вытекает из камеры через летку. Улавливание золы в пределах камеры составляет 85 - 90 %. Отбрасы-ваемые на стенки свежие частицы топлива прилипают к шлаковой пленке, где они интенсивно выгорают при обдувании их воздушным потоком.
В выходной части циклонной камеры имеется пережим (ловушка), через который продукты горения поступают в камеру дожигания. Наличие пережима приводит к уменьшению уноса. Крупные частицы циркулируют в камере до полной газификации. Выносимые из циклона мельчайшие частицы топлива догорают в камере дожигания.
а) б) в)
Рис. 32. Схема циклонных топок с жидким шлакоудалением:
а горизонтальная топка; б вертикальная топка с нижним
выводом газов; в вертикальная кольцевая топка с верхним
выводом газов
Циклонные камеры работают с высокими объемными плотностями тепловыделения МВт/м3 и плотностью теплового потока на сечении циклона МВт/м2 при малом коэффициенте избытка воздуха в циклоне .
Жидкий шлак через летки циклонов вытекает в камеру дожигания, откуда он через центральную летку поступает в шлаковую ванну, где гранулируется водой. Горизонтальные циклонные топки могут быть применены для сжигания бурых и каменных углей (дробленка, грубая пыль).
Схема вертикальной циклонной топки (предтопка) с нижним выводом газов показана на рис. 32б. Угольная пыль вместе с первичным воздухом в количестве 15 - 20 % от общего расхода воздуха поступает в предтопок через расположенную в верхней его части горелку с лопаточным аппаратом для закручивания потока (скорость выхода аэросмеси 20 - 25 м/с). Вторичный воздух поступает через тангенциально расположенные сопла со скоростью 50 - 60 м/с. Топка пригодна для сжигания различных углей бурых, каменных, тощих, а также АШ. Топливо сжигается в виде грубой пыли. Так, при сжигании АШ используется пыль с R90 ≤ 20 % . Работа вертикального циклонного предтопка характеризуется следующими показателями: МВт/м3; МВт/м2; . Улавливание золы в предтопке составляет 60 - 80 %.
Схема вертикальной циклонной топки с верхним выводом газов показана на рис. 32в. Пылевоздушная смесь поступает в кольцевое пространство вертикальной циклонной камеры. Уловленный в циклоне шлак (до 80 %) удаляется через летку. Газообразные продукты сгорания через горловину циклона поступают в камеру охлаждения.
Циклонные топки (горизонтальные и вертикальные) с жидким шлакоудалением нашли широкое распространение за рубежом. Длительная эксплуатация циклонных топок с жидким шлакоудалением показала их высокую эффективность.
Основными преимуществами циклонных топок являются:
- высокая объемная плотность тепловыделения, измеряемая несколькими МВт/м3, что приводит к сокращению габаритов установки;
- улавливание в пределах камеры и удаление в жидком виде 85 - 90 % золы топлива, что дает возможность интенсифицировать работу конвективных поверхностей нагрева и в ряде случаев отказаться от установки газоочистительных устройств;
- возможность работы с малым коэффициентом избытка воздуха (), что приводит к снижению потери тепла с уходящими газами;
- возможность работы на дробленом топливе или пыли грубого помола, что позволяет упростить систему пылеприготовления и снизить расход электроэнергии на топливоприготовление.
К основным недостаткам циклонных топок относятся:
- увеличение потери тепла с физическим теплом шлака (более 2 %).
- повышенный расход энергии на дутье.
- повышенный выход оксидов азота в связи с высокой температурой в циклонной камере.
Для сжигания фрезерного торфа и древесных опилок находят приме-нение вихревые (пневматические) топки ЦКТИ системы А. А. Шершнева (рис. 33).
Рис. 33. Топка системы Шершнева для сжигания фрезерного торфа:
1 - барабанный питатель торфа; 2 - камера сгорания; 3 - камера
догорания; 4 - трубы; 5 - дожигательная колосниковая решетка;
6 - сопла; 7 - воздушный короб; 8 - колосниковая решетка
Топочная камера имеет обтекаемую конфигурацию. Вихревое движение газовоздушного потока с горизонтальной осью вращения в топке достигается тангенциально подведенными воздушными струями, выходящими из щелевых дутьевых сопл 7. Топливо, подаваемое в топку питателем 1, подхватывается завихренным потоком, подсушивается и сгорает во взвешенном состоянии. Отсепарированные крупные частицы топлива дожигаются на колосниковой решетке 8 с опрокидными колосниками, устанавливаемой в нижней части топки. Решетка служит также для растопки. Через дутьевые сопла со скоростью до 60 80 м/с подается до 80 - 85 % воздуха, необходимого для горения. Остальной воздух подается под дожигательную решетку 5. Коэффициент избытка воздуха в однокамерной топке Шершнева ; суммарные потери от химического и механического недожога q3 + q4 =3 5,5 %.
Положительные особенности закрученных потоков используются также в вихревых топках, известных под названием топок с пересекающимися струями. На рис. 34 показаны схемы полузакрытых топок ЦКТИ и МЭИ, в которых благодаря соответствующей конфигурации нижней части топки и способу подвода пылевоздушной смеси со скоростью примерно 80 м/с создается вихревое движение. Горячие топочные газы пересекают пылевоздушный поток, обеспечивая его интенсивное воспламенение.
а) б)
Рис. 34. Вихревые топки с пересекающимися струями:
а топка ЦКТИ; б топка МЭИ
Циклонный принцип организации огнетехнических процессов находит широкое применение при создании высокоэффективных энерготехнологических агрегатов.
Газовое топливо и мазут сжигаются в камерных топках, выполнен-ных в форме параллелепипеда с небольшим наклоном пода. При этом организуется факельный прямоточный способ сжигания. Газовое топливо поступает в камеру вместе с воздухом (или раздельно) через специальное устройство горелку. При прохождении через топочную камеру газо-воздушная смесь сгорает. Жидкое топливо поступает в топку через форсунки в пульверизированном виде. Мельчайшие его капельки испаряются, смешиваясь в топке с воздухом, и сгорают в полете. При сжигании газа и мазута совместно с угольной пылью в нижней части топочной камеры предусматривается экранированная холодная воронка для удаления падающей в нее золы (рис. 35).
Сжигание газового и жидкого топлив может быть осуществлено также в циклонной камере.
Газомазутные горелочные устройства должны обеспечивать оптимальные условия для правильного смешения топлива с воздухом, горения смеси и передачи теплоты от факела к тепловоспринимающим поверхностям нагрева. К ним предъявляются следующие основные требования:
а) б)
Рис. 35. Схемы топочных камер для сжигания газового топлива:
а при сжигании газа или газа совместно с мазутом;
б при сжигании газа или мазута и угольной пыли
На рис. 36 представлена топочная камера котла БКЗ-75-39, работающего на газе и мазуте.
Рис. 36. Топка котла, работающего на газе и мазуте
Сжигание газового топлива
Для сжигания газового топлива применяется большое число различных типов горелок, отличающихся как по принципу работы, так и по конструктивному оформлению. Назначением горелки, кроме ввода в топку необходимого для достижения заданной производительности количества газа и воздуха, являются организация смесеобразования и создание у ее устья устойчивого фронта воспламенения для зажигания выходящей из горелки газовой смеси.
По способу организации важнейшего этапа перемешивания компонентов горения горелки можно разделить на горелки с внешним смешением, горелки с полным внутренним смешением и горелки с частным внутренним смешением.
Горелки с внешним и частичным внутренним смешением при сжигании теплоустойчивых газов, содержащих углеводороды, дают растя-нутый видимый светящийся факел. Более длинный факел характерен для горелок с чисто внешним смешением. Горелки, дающие при работе видимый факел, называются факельными. Горелки с полным внутренним смешением газа и воздуха дают очень короткий невидимый факел. Такие горелки условно называются беспламенными.
Горелки могут классифицироваться и по другим признакам. Так, по способу подачи воздуха горелки делятся на две группы: с принудительной подачей воздуха от вентилятора и с подачей воздуха путем эжектирования его газовой струей или за счет разрежения в топке. В свою очередь горелки с принудительной подачей воздуха от вентилятора (дутьевые горелки) делятся на прямоточные, аксиальные и вихревые. В прямоточных горелках структура факела зависит от формы устья горелки, которая может быть прямоугольной, щелевой или круглой. Вихревые горелки могут быть с простым тангенциальным, с улиточным тангенциальным или аксиальным подводом воздуха.
По способу регулирования крутки потока применяют горелки с изменением сечения входного патрубка или живого сечения лопаточных завихрителей, с изменением угла наклона лопаток, с перепуском части воздушного потока мимо завихрителя. Способ подвода воздуха в дутьевых горелках оказывает решающее влияние на форму факела и угол его раскрытия, размеры зон рециркуляции газов, интенсивности турбулентного перемешивания и т.п.
По давлению газа горелки разделяют на горелки низкого давления (давление газа до 2 кПа) и среднего давления (2 70 кПа). Имеются также горелки высокого давления с давлением газа до 0,6 МПа.
Для котлов малой производительности находят применение однопроводные инжекционные горелки частичного (атмосферные горелки) и полного смешения. Инжекционные горелки, работающие на газовом топливе среднего давления, обеспечивают полное перемешивание газа и воздуха в смесителе и сжигание газа при небольших избытках воздуха. Недостатками таких горелок являются значительные их размеры и шум при работе.
Наибольшее применение в котельных агрегатах нашли рассматриваемые далее дутьевые горелки с принудительной подачей воздуха и газа. Конструктивные особенности горелок зависят от характеристик сжигаемого газового топлива и располагаемого напора газа и воздуха.
Сжигание жидкого топлива
При организации сжигания жидкого топлива следует учитывать, что горение его происходит в основном в парогазовой фазе. Последнее связано с тем, что температура кипения жидкого топлива значительно ниже температуры его воспламенения. Поэтому скорость сгорания его будет определяться скоростью испарения с поверхности, а эта поверхность многократно увеличивается при распыливании жидкого топлива на отдельные капли, для чего и применяют специальные устройства форсунки.
В зависимости от способа распыливания мазута форсунки бывают:
Совершенство конструкции любой форсунки оценивается по тонкости и однородности распыливания, которые форсунка может обеспечивать. Важным качеством является возможный предел регулирования форсунки, т.е. ее минимальная производительность, при которой сохраняется высокое качество распыливания.
В механических форсунках для распыливания мазута используется кинетическая энергия струи жидкого топлива, которое подается к форсункам специальным насосом под давлением от 1,0 до 3,5 МПа.
Недостатком механических форсунок является резкое ухудшение качества распыливания при снижении давления мазута до 1,0 - 1,2 МПа, что не позволяет снижать производительность форсунки более чем до 75-80 % от номинальной. Регулирование нагрузки котла с механическими форсунками производится поэтому отключением или включением различного количества горелок. Такой способ регулирования работы котла исключает возможность постоянного поддержания в топочной камере минимальных избытков воздуха, необходимых для предотвращения образования оксидов, определяющих скорость коррозии холодных конвективных поверхностей нагрева.
Паровые и пневматические форсунки. В паровых и пневматических форсунках дробление топлива осуществляется за счет кинетической энергии пара или воздуха. Основными показателями работы являются качество дробления и расход распыливающего агента на распыливание 1 кг топлива. Взаимодействие потоков топлива и распыливающего агента в форсунках этого типа осуществляется как внутри форсунки, так и за ней. Эффективность работы форсунок зависит от поверхности соприкосновения взаимодействующих потоков. Чем больше поверхность соприкосновения, тем эффективней работа форсунок (выше качество дробления, ниже удельный расход распыливающего агента).
Паромеханические и пневмомеханические форсунки. Устранение основного недостатка механических форсунок - малого диапазона регулирования производительности достигается применением комбинированного паро- или пневмомеханического распыливания мазута. В последнее время получили распространение так называемые паромеханические форсунки, которые работают при умеренном давлении мазута 1,6 - 2,0 МПа. Обеспечение широкого диапазона регулирования такого типа форсунок (10 - 100 %) достигается сравнительно незначительным дополнительным расходом пара на распыливание (до 0,05 кг/кг мазута).
Ротационные форсунки. К комбинированным форсункам могут быть отнесены и ротационные форсунки. В ротационных форсунках дробление и подача топлива в топку осуществляются вращающимися элементами.
Горелочные устройства выполняются, как правило, комбинирован-ными, обеспечивающими сжигание как газа, так и мазута (раздельно или совместно) с применением форсунок различного типа. Это связано с тем, что обычно основным топливом является газ, а мазут резервным.
Размещение форсунок, а также комбинированных газомазутных горелок в камерных топках может быть фронтальным, встречным и угловым. При сжигании распыленного жидкого топлива воздух в топочную камеру подают вместе с ним.
Сгорание мазута необходимо полностью завершить в пределах топочной камеры. При неблагоприятных условиях (нехватка воздуха, плохое перемешивание, низкая температура) из топки вместе с сажей могут выноситься капли неиспаренного мазута, которые будут откладываться на относительно холодных поверхностях нагрева парогенератора, снижая его экономичность.
Наряду с обычными камерными топками для эффективного сжигания мазута применяются и циклонные топки. В качестве примера на рис. 37 показана схема топочного устройства парогенератора ПК41Ц паропроизводительностью 132 кг/с, с давлением пара 25 МПа, температурой перегретого пара 565/570 °С, оборудованного двумя вертикальными подовыми циклонами. Диаметр циклонной камеры и ее высота составляют 3880 мм, диаметр пережима (выходного сопла) 2340 мм.
Основное количество необходимого для горения воздуха (70 80 %) вводится в циклон со скоростью около 70 м/с через два вертикальных тангенциальных сопла. В каждом сопле установлены две мазутные механические форсунки производительностью по 1,25 кг/с при давлении мазута 2,85 МПа. Остальной воздух подается со скоростью 30 м/с через аксиально улиточный ввод. Предусмотрена также подача в улиточный ввод и дутьевые сопла газового топлива.
Длительная эксплуатация парогенератора показала высокую эффективность циклонного сжигания высокосернистого мазута. Сжигание мазута с коэффициентом избытка воздуха, близким к единице, позволило практически ликвидировать высокотемпературную газовую коррозию труб экранов и изменить характер натрубных отложений на конвективных поверхностях нагрева. Объемная плотность тепловыделения в циклонной камере около = 3 МВт/м3, плотность теплового потока на сечении наклона = 15 МВт/м2, в циклонной камере сгорает около 90 % вводимого мазута, остальные 10 % догорают после циклона в камере горения (до пережима в топке).
Рис. 37. Схема топочного устройства парогенератора ПК41Ц с двумя
циклонными предтопками:
1 тангенциальное сопло; 2 шибер для регулирования скорости
воздуха; 3 аксиальный улиточный ввод
Для циклонных топок наиболее целесообразно применение механических форсунок, дающих короткий факел с большим углом раскрытия. Хорошие результаты получены при расположении форсунок в дутьевых соплах (рис. 38). В этом случае воздух, выходящий из сопла со скоростью 70 - 120 м/с, способствует улучшению распыливания мазута. При таком расположении форсунок удается избежать отложения сажи на стенках циклонной камеры.
Для установок малой производительности интенсификация сжигания мазута может быть достигнута применением муфельного предтопка; один из вариантов его показан на рис. 39. Муфельный керамический предтопок обеспечивает эффективную предварительную тепловую подготовку мазута - частичную газификацию и лучшее смесеобразование. Раскаленные керамические стенки муфеля интенсифицируют испарение топлива, улучшают воспламенение газовой смеси. Горение мазута получается короткофакельным.
Рис. 38. Схема установки мазутных форсунок в дутьевых соплах
Рис. 39. Схема муфельного предтопка для интенсификации сжигания
мазута:
1 форсунка; 2 керамический муфель; 3 фронтальная
стенка топки
Жидкое и газообразное топливо может применяться для котлов любой производительности.
7. ИСПАРИТЕЛЬНЫЕ ПОВЕРХНОСТИ НАГРЕВА
Испарительные поверхности поверхности парового котла, в которых происходит испарение воды, а часто и догрев воды до температуры кипения. Это котельные пучки труб, омываемые горячими топочными газами, фестон на выходе газов из топки, представляющий собой полурадиационную поверхность, настенные топочные экраны с радиационным обогревом.
Фестон как испарительная поверхность нагрева может быть выполнен в виде небольшого трубного пучка, включенного в цикл естественной циркуляции котла. Особенностью каждого фестона является разрядка его труб (фестонирование) с целью создания свободного прохода для топочных газов и летучей золы и предохранения труб от сплошного зашлаковывания. В этом смысле роль фестона могут выполнять и змеевики пароперегревателя, которые подвергаются фестонированию на входе газов в перегреватель.
В парогенераторах с низкими параметрами пара (Р = 1,3-2,1 МПа, t = 250 °С) и малой мощностью оказываются необходимыми конвективные поверхности нагрева, в которых передается до 30 % тепла, требуемого для испарения воды. В парогенераторах с естественной циркуляцией при средних параметрах пара Р = 3,93 МПа, и t = 450 °С для обеспечения дополнительной парообразующей поверхности нагрева также применяют испарительные конвективные пучки. В парогенераторах с естественной циркуляцией, вырабатывающих пар высоких параметров Р > 9,81 МПа, t > 500 °С, количество тепла, используемого на парообразование, значи-тельно снижается и тепловосприятие экранов оказывается достаточным для испарения воды.
В парогенераторах с естественной циркуляцией низкого и среднего давления конвективные испарительные поверхности нагрева (котельный пучок) выполняются в виде нескольких рядов вертикально расположенных подъемных и опускных труб с внутренним диаметром 40 - 60 мм, вальцованных или приваренных через штуцер к верхнему и нижнему барабанам или коллектору. Преимущественно применяется поперечное омывание труб потоком продуктов сгорания. Конструктивные характеристики конвективных испарительных поверхностей нагрева и различие тепловосприятия подъемных и опускных рядов труб должны обеспечивать надежную естественную циркуляцию в системе при всех условиях эксплуатации. Обычно высота труб конвективного пучка более 1,5 м и отношение площади сечения подъемных труб к сечению опускных не менее 3.
На рис. 40 показаны испарительные поверхности нагрева. Основной испарительной поверхностью нагрева в современных парогенераторах являются экраны, расположенные в топочной камере.
Рис. 40. Испарительные поверхности нагрева:
а котельного пучка труб; б настенного топочного экрана;
в фестона; 1 верхний барабан котла; 2 нижний барабан котла;
3 опускной пучок труб; 4 подъемный испарительный пучок;
5 подвод питательной воды; 6 вывод насыщенного пара из
барабана к пароперегревателю; 7 путь горячих топочных газов;
8 фестон; 9 нижний коллектор заднего экрана; 10 испарительные
подъемные трубы экрана; 11 промежуточный коллектор экрана;
12 верхний коллектор экрана; 13 смесеотводящие трубы заднего
экрана и фестона; 14 обогрев экрана факелом горящего топлива
На рис. 41 показана схема экранов барабанного парогенератора среднего давления с топкой для сжигания пылевидного топлива с сухим шлакоудалением. Экраны представляют собой ряд панелей с параллельно включенными вертикальными подъемными трубами, соединенными между собой коллекторами. Часть подъемных экранных труб введена непосредст-венно в барабан парогенератора. Отдельные секции экранов присоединены к барабану через коллектор и соединительные трубы.
Рис. 41. Схема экранов барабанного парогенератора среднего давления:
1 фронтовой экран; 2 опускные трубы; 3 потолочные трубы;
4 отводящие трубы; 5 фестон; 6 задний экран; 7 боковые
экраны; 8 разводка труб в месте расположения амбразур;
9 каркас; 10 холодная воронка; 11 опорный крюк; 12 полка;
13 плавник; 14 натяжной крюк
Вода из барабана подводится в нижние коллекторы экранов опускными трубами, вынесенными за пределы обмуровки топки. Каждая панель экранов имеет независимый контур циркуляции, что обеспечивает дифференцированное питание их водой в соответствии с тепловой нагрузкой каждой панели. В месте выхода продуктов сгорания из топки экран, расположенный на задней ее стенке, образует трехрядный фестон, наличие которого обеспечивает затвердевание расплавленных частиц золы, не охлажденных в топке, что исключает шлакование пароперегревателя, размещенного за топкой. Подъемные трубы экранов выполняются без горизонтальных участков, с минимальным количеством изгибов в местах расположения горелок, амбразур, лазов и пр.
Испарительные радиационные поверхности нагрева котла размещают в топочной камере (в радиационной шахте), а конвективные в послетопочных газоходах агрегата, т.е. в конвективной шахте. Радиационные поверхности нагрева представляют собой настенные экраны (рис. 42). Экраны, как правило, гладкотрубные, подвешены к каркасу агрегата (рис. 42а) для котлов всех систем с уравновешенной тягой (под разрежением). В энергетическом котлостроении широко применяются мембранные экраны из плавниковых труб или с вставками (рис. 42б, в).
Рис. 42. Типы экранирования:
а гладкотрубный экран; б с приваренными вставками;
в плавниковый; г гладкотрубный футерованный;
д мембранный футерованный; 1 труба; 2 слой огнеупорный;
3 слой тепловой изоляции; 4 обмуровка; 5 вставка стальная
прямоугольная; 6 плавниковая труба; 7 шипы специальные;
8 огнеупорная набивка (карборунд); 9 хромитовая масса
Мембранные конструкции, выполняемые в виде вертикальных, подвешенных газоплотных панелей, имеют ряд преимуществ: повышенное тепловое восприятие; отсутствие присосов паразитного воздуха; возможность осуществления наддува у агрегатов, т.е. создания в газоходе давления вместо разрежения; меньший на 10 - 15 % удельный расход металла; легкая и дешевая обмуровка; высокая заводская блочность поставки.
При таких конструкциях экранов вследствие передачи части тепла плавниками тыльной стороны труб и превращения их в активные поверхности нагрева обеспечивается повышенное тепловосприятие экранов и уменьшение на 15 - 20 % их удельного веса на единицу тепловосприятия по сравнению с обычными гладкотрубными экранами.
Газоплотные панели улучшают условия работы обмуровки топки и уменьшают вероятность интенсивного шлакования экранов. Однако свар-ные панели не допускают большой разности температур ∆t > 50 - 100 °С между смежными свариваемыми панелями или трубами. Иногда экраны выполняются двухсветными с подвеской их панелей вертикально внутри топочной камеры для форсирования теплосъема в топке.
При необходимости сжигания твердого топлива при высокой темпе-ратуре ( > 1500 °С) тепловосприятие экранов искусственно снижают, для чего экраны выполняют футерованными (ошипованными), (рис. 42г, д) к трубе приваривают стальные шипы диаметром 10-12 и высотой 15-20 мм, которые служат проводниками теплоты и каркасом для крепления карбидокремниевой огнеупорной набивной массы, в несколько раз уменьшающей тепловосприятие экрана, что необходимо для поддержания высокой температуры топки. Футерованные экраны устанавливают в зонах интенсивного горения топлива, в циклонных топках и в зажигательных поясах в районе горелок при сжигании слабореакционных топлив.
Конвективные испарительные элементы в мощных агрегатах высоких давлений практически отсутствуют из-за снижения теплоты парообразования. Для котлов средних, а особенно низких давлений, где теплота испарения значительна, конвективные испарительные поверхности изготавливаются в виде многотрубных пучков, которые при этом выполняют также функции экономайзеров, догревая воду от tп.в до t'. С ростом рабочего давления размеры пучков кипятильных труб уменьша-ются и при давлениях 10 МПа превращаются в небольшой разреженный фестонный пучок на выходе газов из топки. Наружный диаметр кипятильных труб 83 мм для средних давлений, 76 или 60 мм для высоких давлений и для агрегатов с принудительной циркуляцией от 42 до 32 мм.
8. ПАРОПЕРЕГРЕВАТЕЛИ
8.1. Назначение и классификация пароперегревателей
Пароперегреватели предназначаются для перегрева насыщенного пара, поступающего из испарительной системы парогенератора; в установках высокого давления они применяются также для дополнительного вторичного перегрева пара, частично отработавшего в цилиндре высокого давления турбины. Пароперегреватель является одним из основных теплоиспользующих элементов парогенератора и работает в наиболее тяжелых условиях.
Перегрев пара выше температуры насыщения необходим по соображениям повышения термического КПД электростанций и преду-преждения эрозии лопаточного аппарата водой из сконденсировавшегося на лопатках турбины пара. Перегрев пара осуществляется в трубчатых поверхностях, обычно радиационно-конвективного типа.
Поверхности нагрева перегревателя можно классифицировать исходя из способа передачи теплоты от дымовых газов: радиация (радиационные поверхности), конвекция (конвективные поверхности) и смешанная (радиационно-конвективные поверхности нагрева). Все эти поверхности показаны на схеме пароперегревателя котла высокого давления на рис. 43.
Основными конструктивными деталями пароперегревателя являются стальные, часто легированные, трубы и коллекторы. Трубы, как правило, имеют наружный диаметр 28 42 мм, промежуточного перегревателя до 60 мм.
Радиационная поверхность нагрева 2 пароперегревателя размещается обычно на стенах топки с расположением труб перегревателя между испарительными трубами экранов. На рис. 43 радиационно-конвективная поверхность представлена в виде U-образных ширм 3 с поперечным шагом 450 700 мм и потолочных панелей 6; а конвективные поверхности в виде змеевиковых пакетов 4 и 5.
Рис. 43. Основные конструктивные элементы пароперегревателей:
1 барабан; 2 двухходовая панель радиационного настенного топочного перегревателя; 3 подвесные вертикальные полурадиационные перегревательные ширмы на выходе из топки; 4 конвективный змеевиковый вертикальный перегреватель; 5 горизонтальный выходной конвективный пароперегреватель; 6 потолочная трубчатая панель перегревателя; 7 впрыскивающий пароохладитель; 8 выходной коллектор перегретого пара; 9 входной коллектор подвесных труб; 10 то же выходной; 11 подвесные трубы перегревателя; 12 опорная планка; 13 змеевики горизонтального перегревателя; 14 горелка
Различают перегреватели по способу крепления змеевиков: вертикальные 4 первичного перегревателя и горизонтальные 5 вторичного.
Вертикальные перегреватели крепятся к потолочному перекрытию котла обычно на подвесках из жаростойкой стали, причем последние часто размещают вне газохода.
Горизонтальные перегреватели крепят на подвесных трубках, охлаждаемых паром. Панели и пакеты змеевиков крепятся дистанционирующими вставками и подвесками из жароупорной стали и другими способами.
С повышением параметров пара роль и значение пароперегревателя возрастают. Это положение подтверждается зависимостью доли тепла, воспринимаемого пароперегревателем, от параметров пара, показанной на рис. 44. Так, при средних параметрах пара 3,93 МПа (40 кгс/см2) и 450° С тепло, затрачиваемое на перегрев пара, составляет 30,6 % тепла, затрачиваемого на испарение воды: при высоких параметрах 13,8 МПа и 570 °С его доля доходит до 92 %.
Металл поверхностей нагрева пароперегревателя имеет наибольшую по сравнению с другими теплоиспользующими поверхностями нагрева температуру, что обусловливается высокими температурами пара и большими удельными тепловыми нагрузками поверхностей нагрева.
По назначению пароперегреватели разделяют на первичные, в которых перегревается пар начального давления, и промежуточные, используемые для перегрева частично отработавшего пара.
Рис. 44. Структура тепловосприятия в поверхностях нагрева
8.2. Конвективные пароперегреватели
Конвективный пароперегреватель выполняется обычно из труб с внутренним диаметром 22 36 мм, образующих змеевики, ввальцованные или приваренные к круглым коллекторам. Для промежуточных пароперегревателей диаметр труб d < 54 мм. В газоходе змеевики паро-перегревателя располагаются вертикально или горизонтально. Змеевики выполняются одинарными (однорядные), сдвоенными (двухрядные) и строенными (трехрядные). Для большей компактности пароперегревателя и обеспечения необходимой скорости пара в мощных агрегатах применяют двух- и трехрядные змеевики. Скорость пара в трубах пароперегревателя выбирается по условиям температурного режима труб. В первичных пароперегревателях массовая скорость пара должна быть Wρ = 500-1200 кг/(м2∙с). Большие значения массовой скорости принимаются для последних по ходу пара ступеней пароперегревателя.
При указанных скоростях пара значение коэффициента теплоотдачи от стенки к пару составляет α2 > 2000 Вт/(м2·К), что обеспечивает достаточно хорошее охлаждение металла труб и его температуру в пределах °С. Для выравнивания температуры пара по отдельным змеевикам при температуре его более 450 °С пароперегреватель разделяют на последовательно включенные по пару части с перемешиванием пара между ними. Перемешивание пара обеспечивается в смесительных коллекторах, к которым присоединены змеевики отдельных частей пароперегревателя. Кроме того, осуществляют переброс пара из змеевиков, расположенных в одной части газохода, в змеевики другой части. Подводить пар к раздающему коллектору рекомендуется рядом труб по всей его длине (рис. 45).
Рис. 45. Схема пароперегревателя с перебросом
Для надежной работы пароперегревателя, помимо обеспечения достаточной скорости потока и равномерной температуры подогрева пара по параллельно включенным змеевикам, необходимо осуществить наиболее рациональную схему включения пароперегревателя по ходу по-тока продуктов сгорания. В зависимости от направления движения потоков пара и продуктов сгорания различают пароперегреватели прямоточные, противоточные и со смешанным направлением потоков (рис. 46).
а) б) в) г)
Рис. 46. Схемы движения пара и продуктов сгорания в конвективных
пароперегревателях:
а противоточное; б прямоточное; в, г смешанное
В противоточном пароперегревателе достигается наибольший возможный температурный напор между продуктами сгорания и паром, что уменьшает необходимую поверхность нагрева пароперегревателя и соответственно снижает расход на него металла. Недостатками противоточной схемы являются размещение последних по ходу пара частей змеевиков в области наиболее высоких температур продуктов сгорания и тяжелые температурные условия работы металла труб. При прямоточном пароперегревателе температурный напор меньше, чем при противоточном, однако условия работы металла труб лучше, так как части змеевиков с наибольшей температурой пара обогреваются продуктами сгорания, охлажденными на входных участках змеевиков.
Оптимальной является смешанная схема включения пароперегре-вателя, при которой большая и первая по ходу пара часть перегревателя выполняется противоточной, а завершение перегрева пара происходит во второй его части при прямотоке. При этом в части змеевиков, расположенных в области наибольшей тепловой нагрузки пароперегревателя, в начале газохода, будет умеренная температура пара, а завершение перегрева пара происходит при меньшей тепловой нагрузке. Соотношение противоточной и прямоточной частей пароперегревателя выбирается из условия одинаковых температур металла в начале и конце змеевика прямоточной части пароперегревателя. При выполнении пароперегревателя из обычной углеродистой стали температура пара в конце противоточной части пароперегревателя должна быть не выше 400 425 °С.
Первичный конвективный пароперегреватель обычно устанавливается в виде вертикальных змеевиков в горизонтальном газоходе между топкой и конвективной шахтой при температуре продуктов сгорания перед ним 900 - 1000 °С. Пароперегреватель для промежуточного перегрева пара представляет собой горизонтальные змеевики, расположенные в опускной конвективной шахте, причем начальная температура продуктов сгорания перед ним должна быть не выше 850 °С.
На рис. 43 показана схема пароперегревателя барабанного парогенератора высокого давления с конвективным пароперегревателем 4, выпол-ненным в виде вертикальных змеевиков. Каждый змеевик располагается в плоскости, перпендикулярной фронту парогенератора. Расположение змеевиков в плоскости, совпадающей с направлением движения продуктов сгорания, обеспечивает одинаковый обогрев всех змеевиков при значительном снижении температуры газов по глубине газохода. Наряду с этим устраняется влияние на тепловосприятие змеевиков неравномерных температур по высоте газохода, которое в нижней и верхней части змеевиков может различаться на 20 % и более. Однако расположение змеевиков в плоскости, перпендикулярной фронту парогенератора, при неодинаковой температуре продуктов сгорания по ширине газохода приводит к неравномерному тепловосприятию змеевиков по ширине газохода. В результате тепловая нагрузка отдельных змеевиков может превышать среднюю на 10 20 %. В этих условиях для обеспечения нормальной работы труб пароперегревателя его разделяют на части с перемешиванием пара в коллекторах до поступления его в последующую часть. Змеевики вертикального пароперегревателя обычно располагаются в коридорном порядке с целью обеспечения возможности легкой их очистки от наружных загрязнений и уменьшения опасности зашлаковывания. Змеевик пароперегревателя выполнен из двух параллельно включенных по пару труб, что позволяет разместить в габаритах газохода большую поверхность нагрева. Скорость продуктов сгорания в газоходе остается такой же, как и при одинарном змеевике, а скорость пара уменьшается в 2 раза.
На рис. 47 показано крепление вертикального пароперегревателя. Вертикальные змеевики подвешены к каркасу парогенератора за концы верхних петель, вынесенных из зоны обогрева. Подвеска змеевиков осуществлена с помощью хомутов, охватывающих трубки и подвешенных к крючку, укрепленному на балке каркаса. Для обеспечения определенного расстояния между змеевиками на нижние петли змеевиков укладывают дистанционирующие гребенки из жароупорного чугуна и скрепляют их при помощи хомутов из жаропрочной стали.
Рис. 47. Крепление вертикального конвективного пароперегревателя:
1 змеевик; 2 подвесные планки; 3 верхние изгибы труб;
4 потолочные трубы; 5 дистанционирующие гребенки;
6 опорные планки
8.3. Радиационные и ширмовые пароперегреватели
При высоких параметрах пара возникает необходимость размещения в топке радиационного или ширмового пароперегревателя. Радиационный пароперегреватель барабанных парогенераторов обычно устанавливают на потолке топки, а если этой поверхности недостаточно и на вертикальных ее стенках по всей их высоте (рис. 43). Обычно размещают пароперегреватель на стенках, на которых установлены горелки, чаще на фронтовой стенке.
Радиационные пароперегреватели работают с большими тепловыми нагрузками и поэтому температура металла их труб выше, чем у конвективных пароперегревателей, и превышает температуру пара на 100 - 150 °С. В связи с этим радиационные пароперегреватели обычно применяют для частичного перегрева пара, завершение которого осуществ-ляется в конвективном пароперегревателе. Надежное охлаждение труб достигается применением высокой скорости пара (до 30 м/с).
Ширмовый пароперегреватель представляет собой систему трубок, образующих плоские плотные пакеты с входными и выходными коллекторами. Ширмы размещаются вертикально или горизонтально в верхней части топки с расстоянием между коллекторами 700 - 1000 мм.
На рис. 48 показана конструкция ширм, при которой трубки ширм висят на коллекторах, подвешенных к каркасу парогенератора. Постоянство взаимного расположения ширм в топке обеспечивается соединением хомутами попарно выступающих соседних труб в месте их соприкосновения. Преимуществом вертикальных ширм является стекание налипшего на них шлака по мере утолщения его слоя.
В парогенераторах большой мощности тепловосприятие ширмовых пароперегревателей может составлять до 50 % всего тепла, необходимого для перегрева пара. Использование ширмовых пароперегревателей умень-шает поверхность нагрева настенных радиационных пароперегревателей и улучшает использование объема верхней части топочной камеры.
Рис. 48. Вертикальный ширмовый пароперегреватель:
а клинообразная форма низа ширмы; б горизонтальная
форма низа ширмы; 1 трубы ширмы; 2 камера;
3 обвязочные трубы; 4 хомут
8.4. Компоновка пароперегревателя
Имеется большое разнообразие конструкций пароперегревателя. На рис. 49 показаны наиболее часто применяемые схемы, конструкции и компоновки пароперегревателей.
Пароперегреватель парогенератора среднего давления с параметрами Р = 3,9 МПа, t = 440 °С обычно конвективный, с вертикальными змеевиками; он размещается за фестоном или за конвективным испарительным пучком (рис. 49а). Для защиты металла выходных змеевиков от чрезмерно высокой температуры пароперегреватель выполняется по смешанной противоточно-прямоточной схеме. Выравнивание температуры пара, поступающего в прямоточную часть пароперегревателя, осуществляется в выходном коллекторе противоточной части и во входном коллекторе прямоточной части. При наличии перед пароперегревателем только фестона неравномерность температур по ширине топки сохраняется и на входе продуктов сгорания в пароперегреватель. Повышенная местная температура продуктов сгорания может явиться причиной шлакования пароперегревателя, которое также возможно и при общем увеличении температур в топке. В целях уменьшения опасности зашлаковывания пароперегревателя применяется разрядка его передних рядов фестонирование.
Рис. 49. Схемы пароперегревателей:
а среднего давления; б высокого давления; в прямоточного котла;
1 барабан; 2 конвективный пароперегреватель; 3 ширмовый
пароперегреватель; 4 потолочный пароперегреватель;
5 настенный пароперегреватель; 6 экраны топочной камеры
В парогенераторах высокого давления с параметрами Р = 9,8 и 13,7 МПа и t = 510 и 540 °С пароперегреватель состоит из двух частей, конвективной и ширмовой (рис. 49б). Ширмовый пароперегреватель с вертикальными панелями размещен в верхней части топки перед фестоном. Конвективный пароперегреватель с вертикальными змеевиками размещается в горизонтальном газоходе за фестоном. Обе части пароперегревателя включаются по пару последовательно. При этом первым по ходу пара включается ширмовый пароперегреватель, работающий в более тяжелых условиях. Насыщенный пар из барабана проходит через небольшую поверхность радиационного пароперегрева-теля, расположенную на потолке топки, затем поступает в ширмовый пароперегреватель, а из него в конвективный пароперегреватель. Конвективный пароперегреватель включен по смешанной схеме, так что его выходные змеевики расположены в области умеренных температур продуктов сгорания. Описанные конструкция и компоновка пароперегре-вателя являются оптимальными для парогенераторов высокого давления и обеспечивают высокую надежность его работы. Пароперегреватель прямоточного котла (рис. 49в) состоит из радиационных настенного 5 и потолочного 4 пароперегревателей, полурадиационного ширмового 3 и двух ступеней конвективного 2 пароперегревателя. Все ступени включены последовательно, прямоточная часть конвективного пароперегревателя располагается в горизонтальном газоходе, а противоточная в конвективной шахте.
8.5. Регулирование температуры пара
В процессе эксплуатации парогенератора температура перегретого пара может меняться вследствие изменения удельного тепловосприятия пароперегревателя. Наибольшее влияние на температуру перегретого пара оказывает нагрузка парогенератора. Температура перегрева пара зависит также от температуры питательной воды, избытка воздуха в топке, шлакования и загрязнения экранов и пароперегревателя, от характеристик топлива.
В радиационном пароперегревателе с повышением нагрузки температура перегрева пара снижается, так как удельное тепловосприятие пароперегревателя возрастает в топке медленнее, чем увеличивается нагрузка.
В конвективном пароперегревателе количество проходящих через него продуктов сгорания увеличивается почти пропорционально увеличению нагрузки и одновременно повышается температура на выходе из топки. Соответственно повышаются коэффициент теплоотдачи в пароперегревателе и температурный напор. В результате удельное тепловосприятие пароперегревателя растет быстрее, чем нагрузка парогенератора, и температура перегрева пара возрастает.
В барабанных парогенераторах при снижении температуры питательной воды расход топлива и продуктов сгорания увеличивается, что повышает скорость газов в пароперегревателе и увеличивает коэффициент теплоотдачи. Следовательно, при неизменном расходе пара повышается температура его перегрева. В прямоточных парогенераторах снижение температуры питательной воды приводит к уменьшению поверхности нагрева зоны пароперегревателя, и температура перегрева пара снижается.
Увеличение избытка воздуха в топке уменьшает долю тепла, передаваемого радиацией в топке, и увеличивает объем и скорость продуктов сгорания, проходящих через пароперегреватель. В результате повышается температура перегрева пара.
Повышение влажности твердого топлива при неизменной паропроизводительности парогенератора увеличивает объем продуктов сгорания, проходящих через пароперегреватель, и его удельное тепловосприятие, за счет чего также повышается температура перегрева пара.
Шлакование экранов в топке вызывает повышение температуры продуктов сгорания перед пароперегревателем и температуры перегрева пара. Загрязнение пароперегревателя вызывает снижение температуры перегретого пара.
В прямоточных парогенераторах поверхность нагрева зоны пароперегревателей меняется и зависит от эксплуатационных факторов. Поддержанием соотношения расхода воды и топлива можно обеспечить неизменную температуру перегрева пара. Вместе с этим небольшое изменение расхода топлива вызывает существенное изменение температуры пара вследствие малой аккумулирующей способности парогенератора.
В соответствии с ГОСТ на турбины установлены допустимые отклонения температуры перегрева пара от номинального значения в пределах от +10 до 15 °С в парогенераторах среднего давления и от +5 до 10 °С в парогенераторах высокого давления. Применяемые системы и конструкции пароперегревателей в различных условиях эксплуатации не могут обеспечить поддержание температуры пара в допустимых пределах. В связи с этим энергетический парогенератор должен иметь устройство для регулирования температуры пара. При этом номинальная температура перегретого пара после первичного и промежуточного пароперегревателей должна обеспечиваться в диапазоне нагрузок парогенератора 70 100 % при допустимых изменениях всех других факторов, влияющих на температуру перегрева пара.
В современных парогенераторах применяются два способа регулирования температуры пара: паровое и газовое. При паровом регулировании температура пара поддерживается постоянной путем изменения степени его охлаждения или изменения энтальпия пара, поступающего в пароперегреватель или в отдельные его ступени. При газовом регулировании осуществляется воздействие на тепловосприятие пароперегревателя за счет изменения передачи тепла от газов к его поверхности нагрева.
Паровое регулирование температуры первичного пара, осуществляется либо в поверхностных пароохладителях, либо путем впрыска в поток перегретого пара чистого конденсата - впрыскивающие пароохладители.
Изменение температуры пара по тракту пароперегревателя при различных схемах включения пароохладителя показано на рис. 50.
Рис. 50. Изменение температуры пара в зависимости от размещения
пароохладителя:
а за пароперегревателем; б в рассечку; в на входе
насыщенного пара; г допустимая температура металла
труб; 1 пароохладитель
Установка пароохладителя на выходе пара из пароперегревателя не применяется, так как пароперегреватель при этом остается незащищенным от чрезмерно высокой температуры. Размещение пароохладителя на стороне насыщенного пара определяет значительное запаздывание системы регулирования температуры пара и в настоящее время применяется в агрегатах малой мощности. Как правило, пароохладители компонуются в рассечку, что обеспечивает меньшую инерционность регулирования вследствие сокращения длины пути пара после регулятора и времени, необходимого для изменения количества тепла, аккумулированного в пароперегревателе. В результате регулирование конечной температуры пара достигается почти в 2 раза быстрее, чем при установке пароохладителя на стороне насыщенного пара.
Поверхностные пароохладители. Поверхностный пароохлади-тель представляет собой трубчатый теплообменник. Внутри труб протекает охлаждающая вода, снаружи трубы омываются охлаждаемым паром (рис. 51).
Пароохладитель состоит из корпуса, внутри которого по всей длине размещаются змеевики из стальных труб диаметром 28x3 мм. К корпусу приварены штуцера длиной около 100 мм, к которым сваркой присоединены концы змеевиков пароперегревателя.
Рис. 51. Поверхностный пароохладитель (регулятор перегрева):
1 входной коллектор питательной воды; 2 выходной
коллектор воды; 3 крышка; 4 корпус; 5 подвод пара;
6 корыто; 7 диск опорный; 8 выход пара; 9 змеевики
охладителя; 10 кожух; 11 опора
В качестве охлаждающей воды используется обычно питательная вода. По потоку питательной воды пароохладитель может быть включен параллельно или последовательно с экономайзером (рис. 52).
При параллельной схеме включения пароохладителя (рис. 52а) с увеличением количества проходящей через него воды ухудшаются условия охлаждения экономайзера и уменьшается использование в нем тепла отходящих газов. В современных парогенераторах применяется включение пароохладителя последовательно с экономайзером (рис.52б).
В зависимости от температуры перегретого пара автоматически регулируется количество охлаждающей воды, подаваемой в змеевики пароохладителя. Подвод охлаждающей питательной воды производится с торца пароохладителя через входной коллектор, а отвод через выходной коллектор.
Для обеспечения необходимого диапазона регулирования пароохладитель парогенераторов с естественной и многократной принудительной циркуляцией должен обеспечивать возможность снижения энтальпии пара на Δiпо= 60-80 кДж/кг.
Рис. 52. Схемы включения поверхностного пароохладителя:
а параллельная; б последовательная; 1 барабан;
2 пароохладитель; 3 отвод охлаждающей воды;
4 водяной экономайзер
Температура воды на входе в экономайзер (по схеме рис. 52б) будет выше, чем у воды, поступающей в парогенератор
iпв.э. = iп.в. + Δiпо .
Количество питательной воды, проходящей через пароохладитель при полной его нагрузке, достигает 30 - 40 % общего ее расхода.
Впрыскивающие пароохладители. Впрыскивающий пароохла-дитель (рис. 53) устанавливается на прямом участке паропровода или в коллекторе длиной 6 - 7 м, при этом охлаждающая вода или конденсат вводится в поток пара через форсунку-распылитель с несколькими отверстиями диаметром 3 - 6 мм. Во избежание попадания относительно холодных струй воды на горячие стенки корпуса (коллектора) внутри него установлена разгруженная от давления защитная рубашка цилиндри-ческой формы (рис. 53а) или в виде сопла Вентури (рис. 53б). Размер защитной рубашки (3 - 5 м) определяется расчетной длиной участка испарения капель влаги.
Снижение температуры перегретого пара впрыскивающим пароохладителем достигается на некотором расстоянии от места ввода воды, так как на испарение капель конденсата и последующий перегрев образовавшегося из них пара требуется некоторый промежуток времени, а скорость потока пара в пароохладителе более 40 м/с. Уменьшение этого расстояния достигается более тонким распылением воды за счет уменьшения диаметра отверстий форсунки и увеличения перепада давления между впрыскиваемой водой и паром и, по возможности, увеличением разности температур пара и конденсата.
Количество пара, проходящего через ступень пароперегревателя после пароохладителя, увеличивается и равно, кг/ч:
,
где количество пара до пароохладителя, кг/ч; количество воды, поступающей в пароохладитель, кг/ч.
Разность называют удельным теплосъемом в пароохладителе, где и - энтальпия пара на входе и выходе пароохладителя, кДж/кг. Он составляет обычно (в целом на весь пароперегреватель) кДж/кг или в пересчете на изменение температуры °С.
Рис. 53. Впрыскивающий пароохладитель:
а с цилиндрической защитной рубашкой; б с соплом Вентури;
1 водяная форсунка; 2 штуцер; 3 корпус пароохладителя;
4 защитная рубашка; 5 сопло Вентури; 6 вход охлаждающей воды;
7 вход пара
Общее количество конденсата, поступающего в пароохладитель, определяется из условий обеспечения снижения энтальпии пара на 80 кДж/кг при работе парогенератора с полной нагрузкой и определяется по формуле
, кг/ч ,
где iп.п и энтальпии перегретого пара и конденсата, поступающего в пароохладитель, кДж/кг.
Следует учитывать, что по мере приближения пароохладителя к выходу пара из пароперегревателя ухудшаются температурные условия работы металла паропровода в месте впрыска. Это также является одной из причин применения двух-трех пароохладителей по тракту пара, что позволяет более тонко регулировать температуру пара и более надежно защищать отдельные ступени пароперегревателя.
Впрыскивающие пароохладители требовательны к качеству воды, используемой для впрыска.
В барабанных паровых котлах при сильно минерализованной питательной воде конденсат для впрыска получают в самом котле за счет конденсации части насыщенного пара, отбираемого из барабана котла. Такой способ получения качественной воды для впрыска называют схемой впрыска собственного конденсата (рис. 54).
Рис. 54. Схема регулирования перегрева пара впрыском собственного
конденсата:
1 барабан; 2 линия перелива; 3 конденсатор; 4 сборник
конденсата; 5 впрыскивающий пароохладитель;
6 экономайзер; 7 регулятор температуры пара
Конденсация насыщенного пара происходит за счет отвода теплоты к питательной воде, поступающей затем в экономайзер. Установленный в нижней части конденсатора сборник выдает конденсат на впрыски в пароохладители, а избыток его через линию перелива возвращается в барабан. Для увеличения перепада давления на впрыскивающем устройстве в этом случае рекомендуется защитную рубашку выполнять в форме сопла Вентури, обеспечивающей в узком ее сечении снижение статического давления пара (рис. 53,б).
Таким образом, сравнивая оба типа, следует отметить, что к недостаткам поверхностных пароохладителей относятся:
а к недостаткам впрыскивающих пароохладителей сложность конструкции, связанная с необходимостью установки блока для получения собственного конденсата.
Газовое регулирование температуры перегретого пара
Рециркуляция продуктов сгорания. Рециркуляция обеспечивается возвратом части газов Vрц из газохода после экономайзера с температурой = 350 450 °С в топочную камеру (рис. 55а).
Рис. 55. Организация рециркуляции дымовых газов в топку:
а общая схема; б изменение условной температуры вторично
перегретого пара от рециркуляции r при разных нагрузках
котла; 1 топка; 2 газомазутные горелки; 3, 4 конвективные
поверхности основного и промежуточного пароперегревателей;
5 экономайзер; 6 РВП (регенеративный воздухоподогреватель);
7 линия отбора газов на рециркуляцию; 8 дымосос рециркуляции
газов; 9 регулятор расхода; 10 короб горячего воздуха
Газы рециркуляции вводятся либо в кольцевой канал вокруг горелки, либо непосредственно в короб воздуха горелок. Поскольку абсолютное давление газов в топке выше, чем в месте отбора их на рециркуляцию, подача газов в топку возможна только специальным дымососом рециркуляции газов. В связи с этим увеличиваются затраты электроэнергии на перекачку газов.
Кроме того, возврат части газов в топку увеличивает общий объем газов в тракте от точки отбора газов и сопротивление этого тракта, отчего дополнительно увеличиваются затраты энергии на тягу в основных дымососах.
Доля рециркуляции газов:
,
где объем газов за местом их отбора на рециркуляцию, м3/кг. Доля рециркуляции изменяется обычно от 0,05 до 0,4 (или от 5 до 40 %) и увеличивается по мере снижения нагрузки, когда заметно уменьшается тепловосприятие конвективных поверхностей промежуточного перегревателя (рис. 55,б).
В результате ввода рециркулирующих газов происходит снижение температуры горения в топке, уменьшение тепловосприятия топочных экранов и увеличение тепловосприятия конвективных поверхностей. В итоге в среднем 1 % рециркуляции газов обеспечивает повышение температуры пара на 1,0 - 1,5 °С.
Рециркуляция дымовых газов в широком диапазоне применяется преимущественно на газомазутных котлах, на которых ввод инертных газов в зону горения практически не влияет на полноту сгорания топлива и поверхности которых не подвержены золовому износу при повышенной скорости газов в газоходах. При сжигании газа и особенно мазута доля рециркуляции составляет 5 10 %, что даже при полной нагрузке обеспечивает снижение теплового потока на экраны топочной камеры и оказывает положительную роль в отношении защиты экранов НРЧ от чрезмерно высоких тепловых нагрузок.
Введение инертных газов рециркуляции в ядро факела при сжигании твердых топлив допустимо только для реакционных топлив, в других случаях это приводит к затягиванию горения и возможному росту потерь теплоты с недожогом. При сжигании шлакующих топлив возможна рециркуляция газов в верхнюю часть топки. Ее цель снижение температуры газов перед ширмами, что уменьшает вероятность их шлакования.
Рециркуляции газов приводит к некоторому повышению температуры уходящих газов и, следовательно, потерь теплоты с ними. При этим несколько возрастет расход топлива по сравнению с режимом без рециркуляции.
Байпасирование продуктов сгорания. Регулирование температуры вторично перегреваемого пара байпасированием продуктов сгорания (рис. 56) можно осуществить двумя способами: либо использованием холостого газохода между пакетами пароперегревателя (рис. 56а), либо перераспределением продуктов сгорания по параллельным газоходам, в одном из которых расположена поверхность перегревателя (так называемый «расщепленный газоход») (рис. 56,б).
Рис. 56. Схемы регулирования температуры пара байпасированием
продуктов сгорания:
а через холостой газоход; б распределением газов по газоходам:
1 пакеты промежуточного перегревателя; 2 экономайзер;
3 регулирующая заслонка; в с разделением газоходов:
1 промперегреватель; 2 экономайзер; 3 основной воздухоподо-
греватель; 4 предвключенный воздухоподогреватель; 5 дымосос
9. ЭКОНОМАЙЗЕРЫ
Водяные экономайзеры служат для подогрева питательной воды и снижения температуры уходящих газов. Располагаются в одну или две ступени в конвективной шахте топки.
Экономайзеры различаются по:
- материалу, из которого изготовлены: чугунные и стальные;
- типу труб: с гладкими трубами и ребристыми;
- кипящего и некипящего типа.
В экономайзерах некипящего типа подогрев воды происходит только до температуры кипения. В экономайзерах кипящего типа происходит частичное парообразование. Температура питательной воды на выходе из экономайзера равна температуре насыщения (кипения), соответствующей давлению в экономайзере. Питательная вода в экономайзере этого типа может содержать 15-20 % пара.
Чугунные экономайзеры (рис. 57) комплектуются с котлами, давление в которых не превышает 2,4 МПа. Эти экономайзеры бывают только некипящего типа. Температура воды на входе в экономайзер должна быть на 5 10 °С выше температуры точки росы отходящих газов, а на выходе из экономайзера на 20 °С ниже температуры насыщения. Основное преимущество экономайзера такого типа повышение стойкости к коррозии. Они изготавливаются из чугунных ребристых труб с внутренним диаметром 60 мм. Ребра квадратные 150×150 мм. Длина труб 2 3 м.
Стальные экономайзеры применяются во всем диапазоне давлений. В целях интенсификации конвективного теплообмена водяной экономайзер выполняется из труб малого диаметра dн = 28-38 мм при толщине стенки 2,5 - 3,5 мм. Концы змеевиков экономайзера объединя-ются коллекторами, вынесенными из области газового обогрева. В мощных парогенераторах с целью уменьшения количества трубок, проходящих через обмуровку экономайзера, змеевики объединяются в соединительных патрубках, которые пропускаются через обмуровку к коллекторам. Иногда коллекторы, объединяющие змеевики, размещаются в газоходе экономайзера и одновременно служат для его опоры.
Трубки экономайзера обычно располагаются в шахматном порядке, что обеспечивает большую эффективность теплообмена по сравнению с коридорным расположением труб, и соответственное уменьшение габаритов экономайзера. Стальной гладкотрубный водяной экономайзер с параллельным включением ряда змеевиков изображен на рис. 58. В целях уменьшения габаритов, занимаемых водяным экономайзером, в парогенераторах большой мощности увеличивается число рядов параллельно включенных змеевиков, предусматривая два входных коллектора, расположенных на противоположных стенках конвективной шахты. Встречные змеевики смещены по глубине газохода с таким расчетом, чтобы была выдержана оптимальная величина отношения S2/dн .
Рис. 57. Общий вид чугунного экономайзера ВТИ:
а - общий вид; б ребристая труба; 1 ребристая труба; 2, 6 вентили для питания котла водой через или помимо экономайзера; 4 вентиль на входе воды в экономайзер; 5 обратный клапан; 7 соединительный калач; 8 обдувочное устройство
Рис. 58. Водяной экономайзер с параллельным включением ряда змеевиков:
1 входная камера; 2 выходная камера; 3 змеевики экономайзера
В другой конструкции малый продольный шаг труб достигается лирообразным изгибом труб (рис. 59). Крепление змеевиков водяного экономайзера осуществляется путем их установки на опорных или подвесных конструкциях.
К коллекторам змеевики присоединяются вальцовкой или сваркой через промежуточные штуцера. Выходной коллектор экономайзера присоединяется к барабану парогенератора несколькими водоперепуск-ными трубами, в которых обеспечивается восходящий поток с целью свободного выхода с водой газов и образовавшегося в экономайзере пара в барабан. Для удобства очистки поверхностей нагрева от наружных загрязнений и его ремонта экономайзер разделяют на пакеты высотой до 1 м. Разрывы между пакетами должны быть 550 600 мм, а между пакетами экономайзера и воздухоподогревателем не менее 800 мм.
Рис. 59. Присоединение к коллекторам змеевиков экономайзера:
а с использованием развилок; б с разделением на два пучка;
в при двух параллельных коллекторах; г и д с использованием
секционных камер
Змеевики экономайзера могут располагаться перпендикулярно или параллельно фронту парогенератора (рис. 60). В первом случае длина змеевиков невелика, что облегчает их крепление. Во втором случае резко уменьшается число параллельно включенных змеевиков, но усложняется их крепление. В парогенераторах небольшой мощности применяется одностороннее расположение коллекторов. В парогенераторах с развитым фронтом экономайзеры выполняются двусторонними, симметричными, с расположением коллекторов с двух боковых сторон конвективной шахты.
Скорость воды в водяном экономайзере принимается исходя из условий предотвращения в них кислородной коррозии и расслоения пароводяной смеси. При малой скорости воды остающийся в ней кислород задерживается в местах шероховатости верхней образующей трубок и вызывает язвенную коррозию, которая распространяется на большую толщину стенки трубки вплоть до образования свищей. Расслоение пароводяной смеси при малой скорости потока вызывает ухудшение условий их охлаждения и перегрев металла трубок.
Рис. 60. Компоновка экономайзера:
а перпендикулярное фронту расположение змеевиков;
б параллельное фронту расположение змеевиков;
в, г двустороннее параллельное фронту расположение змеевиков;
д защита труб от износа; 1 барабан; 2 водоперепускные трубы;
3 экономайзер; 4 входные коллекторы; 5 перекидные трубы
В целях повышения эффективности теплообмена и компактности экономайзеров мощных парогенераторов к трубкам приваривают плавники или экономайзеры выполняются из плавниковых трубок (рис. 61); при этом объем, занимаемый водяным экономайзером, уменьшается на 20 - 25 %.
Рис. 61. Плавниковые трубы экономайзеров:
а с приваренными ребрами; б из плавниковых труб
10. ВОЗДУХОПОДОГРЕВАТЕЛИ
Для подогрева воздуха применяются два типа воздухоподогревателей: рекуперативные и регенеративные.
В рекуперативном воздухоподогревателе тепло продуктов сгорания передается непрерывно воздуху через стенку, разделяющую теплообменивающиеся среды. В регенеративном воздухоподогревателе тепло передается металлической насадкой, которая периодически нагревается продуктами сгорания, а затем отдает аккумулированное в ней тепло нагреваемому воздуху. Воздухоподогреватели воспринимают 7 - 15 % тепла, отдаваемого продуктам сгорания.
Рекуперативный воздухоподогреватель. Преимущественно применяются трубчатые рекуперативные воздухоподогреватели с вертикальным расположением труб, при этом воздух омывает их снаружи поперечным потоком (рис. 62). Воздухоподогреватели изготовляются из стальных труб с наружным диаметром 30 40 мм при толщине стенки 1,2 - 1,5 мм. Концы труб привариваются к трубным доскам и располагаются в шахматном порядке. Иногда для увеличения рабочего ресурса труб при сжигании сернистых мазутов устанавливаются эмалированные или стеклянные трубки взамен стальных.
Для получения необходимой скорости перекрестного тока воздуха трубную систему по высоте разделяют промежуточными досками на несколько ходов. Для перепуска воздуха из одного хода в другой устанавливаются короба. Воздухоподогреватель снаружи имеет стальную обшивку и опирается нижней трубной доской на раму, связанную с каркасом парогенератора. Трубная система расширяется вверх, и верхняя трубная доска соединяется с газоходом линзовым компенсатором, что обеспечивает свободное термическое расширение воздухоподогревателя. Воздухоподогреватель выполняется из ряда секций, удобных для монтажа и транспортировки, которые устанавливаются рядом, заполняя все сечение газохода.
Компенсация температурного расширения воздухоподогревателя осуществляется с помощью линзовых или набивных компенсаторов (рис. 63).
При сжигании многозольного топлива для предохранения концов труб от абразивного износа в них устанавливаются трубки длиной 150 - 200 мм. При температуре продуктов сгорания более 500 °С верхние трубные доски покрывают теплоизоляционной массой.
Применяются однопоточная и двухпоточная схемы подвода воздуха в воздухоподогреватель. В воздухоподогревателях парогенераторов малой и средней мощности применяется однопоточная схема подвода воздуха по его широкой стороне.
Рис. 62. Трубчатый воздухоподогреватель:
1 стальные трубы 40×1,5 мм; 2, 6 верхняя и нижняя трубные
доски толщиной 20 - 25 мм; 3 компенсатор; 4 воздухоперепускной
короб; 5 промежуточная трубная доска; 7, 8 опорные рамы и
колонны
Рис. 63. Компенсаторы тепловых расширений воздухоподогревателя:
а линзовые компенсаторы; б набивные компенсаторы;
1 трубная доска; 2 компенсатор расширения труб относительно
короба воздуха; 3 компенсатор расширения короба относительно
каркаса; 4 каркас короба; 5 камера с крошкой шамота и песка;
6 лист уплотнения
В агрегатах большой мощности высота одного воздушного хода достигает больших размеров, и число ходов воздуха в каждой ступени воздухоподогревателя уменьшается. Двухпоточная схема подвода воздуха позволяет уменьшать высоту хода и увеличивать число ходов при меньшем в них числе рядов трубок и, соответственно, уменьшить сопротивление по ходу воздуха и повысить температурный напор в воздухоподогревателе. Применение двухпоточной схемы подвода воздуха и труб малого диаметра с малым шагом позволяет создать достаточно компактные воздухоподогреватели.
Различные схемы компоновки трубчатых воздухоподогревателей показаны на рис. 64.
Рис. 64. Схемы компоновки воздухоподогревателя:
а двухпоточный по воздуху при двустороннем его подводе;
б двухпоточный при одностороннем подводе воздуха;
в многопоточный по воздуху; 1 вход холодного воздуха;
2 выход горячего воздуха
Трубчатые воздухоподогреватели просты по конструкции, надежны в работе и более плотны, чем другие системы воздухоподогревателей. Недостатком трубчатых воздухоподогревателей являются относительно большие удельный расход металла и удельный объем.
Регенеративный воздухоподогреватель представляет собой вращающийся барабан с набивкой из тонких стальных гофрированных или плоских листов, образующих каналы малого эквивалентного диаметра (dэкв = 4 - 5 мм) для прохода воздуха и продуктов сгорания. Набивкой, которая служит поверхностью теплообмена, заполняется пустотелый ротор, разделенный сплошными перегородками на изолированные друг от друга секторы (рис. 65).
Рис. 65. Регенеративный воздухоподогреватель:
1 вал ротора; 2 подшипники; 3 электродвигатель;
4 набивки; 5 наружный кожух; 6, 7 радиальное и
периферийное уплотнения; 8 утечка воздуха через уплотнения
Ротор медленно с частотой вращения 2 - 6 об/мин вращается в неподвижном корпусе. Корпус разделен на две части секторными плитами. В одну из них через горловину поступают продукты сгорания, в другую воздух. Движение потоков газа и воздуха раздельное и непрерывное. При непрерывном вращении ротора его металлическая набивка попеременно проходит через эти потоки. Сначала тепло газов аккумулируется, а затем отдается воздуху. Этот процесс повторяется, и в итоге организуется непрерывный нагрев воздуха. Взаимное движение потоков продуктов сгорания и воздуха противоточное. Поверхность нагрева 1 м3 набивки составляет 200 - 250 м2. Длительность пребывания набивки в газовом и воздушном потоках менее 30 с. Толщина листов набивки 0,6 - 1 мм. Мощность электродвигателя для привода ротора воздухоподогревателя 3 - 5 кВт. Регенеративные воздухоподогреватели указанной конструкции отличаются меньшими габаритными размерами.
Недостатками регенеративных воздухоподогревателей являются повышенный переток воздуха в газовую среду (до 10 %), что увеличивает потерю тепла с уходящими газами, а также наличие вращающихся элементов и системы водяного охлаждения вала ротора и подшипников. Вследствие коробления набивки подогрев воздуха в регенеративных воздухоподогревателях ограничен температурой 300 - 350 °С.
При необходимости более высокого подогрева воздуха воздухоподогреватель выполняют комбинированным из регенеративного воздухоподогревателя с подогревом в нем воздуха до 250 - 300 °С и трубчатого, в котором завершается подогрев воздуха до более высокой температуры (рис. 66).
Рис. 66. Схема установки комбинированного рекуперативного и
регенеративного воздухоподогревателя:
1 топка; 2 экраны топочной камеры; 3 фестон; 4 ширмовый
пароперегреватель; 5 конвективный пароперегреватель; 6 водяной
экономайзер I ступени; 7 то же II ступени; 8 регенеративный
воздухоподогреватель I ступени; 9 рекуперативный трубчатый
воздухоподогреватель II ступени
Выбор температуры горячего воздуха. Температура горячего воздуха при сжигании твердых топлив определяется не только характеристиками топлива, но и организацией его сжигания.
Количество поступающего в зону горения воздуха по массе в несколько раз превосходит массу топлива. Недостаточный подогрев воздуха может затормозить воспламенение топлива и привести к значительному недожогу. Так, для топлив с относительно малым выходом летучих веществ (Vdaf < 25 %) раннее воспламенение и низкий механический недожог достигаются при температуре горячего воздуха не ниже 300 °С.
Более низкий подогрев воздуха (250-300 °С) по условиям горения допустим для топлив с высоким выходом летучих (Vdaf > 25 %). Исключение составляют сильновлажные топлива, требующие использо-вания для работы в пылесистеме высокотемпературного сушильного агента. Последний можно получить путем смешения части горячих топочных газов с воздухом. Тогда допустимо некоторое снижение подогрева воздуха в воздухоподогревателях. Так, при влажности топлива ≤ 2 (%·кг)/МДж температура горячего воздуха может быть принята 270-300 °С, а при ≥ 5 (%·кг)/МДж 400 °С.
Обеспечение жидкого шлакоудаления требует высокого подогрева воздуха (не ниже 350 °С). Уровень его подогрева зависит от выхода летучих, температуры плавкости золы и влажности сжигаемого топлива.
Сжигание мазута и природного газа допускает умеренный подогрев воздуха, при котором исключается недогорание топлива в высоконапря-женных топках. Экономически выгодно подогревать воздух выше температуры питательной воды, поступающей в экономайзер.
При температурах горячего воздуха выше 300 °С компоновка воздухоподогревателя выполняется двухступенчатой, в рассечку с водяным экономайзером. В табл.2 приведены рекомендуемые значения температуры горячего воздуха для различных топлив.
Таблица 2
Температура подогрева воздуха
Характеристика топочного устройства |
Характеристика топлива |
Рекомендуемая температура tгв , °С |
Топки с твердым шлакоудалением |
Сухое топливо, Wrпр≤ 0,7(%·кг)/МДж: Vdaf ≤ 25 % Vdaf > 25 % Влажное топливо, Vdaf > 25%: Wrпр = 0,7 1,5 % Wrпр = 1,5 5 % Wrпр > 5 % |
300 - 350 250 - 300 270 - 320 320 - 350 350 - 400 |
Топки с жидким шлакоудалением |
Сухое топливо, Wrпр≤ 0,7 (%·кг)/МДж: Vdaf ≤ 25 % Vdaf > 25 % Влажное топливо |
380-400 350-380 400-450 |
Открытые камерные топки |
Мазут, природный газ |
250-300 |
11. КАРКАС И ОБМУРОВКА КОТЛОВ
Каркас. Каркасом котла называют металлическую конструкцию, которая поддерживает барабан, поверхности нагрева, обмуровку, лестницы и площадки, а также вспомогательные элементы агрегата и передает их вес на фундамент. Котлы низкого давления и малой производительности устанавливаются на раму, закрепленную непосредственно на фундаменте, или кирпичную обмуровку, и тогда основным назначением каркаса является придание обмуровке парогенератора большей устойчивости и прочности. Каркас современного котла является сложной металлической конструкцией, и на его изготовление затрачивается большое количество металла. В котлах высокого давления масса каркаса составляет 20 - 25 % всей массы металла котла, или 0,8 - 1,2 т на тонну его часовой производительности. Каркас представляет собой рамную конструкцию, выполненную из стандартных металлических профилей, изготовленных из малоуглеродистой стали марки Ст.3, и состоит из ряда основных и вспомогательных колонн и соединяющих их горизонтальных балок, воспринимающих нагрузку от барабанов, трубной системы поверхностей нагрева, а также горизонтальных и диагональных балок, служащих для придания прочности и жесткости системе каркаса.
На рис. 67 показана схема каркаса барабанного котла высокого давления.
Колонны выполняются обычно из двух стальных швеллеров или двутавровых балок, жестко соединенных между собой накладками из листовой стали; колонны передают на фундамент значительные сосредоточенные нагрузки сотни тонн. Во избежание чрезмерных удельных давлений на фундамент колонны снабжаются башмаками (рис. 68), выполненными из листовой стали и угольников. Опорная плоскость башмаков рассчитывается на допускаемое для материала фундамента напряжение сжатия и закрепляется в фундаменте болтами или заделывается в нем. Основные горизонтальные балки привариваются к колоннам и образуют вместе с ними рамную систему. Несущие и распорные горизонтальные балки выполняются из стальных швеллеров, двутавров или угольников.
Когда сортамент прокатных профилей не обеспечивает необходимой прочности колонн и балок, их делают в виде сварной конструкции, состав- ленной из ряда профилей и листовой стали. Частью каркаса являются помосты, необходимые для обслуживания котла, которые работают как горизонтальные фермы и увеличивают жесткость каркаса. Помосты выполняются из рам прокатных профилей и приваренных к ним листов рифленой стали. Лестницы между помостами выполняются из стальных полос, между которыми приварены ступени. Угол наклона лестниц не должен превышать 50° к горизонту, а их ширина должна быть не менее 600 мм.
Рис. 67. Схема каркаса котла:
1 колонны; 2 несущие потолочные балки; 3 ферма;
4 ригель; 5 стойки
Каркас рассчитывается как рамная конструкция, работающая под статической нагрузкой от веса элементов парогенератора и дополнительных термических напряжений, возникающих под влиянием неравномерного нагрева деталей каркаса и приваренных к ним конструкций. В целях предотвращения перегрева элементов каркаса его колонны, горизонтальные балки и фермы располагаются обычно за пределами обмуровки. При установке парогенератора вне здания должна учитываться и ветровая нагрузка на поверхности, ограничивающая парогенератор и передаваемая на каркас. Барабаны котла, коллекторы экранов пароперегревателей и водяных экономайзеров при нагреве удлиняются, и для предупреждения возникновения в них и в элементах каркаса, на которых они закрепляются, больших температурных напряжений необходимо предусмотреть возмож-ность свободного их расширения. С этой целью барабаны устанавливаются на специальных подвижных опорах, закрепленных на горизонтальных балках каркаса, или подвешиваются к этим балкам. Барабаны котлов средней и большой мощности обычно устанавливаются на двух подвижных опорах. Конструкция такой опоры показана на рис. 69.
При большой длине барабана, когда при установке на двух опорах прогиб его больше 10 мм, барабан подвешивают к каркасу в нескольких статически наивыгоднейших точках. Коллекторы экранов, пароперегревателей и водяных экономайзеров крепятся к каркасу шарнирными подвесками, а при малой их длине свободно опираются на скользящие опоры, закрепленные на каркасе.
Назначение и требования к обмуровке. Обмуровкой котла называют систему ограждений, отделяющих топочную камеру и газоходы от окружающей среды. Основным назначением обмуровки являются направление потока продуктов сгорания, а также тепловая и гидравлическая его изоляция от окружающей среды. Тепловая изоляция необходима для уменьшения потерь теплоты в окружающую среду и для обеспечения допустимой температуры наружной поверхности обмуровки, которая по условиям безопасной работы персонала не должна превышать 55 °С. Гидравлическая изоляция необходима для предотвращения присосов холодного воздуха в газоходы или выбивания продуктов сгорания при разнице давлений в газоходах и снаружи, которая имеет место при работе котла с разрежением или с давлением в газовом тракте.
Элементы обмуровки котла работают в различных условиях. Наружная поверхность обмуровки имеет низкую и относительно постоянную температуру, внутренняя ее поверхность находится в области высокой и переменной температуры, снижающейся по ходу потока газов. По направлению потока газов разрежение в газоходах увеличивается, а давление при работе парогенератора под наддувом уменьшается. Различны и нагрузки на элементы обмуровки от ее веса и внутренних напряжений, возникающих при неодинаковых температур-ных удлинениях ее частей.
В наиболее тяжелых условиях находится внутренняя часть обмуровки топки, подвергающаяся воздействию высокой температуры более 1600 °С, а при сжигании твердого топлива также химическому и механическому воздействию шлака и золы. В результате взаимодействия материала обмуровки со шлаком, а также механического износа шлаком и золой происходит разрушение обмуровки.
Конструкция обмуровки. Соответственно назначению и условиям работы к обмуровке предъявляются следующие основные требования: малая теплопроводность, герметичность, механическая прочность и термическая устойчивость. Кроме того, конструкция обмуровки должна быть простой и не требовать больших затрат труда и времени на ее изготовление и монтаж.
Ранее обмуровка парогенераторов выполнялась только из красного и огнеупорного кирпича, из которого выкладывались ее стены и своды, скрепляемые стальными балками и стяжными болтами. Обмуровка современных парогенераторов представляет собой комбинированную систему, выполненную из кирпича, огнеупорных плит, изоляционных материалов, металлических скрепляющих частей, уплотняющих обмазок, металлической обшивки и других элементов. Конструкция обмуровки изменяется и совершенствуется по мере развития парогенераторо-строения и производства огнеупорных изделий и изоляционных материалов.
Обмуровки в зависимости от конструкции и способа крепления могут быть разделены на следующие типы (рис. 70):
а) стеновая кирпичная обмуровка, опирающаяся непосредственно на фундамент;
б) облегченная обмуровка, выполняемая из огнеупорного и диатомитового кирпича, изоляционных плит и стальной обшивки, закрепленная на каркасе парогенератора с помощью металлических конструкций;
в) легкая обмуровка, выполняемая из шамотобетонных или жаростойких бетонных плит, теплоизоляционных плит и металлической обшивки или уплотнительной обмазки.
Показатели указанных типов обмуровок характеризуются следующими данными:
Стеновая обмуровка |
Облегченная обмуровка |
Легкая обмуровка |
|
Общая толщина, мм |
500-600 |
200-500 |
100-200 |
Удельная масса, кг/м2 |
600-1000 |
200-600 |
100-200 |
Стеновая обмуровка применяется для парогенераторов малой мощности при высоте стен не более 12 м. При большей высоте обмуровка становится механически ненадежной. В этом случае она выполняется в виде наружной облицовки из красного кирпича толщиной 1-1,5 кирпича и внутренней футеровки из огнеупорного кирпича, которая в области неэкранированной топки должна иметь толщину 1-1,5 кирпича, а в газоходах с температурой 600-700 °С не менее 0,5 кирпича (рис. 70а).
При относительно больших размерах топочной камеры и высокой температуре ее стенок для предотвращения нарушения связи между слоями огнеупорного и красного кирпича кладку разделяют на участки и разгружают футеровку по высоте (рис. 70б).
Для уменьшения потерь тепла через обмуровку между облицовкой и футеровкой иногда оставляют каналы, которые засыпают сыпучим изоляционным материалом инфузорной землей, молотым шлаком и т.п. Для предупреждения возникновения разрушающих кладку внутренних температурных напряжений, возникающих в условиях ее неравномерного нагрева, в стенах кладки предусматриваются температурные швы, заполненные асбестовым шнуром, которые обеспечивают возможность ее свободного расширения.
Облегченные обмуровки ранее применялись в парогенераторах средней мощности. Конструкция облегченной обмуровки показана на рис. 70в. Обмуровка выполняется из двух или трех слоев различных материалов общей толщиной до 500 мм. Внутренний огнеупорный слой футеровка имеет толщину 113 мм, а при малой степени экранирования 230 мм, средний изоляционный слой из диатомитового кирпича 113 мм, облицовочный слой из совелитовых плит 65-150 мм. Средний изоляционный слой часто выполняется из совелитовых плит толщиной 100 мм, заменяющих диатомитовый кирпич. Уменьшение толщины и массы обмуровки позволило опирать ее непосредственно на каркас, в результате чего стало возможным выполнять ее любой высоты, устанавливая через 1-1,5 м разгрузочные пояса. При этом вся стенка делится на ряд ярусов, каждый из которых опирается на чугунные или стальные кронштейны, укрепленные на каркасе парогенератора. Для обеспечения возможности свободного расширения между кронштейном и кладкой предусматриваются горизонтальные температурные швы, заполненные асбестовым шнуром.
В некоторых конструкциях для предотвращения обрушений футеровки применяются специальные крепления вертикальных ярусов к каркасу с помощью чугунных крюков. Снаружи обмуровка обшивается стальными листами или защищается газонепроницаемой штукатуркой (рис. 70 г).
Рис. 70. Конструкции обмуровок вертикальных стен:
а, б массивная, свободно стоящая: 1 разгрузочные пояса;
2 футеровка; в облегченная накаркасная: 1 стальные или
чугунные кронштейны; 2 фасонный шамотный кирпич;
3 горизонтальный температурный шов; 4 фасонный шамотный
кирпич; 5 шамотный кирпич; 6 фасонный шамотный кирпич;
7 чугунный крюк; 8 горизонтальные трубы, закрепленные на
каркасе; 9 легковесный теплоизолирующий кирпич или
теплоизоляционная плита; 10 наружная металлическая обшивка;
11 разгрузочные и притягивающие пояса; г щитовая обмуровка:
1 первый слой щита из огнеупорного бетона; 2 стальная сетка;
3, 4 термоизолирующие плиты; 5 газоплотная обмазка
Легкая обмуровка накаркасного типа выполняется из щитов, состоящих из двух слоев теплоизолирующих материалов, защищенных со стороны омывающих их газов слоем жароупорного бетона. Металлическая рамка щитов такой обмуровки крепится к каркасу парогенератора. Применяются также плиты размером 1000х500 мм и 1000х1000 м из известково-кремнеземистых материалов, покрытых со стороны газов жароупорным шамотобетоном. Плиты, предназначенные для установки в незащищенных трубами местах с более высокой температурой, имеют большую толщину и массу. Для передачи их массы на каркас предусматриваются дополнительно закладные чугунные кронштейны. Накаркасная обмуровка применяется преимущественно в области пароперегревателей, газоповоротных камер и конвективной шахты парогенераторов большой мощности. В топках накаркасную обмуровку применяют на прямых стенках. Достоинствами накаркасной конструкции обмуровки являются ее небольшая масса и существенное облегчение монтажных работ. Однако при такой обмуровке затрудняются ее ремонт и обеспечение плотности.
Натрубная обмуровка (рис. 71) выполняется в виде отдельных слоев, последовательно наносимых в пластичном состоянии на трубы экранов и других поверхностей нагрева или в виде плит-панелей с огнеупорным и теплоизоляционным слоями, устанавливаемых на балки жесткости, закрепленные на трубах.
В этом случае панели изготавливаются на заводе, а жароупорный слой может быть нанесен в пластичном состоянии на трубы экрана вручную. Для натрубной обмуровки топочной камеры несущими элементами являются трубы экранов, и в результате тепловых удлинений обмуровка перемещается вместе с ними.
Разновидностью натрубной обмуровки являются применяемые в топке зажигательные пояса.
Рис. 71. Натрубная обмуровка:
1 слой хромитовой массы; 2 стальная сетка;
3,4 термоизолирующие плиты; 5 газоплотная обмазка
12. ТЯГОДУТЬЕВЫЕ МАШИНЫ
Задача тягодутьевых машин отсос дымовых газов и подача воздуха для обеспечения нормальной работы котла на всех нагрузках. Большое значение имеет обеспечение надежности их работы, ибо лопатки дымососов подвергаются износу летучей золой. Большое значение имеет также экономичная работа тягодутьевых машин. Так, от рациональной аэродинамики ротора зависит КПД (50 90%), а, следовательно, и расход на собственные нужды котельной установки.
В тягодутьевых установках применяются следующий машины: центробежные (радиальные) вентиляторы с лопатками, загнутыми вперед (рис. 72а), или с лопатками, загнутыми назад (рис. 72б), и осевые машины (рис. 73).
Вентиляторы и дымососы с лопатками, загнутыми вперед, нашли широкое применение благодаря тому, что даже при умеренных значениях окружной скорости они позволяют создать достаточно высокие давления. Однако эти машины имеют невысокий КПД (6570%). Такие тягодутьевые машины распространены в котельных установках относительно небольшой мощности.
Центробежные тягодутьевые машины с лопатками, загнутыми назад, являются наиболее совершенными КПД = 85÷90%. Однако повышение давления получается в 2 2,5 раза меньшим, чем у машин с лопатками, загнутыми вперед.
Поскольку развиваемое давление, пропорционально квадрату расхода на выходе из рабочего колеса, то приходится применять более высокую окружную скорость, что требует весьма тщательной балансировки ротора. Запыленность газового потока отрицательно сказывается на работе рабочего колеса.
Рис. 72. Центробежный (радиальный) вентилятор:
а лопатки, загнутые вперед; б лопатки, загнутые назад
Для котлов к энергоблокам мощностью 300 МВт и выше в качестве дымососов получили распространение осевые машины. В них газ движется вдоль оси.
Рис. 73. Осевая тягодутьевая машина
Осевые тягодутьёвые машины имеют достаточно высокие КПД (около 65%). Коэффициент повышения давления на ступень невысокий, поэтому применяют несколько ступеней. На электростанциях работают двухступенчатые осевые дымососы. В связи с повышенной окружной скоростью осевые машины имеют высокий уровень шума. Большая доля динамического давления создает определенные трудности превращения его в статическое. Малый радиальный зазор между лопатками и кожухом создает дополнительные требования к монтажу и эксплуатации.
Выбор дымососов и вентиляторов
Выбор вентилятора или дымососа сводится к подбору машины, обеспечивающей с соответствующими запасами требуемые производительность и давление и потребляющей при принятом способе регулирования наименьшее количество энергии при эксплуатации.
Аэродинамический расчет ведется на номинальную нагрузку котла. Для определения расчетного режима, учитывающего различные эксплуатационные отклонения от расчетных условий, а также регламентированные отклонения гарантийных данных заводов-изготовителей вентиляторов и дымососов, принимаются коэффициенты запаса.
Коэффициенты запаса для дымососов и вентиляторов принимается: по производительности β1=1,05, по давлению β2=1,1.
Таким образом, расчетная производительность машины определяется по формуле:
, м3/с ,
где V - расход газов или воздуха при номинальной нагрузке котла, м3/с; при двухкорпусных (двухпоточных) котлах с несимметричной нагрузкой величина V принимается с учетом имеющейся неравномерности работы корпусов по топливу согласно тепловому расчету; hбар - барометрическое давление, мм рт.ст.
Расчетное полное давление машины определяется по формуле
Нр = β2 ΔНп , Па ,
где ΔНп - перепад полных давлений в тракте при номинальной нагрузке котла.
Чтобы определить, удовлетворяет ли данная машина требуемым значениям Qр и Нр, необходимо предварительно привести Нр к тем условиям (плотность перемещаемой среды), для которых заводом-изготовителем дается характеристика машины:
, Па;
,
где ρо - плотность перемещаемых газов, кг/м3, при 0 °С и 760 мм рт.ст; Т - абсолютная температура воздуха или газов у дымососа или вентилятора; Тзав - абсолютная температура воздуха или газов по заводской характеристике машины, К.
Вследствие ограниченного количества типоразмеров вентиляторов и дымососов, выпускаемых заводами, как правило, не удается подобрать машину с характеристикой Q H расчетного режима тракта . В этом случае необходимо, чтобы характеристика Q H выбранной машины была по возможности ближе к расчетной, во избежание дополнительных потерь мощности на регулирование.
Этому условию могут удовлетворять несколько разнотипных машин. Следует учитывать, что в эксплуатационных условиях машина обычно работает значительную часть времени на расходах, меньших чем расчетный. С этим неизбежно связаны потери мощности на регулирование. Поэтому необходимо провести сравнение возможных вариантов машин и способов их регулирования во всем диапазоне нагрузок котла и выбрать из них экономически наиболее выгодный. Для правильного решения этой задачи следует иметь годовой график нагрузки котельной установки или определить ту нагрузку, при которой котел будет наиболее длительно эксплуатироваться и решать задачу применительно к этой нагрузке.
При выборе дымососа, работающего на дымовых газах твердых топлив, следует по условиям уменьшения износа выбирать рабочее число оборотов дымососа не выше 740 об/мин при Qр ≥ 21 м/с и не выше 980 об/мин для малых машин с Qр < 21 м/с.
Регулирование производительности тягодутьевых машин
Регулирование производительности тягодутьевых центробежных машин может осуществляться двумя способами: дросселированием потока дымовых газов или воздуха и изменением частоты вращения ротора вентилятора.
Способ регулирования производительности дросселированием прост в устройстве и обслуживании: регулирование осуществляется поворотными заслонками на трассе газа или воздуха, однако это самый неэкономичный метод из-за больших энергетических потерь. Более экономичным будет регулирование производительности тоже дросселированием, но особыми направляющими аппаратами (системой лопаток) на всасе вентилятора, установленными аксиально (вдоль оси) или радиально. Сущность этого способа регулирования заключается в том, что с помощью дистанционного направляющего аппарата поток закручивается так, что создается почти безударный ввод его в крыльчатку. Особенно большой эффект этот метод дает при нагрузках 70% и выше. В условиях, где преобладают высокие коэффициенты нагрузок оборудования, это регулирование особенно эффективно.
Максимальная экономичность относится к регулированию частотой вращения с помощью установки двухскоростного электродвигателя или гидромуфты.
Изменение характеристик Q - H тягодутьевого оборудования при изменении числа оборотов определяется по следующим зависимостям:
- производительность
, м3/с
- напор
, Па
- мощность
, Вт,
где n число оборотов об/мин.
13. ЗОЛОУЛАВЛИВАНИЕ
Количество частиц золы и несгоревшего топлива в продуктах сгорания зависит от вида и характеристики топлива, способа его сжигания и конструкции топки. Часть золы топлива и несгоревших его частиц осаждается в топке и в газоходах парогенератора. В парогенераторах с топками для слоевого сжигания топлива вместе с продуктами сгорания удаляется до 10 15 % золы топлива. При факельном сжигании пылеугольного топлива и жидком шлакоудалении унос золы продуктами сгорания составляет 30 40 %, а в топках с сухим шлакоудалением достигает 75 85 %. Удельное содержание золы в уходящих газах составляет, например, при работе парогенератора на АШ и сухом шлакоудалении до 20 г/м3 , а при использования бурых углей до 40 г/м3 , что значительно превышает допустимые концентрации твердых частиц в газах, установленные санитарно-техническими нормами.
В парогенераторных установках для очистки продуктов сгорания от твердых частиц применяют следующие устройства:
1. Механические инерционные золоуловители, в которых частицы уноса отделяются от газов под влиянием сил инерции при вращательном вихревом движении потока газов: различные конструкции циклонов, в том числе с омываемыми водой стенками и решетками.
2. Электрофильтры, очистка газов в которых основана на ионизации газовой среды и притяжении заряженных частиц уноса к электродам.
3. Комбинированные золоуловители, состоящие из последовательно установленных золоуловителей различной конструкции, например циклон и электрофильтр.
Основной характеристикой золоуловителей является коэффициент очистки (коэффициент обеспыливания) газов:
,
где , - общая масса уловленных частиц уноса и общая масса частиц уноса, входящих в золоуловитель.
Коэффициенты обеспыливания зависят от характеристик уноса и режимов работы парогенератора.
Важными показателями золоуловителей являются добавочный расход электроэнергии на тягу, вызываемый аэродинамическим сопротивлением золоуловителя, удельный расход воды на очистку газов при мокрых золоуловителях, а также стоимость золоуловителя.
а) Инерционные золоуловители циклоны. Применяются инерционные золоуловители различной конструкции.
На рис. 74 показана схема простейшего циклона. Запыленный поток газов подводится в циклон тангенциально, выход газов осуществляется через трубу, расположенную в центре циклона.
Под воздействием центробежной силы твердые частицы отбрасываются к стенкам циклона, теряют скорость и выпадают в бункер. Эффективность обеспыливания в циклоне повышается с увеличением окружной скорости газов , увеличением массы частиц m и уменьшением радиуса циклона .
Рис. 74. Схема действия циклона:
1 корпус циклона; 2 входной
патрубок; 3 крышка;
4 выходной патрубок;
5 конусная часть корпуса
б) Батарейные циклоны. Для повышения эффективности работы инерционного золоуловителя, а также для уменьшения его габаритов применяют батарейные циклоны, состоящие из большого числа параллельно включенных циклонных элементов малого диаметра. Схема батарейного циклона показана на рис.75.
Температура газов в циклоне допустима не более 450°С. Эффективность пылеулавливания в батарейном циклоне в процессе эксплуатации парогенератора и при наличии вторичного уноса отсепарированной пыли из бункера значительно уменьшается при отклонениях скорости газов от расчетной. Потери напора в батарейном циклоне при обычно принятых скоростях газа 3,5 4,75 м/с и номинальной нагрузке составляет 500 700 Па. При очистке газов в парогенераторах со слоевыми топками , при пылеугольном сжигании топлива .
Рис. 75. Схема батарейного циклона:
1 входной патрубок; 2 распредели-
тельная камера; 3 циклонные элементы;
4 выхлопные трубы; 5 направляющие
аппараты; 6 пылевыводящие отверстия;
7 сборный бункер; 8 камера очищенного
газа; 9 опорные решетки; 10 опорный
пояс
Батарейные циклоны применяются в парогенераторных установках с производительностью до 320 т/ч. Промышленностью выпускаются батарейные циклоны типа БЦ, состоящие из одной, двух, четырех и шести секций с числом элементов от 25 до 792 шт. Общий коэффициент сопротивления для элемента d = 250 мм с винтовым направляющим аппаратом .
в) «Мокрые» циклонные золоуловители. С целью повышения коэффициента улавливания пыли применяют «мокрые» циклонные золоуловители, в которых стенки циклона и поток газов орошаются водой.
На рис. 76 показана схема центробежного скруббера золоуловителя ЦС ВТИ, в котором орошаются водой его стенки. Такие золоуловители изготовляются диаметром от 600 1700 мм и производительностью 1,1 11 м3/с. Перепад давлений в золоуловителе 650 800 Па.
На рис. 77 показана схема мокропруткового золоуловителя МП ВТИ, в котором на входе газов в золоуловитель имеется прутковая орошаемая водой решетка. Золоуловители применяются диаметром от 2300 мм до 3300 мм, производительностью от 18 м3/с до 38,2 м3/с. Расход воды составляет 2,9 4,1 кг/с. Перепад давлений 650 800 Па. Степень очистки в мокропрутковом золоуловителе достигает . Мокрые золоуловители могут применяться при приведенном содержании серы в топливе менее 0,3% на 1 МДж/кг и содержании свободной щелочи в золе менее 12%. Жесткость воды, подаваемой на орошение, должна быть не выше 15 мг-экв/кг.
Основным преимуществом мокрых золоуловителей является исключение вторичного уноса уловленной пыли, что повышает их КПД. «Мокрые» золоуловители в эксплуатации сложнее и менее надежны, чем батарейные циклоны, и их применение ограничивается предельным содержанием серы в топливе и щелочностью золы. Помимо этого, при применении таких золоуловителей необходима очистка загрязненной воды.
г) Электрофильтры. Очистка газов в электрофильтрах основана на том, что вследствие коронного разряда, происходящего между двумя электродами, к которым подведен пульсирующий электрический ток высокого напряжения до 60 кВ отрицательного знака, проходящий через электрофильтр поток газов заполняется отрицательными ионами, которые под действием сил электрического поля движутся от коронирующего к осадительному электроду. При этом находящиеся в газе частицы адсорбируются и увлекаются к осадительным электродам. Накапливающийся на осадительных электродах унос периодически стряхивается специальными устройствами в бункера, из которых затем удаляется.
Рис. 76. Центробежный скруббер ЦС ВТИ:
1 корпус; 2 входной патрубок;
3 оросительные сопла; 4 смывные
сопла; 5 золосмывной аппарат
Коронирующие электроды выполняются в виде металлических стержней, ленточно-игольчатыми или в виде стержней штыкового сечения. Осадительные электроды изготавливаются из труб или пластин. Применяются электрофильтры с горизонтальным и вертикальным потоком газов. Для парогенераторных установок преимущественно применяются горизонтальные электрофильтры с пластинчатыми электродами. В зависимости от числа последовательно расположенных электродов различают одно-, двух-, и четырехпольные электрофильтры.
Рис. 77. Мокропрутковый золоуловитель МП ВТИ:
1 корпус; 2 входной патрубок; 3 оросительные сопла;
4 распределительное кольцо; 5 смывные сопла; 6 прутковая
решетка; 7 оросительные форсунки прутковой решетки
Схема конструкции горизонтального двухпольного электрофильтра показана на рис. 78.
Оптимальная скорость газов в электрофильтре 1,5 1,7 м/с, при этом аэродинамическое сопротивление электрофильтра 200 300 Па. Расход электроэнергии на очистку газов составляет 0,1 0,15 кВт·ч на 100 м3 газа. Температура газов перед электрофильтром не должна превышать 200 °С. Степень очистки газов в электрофильтре зависит от скорости газов, длины электродов и расстояния между ними, а также характеристики пыли. В применяемых конструкциях электрофильтров улавливается большая часть пыли с размерами частиц более 10 мкм; коэффициент очистки составляет ηоч = 96÷97 %.
Рис. 78. Горизонтальный пластинчатый двухпольный электрофильтр:
а общий вид; б элементы электрофильтра; 1 газораспреде-
лительная решетка; 2 коронирующие электроды; 3 осадительные
электроды; 4 механизм встряхивания коронирующих электродов;
5 механизм встряхивания осадительных электродов; 6 карманы
осадительных электродов
д) Комбинированные золоуловители. Комбинированный золоуловитель обычно состоит из батарейного циклона в качестве первой ступени очистки и электрофильтра с горизонтальным или вертикальным ходом газов, объединенных в один агрегат. В батарейном циклоне происходит улавливание крупных частиц уноса, что улучшает работу электрофильтра. Коэффициент очистки в комбинированных золоуловителях достигает ηоч = 98 %.
Сравнительные характеристики золоуловителей. В табл. 3 приведены примерные данные, характеризующие золоуловители различной конструкции.
Циклоны и батарейные циклоны преимущественно применяются в котлах малой и средней мощности (до 160 т/ч) при слоевом и факельном сжигании топлива. Мокропрутковые золоуловители используются при небольшом содержании серы в топливе и повышенных требованиях к очистке газов. Наиболее сложные и дорогие золоуловители электрофильтры и комбинированные золоуловители (батарейные циклоны с электрофильтрами) применяются в котлах большой мощности при высоких требованиях к очистке продуктов сгорания.
Таблица 3
Сравнительные характеристики золоуловителей
Тип золоуловителя |
Коэффициент очистки, % |
Сопротивление золоуловителя, Па |
Расход эл. энергии на 103 м3/ч газа, кВт·ч |
Циклон |
80 |
350 |
0,93 |
Батарейный циклон |
80 |
500 |
1,0 |
Мокропрутковый золоуловитель МП - ВТИ |
92 |
800 |
1,3 |
Электрофильтр горизонтальный трехпольный |
96 97 |
150 200 |
0,93 |
Комбинированный золоуловитель батарейный циклон и электрофильтр |
98 |
600 |
1,3 |
14. ШЛАКОЗОЛОУДАЛЕНИЕ
Выход и характеристики шлака и золы
В результате сжигания твердого топлива содержащаяся в нем зола частично остается в топке в виде шлака, а частично уносится с продуктами сгорания. Золовой унос частично оседает в газоходах котла и улавливается в золоуловителе, а частично удаляется вместе с дымовыми газами в атмосферу. В шлаке и уносе имеются частицы несгоревшего топлива. Шлак, удаляемый из топки, представляет собой крупные куски сплавленной стекловидной или хрупкой губчатой массы. Унос, осаждающийся в газоходах и золоуловителе, представляет собой сыпучую подвижную смесь частиц золы и несгоревшего топлива. Зола и шлак являются ценным сырьем для производства строительных материалов. Шлаки могут быть использованы как добавка к цементу при производстве силикатного и алюмосиликатного кирпичей, шлакоблоков, камнелитейных изделий, огнеупоров, шлаковой ваты и др.
Количество шлака и золы, которое необходимо удалять из котлов большой производительности, работающих на многозольном топливе, составляет сотни тонн в сутки, и поэтому шлакозолоудаление является наряду с подачей твердого топлива трудоемким процессом. Некоторые операции шлакозолоудаления, если они выполняются вручную, являются опасными и вредными для здоровья.
К системам шлакозолоудаления предъявляются следующие основные требования: безопасность работы и обеспечение нормальных санитарно-гигиенических условий труда для персонала; минимальные расходы на удаление шлака и золы, в частности расходы электроэнергии и воды; возможность дальнейшего использования шлаков и золы.
Процесс шлакозолоудаления можно разделить на две стадии: очистка шлаковых и зольных бункеров котла от содержимого и транспорт шлака и золы. Последняя операция разделяется на транспорт шлака и золы от котлов за пределы их помещения и транспорт шлака и золы на золоотвалы или к потребителям.
Соотношение количества шлака и золы определяется способом сжигания топлива и конструкцией топочного устройства и характеризуется примерными данными, приведенными в табл. 4.
Таблица 4
Распределение количеств шлака и золы
Характеристика топки |
Выход шлака, % от общего количества шлака и золы |
Количество золы, оседающей в газо-ходах котла, % от общего количества шлака и золы |
Количество золы, выносимой дымовыми газами из парогенератора, % от общего количества шлака и золы |
Слоевое сжигание топлива |
80 |
5-10 |
10-15 |
Пылеугольное сжигание топлива с сухим шлакоудалением |
15-25 |
10-15 |
60-75 |
Пылеугольное сжигание топлива с жидким шлакоудалением |
40-55 |
5-10 |
35-55 |
В зависимости от вида сжигаемого топлива плотность шлака составляет 2,2-2,6 т/м3 , а золы 2,0-2,5 т/м3.
Более 50 % частиц шлака имеют размеры более 3 мм. Основная масса золы (до 85 %) состоит из частиц размером 0,01-0,5 мм.
Для удаления шлака и золы из топок, золовых бункеров котлов и золоуловителей и далее из помещения на золоотвал применяются механическая, пневматическая и гидравлическая системы шлакозолоудаления.
Механическая система шлакозолоудаления
При механической системе шлакозолоудаления (рис. 79) выгрузка шлака из бункеров осуществляется скребковыми транспортерами или шнеками, а золы клапанами-мигалками или вращающимися лопастными затворами.
Шлак и зола сбрасываются в приемный канал, расположенный в золовом помещении, и далее с помощью скрепера, горизонтально-вертикального подъемника или других механизмов подаются в сборный бункер, находящийся за пределами котлов. Транспорт шлака и золы на золоотвал или на завод для переработки осуществляется автомашинами или железнодорожными вагонами.
Рис.79. Схема шлакозолоудаления со скрепером:
1 бункер шлака парогенератора; 2 скреперный канал;
3 лебедка; 4 натяжной трос; 5 ковш; 6 эстакада;
7 сборный бункер для шлака и золы
Механические системы шлакозолоудаления не требуют больших затрат электроэнергии и воды, которые составляют 2-3 кВт∙ч/т и 0,2- 0,5 м3/т, однако не обеспечивают удаления больших масс шлака и золы и не решают вопроса внешнего их транспорта. Вследствие этого механические системы шлакозолоудаления применяются только для котельных установок малой мощности.
Пневматическая система шлакозолоудаления
Пневматический транспорт шлака и золы основан на способности потока газов при достаточной скорости перемещать сыпучие материалы.
Пневмошлакозолоудаление может быть осуществлено по нагнетательной и всасывающей схемам. В первом случае система находится под давлением, во втором под разрежением. Применяются обычно системы, осуществляемые по всасывающей схеме, при которых в качестве транспортирующего агента используется воздух, и вся система находится под разрежением, создаваемым паровыми эжекторами или вакуум-насосами.
На рис. 80 показана схема пневматической системы шлакозоло-удаления, работающей под разрежением, создаваемым паровыми эжекторами.
Шлак после измельчения до размеров меньше 35 мм в валковых дробилках, установленных под каждым шлаковым бункером, и зола из золовых бункеров поступают во всасывающие насадки, подхватываются воздухом, подаваемым через насадки в систему, и транспортируются по трубопроводам в циклон, где происходит отделение золы и шлака от воздуха. Из циклона зола и шлак поступают в сборный бункер и далее в железнодорожные вагоны или автомашины, которыми вывозятся на золоотвал или для переработки. Воздух из циклона отсасывается через пылеуловитель паровыми эжекторами и вместе с паром сбрасывается в дымовую трубу.
Рис. 80. Схема пневматического шлакозолоудаления:
1 шлаковый бункер; 2 шлакодробилка; 3 насадка для приема
шлака; 4 насадка для приема золы; 5 телескопиическая
насадка; 6 сварное колено; 7 запорный кран; 8 шлакозолопровод;
9 осадительная камера; 10 циклон; 11 бункер; 12 вагон
Концентрация золы и шлака, взвешенных в воздухе, не должна превышать 47 кг/м3. Диаметр золопроводов обычно выбирается 90-120 мм. Скорость потока при транспорте шлакозоловой смеси должна быть более 25 м/с. При транспорте одной золы скорость принимается не менее 12 м/с, при этом разрежение, создаваемое эжекторами или вакуум-насосами, составляет 30-40 кПа. Расход пара эжекторами 0,8-1 кг/кг транспортируемой массы шлака и золы, а расход энергии на дробление шлака 0,8 кВт∙ч/т. Транспорт шлака и золы может производиться на расстояние до 200 м при подъеме их до 30 м.
Достоинствами систем пневмошлакозолоудаления являются простота устройства и обслуживания, возможность непосредственного использования получаемых в сухом виде шлака и золы для различных целей, а также отсутствие загрязненных сточных вод. Недостатками системы являются быстрый износ шлакозолопроводов, а также ограниченный радиус действия, что определяет необходимость дополнительного применения внешнего колесного транспорта.
Пневмошлакозолоудаление применяется для парогенераторных установок малой производительности при нецелесообразности устройства гидрозолоудаления, а также в случае необходимости получения сухого шлака и золы по условиям их дальнейшего использования. В парогенераторных установках большой производительности пневматический транспорт золы применяется в сочетании с гидрозолоудалением.
Гидравлическая система шлакозолоудаления
В гидравлических системах шлакозолоудаления в качестве транспортирующего агента используется вода.
Гидравлическая система широко распространена в мощных энергоустановках (рис. 81), в которых применена механизированная подача шлака и золы в каналы гидрошлакоудаления. Железобетонный канал 5 прокладывается с уклоном по длине и оснащен побудительными соплами 7, обеспечивающими смыв и транспорт шлаков. Нижняя истирающая часть канала защищена от эрозии литыми плитами 6 из твердого минерала. Пульпа (смесь воды, шлака и золы) по каналу подается в багерную насосную, расположенную ниже нулевой отметки котельной. Пульпа проходит шлакодробилку 8, железоуловитель 9 и багерный насос 10, который подает пульпу в закрытый шлакозолопровод 11 или в деревянный открытый лоток, которые направляют пульпу на золоотвалы или в золоотстойники 12. Под золоотвалы используются ближайшие овраги, срок накопления в них шлаков и золы должен быть не менее 25 лет.
Непрерывно действующее механизированное шлакоудаление как при твердом, так и жидком шлаке выполняется в виде простых по устройству и надежных в работе шнеков (рис. 82).
Для предотвращения загрязнения земельных угодий золошлакоотвалами и их уменьшения необходимо увеличивать масштабы промышленного использования золы и шлака. Использование золы зависит от применяемых систем золоулавливания и золоудаления. Зола, уловленная мокрыми золоуловителями или подаваемая на золоотвалы гидравлической системой, увлажняется и поэтому теряет ряд своих ценных свойств.
Рис. 81. Схема гидромеханической оборотной системы шлакозолоудаления:
1 топка; 2 шнек с шлакодробилкой; 3 золоуловитель;
4 золосмывной аппарат; 5 шлаковый канал; 6 эрозионная
защита канала; 7 побудительные сопла; 8 - шлакодробилка;
9 железоуловитель; 10 багерный насос; 11 шлакозолопровод;
12 золоотстойник
Рис. 82. Шнековое шлакоудаление непрерывного действия:
1 летка; 2 охлаждаемый водой змеевик летки; 3 нижний коллектор экрана; 4 шлаковый бункер; 5 шибер; 6 ванна с водой; 7 шнек; 8 дробильная камера; 9 электродвигатель с редуктором; 10 решетка; 11 отводящая течка; 12 течка канала гидрозолоудаления; 13 ролики для откачки шлака
Сухая зола имеет обширную область применения в промышленности. Так, например, при содержании в золе окcида кальция (в сланцах, бурых углях Канско-Ачинского бассейна и др.) золу можно успешно использовать для щелочения кислых глинистых почв и в качестве удобрения, поскольку в золе содержатся калий и микроэлементы. Такая зола находит применение в производстве цемента. Наконец, зола используется в строительных растворах асфальтобетонных покрытий шоссейных дорог.
15. ДЫМОВЫЕ ТРУБЫ
Дымовые трубы служат для удаления продуктов сгорания топлива из газоходов котла и рассеивания в атмосфере содержащихся в них вредных веществ (пыль, окcиды серы, азота и т.п.)
Для котельной проектируется обычно одна, общая для всех установленных котлов, дымовая труба. Дымовые трубы сооружаются по типовым проектам из кирпича или железобетона. Применение металлических дымовых труб диаметром больше 1 м допускается только при технико-экономической целесообразности такого решения.
Высота дымовой трубы, необходимая для создания нормативной естественной тяги, определяется из условий равенства силы тяги и суммы сопротивлений, возникающих при движении газов по газоходам котлоагрегата и в дымовой трубе:
, кгс/м2 ,
где S - необходимая сила естественной тяги дымовой трубы, кгс/м2; Н - высота дымовой трубы, м; ρов, ρог - плотности воздуха и газа при нормальных условиях, кг/м3; tв, tг - температура воздуха и средняя температура дымовых газов, ºС; Вд - минимальное барометрическое давление данного района, мм рт.ст.
При известной величине необходимой естественной тяги S высота дымовой трубы Н определяется по приведенной выше формуле.
При расчете рассеивания в атмосфере вредных веществ, принимая максимально допустимые санитарными нормами концентрации золы, оксидов серы, азота и углерода у поверхности Земли, следует учесть выбросы в окружающую среду абсолютных количеств веществ для всех промышленных предприятий, котельных, ТЭЦ и автомобильного транспорта конкретного города или района, а также учесть существующее фоновое загрязнение атмосферы другими источниками.
Поверочный расчет на загазованность и запыленность должен производиться с учетом всех котлов, присоединенных к дымовой трубе не только в настоящее время, но и при расширении котельной.
Значение максимальной концентрации вредного вещества на уровне Земли определяется по формуле
, мг/м3,
где А - коэффициент, зависящий от температурной стратификации атмосферы, (с-2/3 · ºС1/3) ; М - количество вредного вещества, выбрасы-ваемого в атмосферу, г/с; F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосфере; m, n - безразмерные коэффициенты, учитывающие условия выхода газовоздушной смеси из устья дымовой трубы; Н - высота дымовой трубы над уровнем земли, м; V - объем выбрасываемой газовоздушной смеси, м3/с; ΔТ - разность температуры выбрасываемой газовоздушной смеси Тг и температуры окружающего атмосферного воздуха Тв , ºС .
Высота дымовой трубы, обеспечивающая рассеивание вредных выбросов, выбирается из условия, что наибольшая концентрация вредного вещества См (мг/м3) в приземном слое атмосферы не должна превышать предельно допустимой концентрации данного вредного вещества в атмосферном воздухе (ПДК), установленной «Санитарными нормами проектирования промышленных предприятий», т.е. См ≤ ПДК.
При одновременном совместном присутствии в атмосфере нескольких вредных веществ их безразмерная суммарная концентрация q не должна превышать 1 при расчете по формуле:
,
где С1, С2, …, Сn - концентрации вредных веществ в атмосферном воздухе в одной и той же точке местности, мг/м3 ; ПДК1, ПДК2, …, ПДКn соответствующие максимальные предельно допустимые концентрации вредных веществ в атмосферном воздухе, мг/м3 .
Для определения суммарного выброса оксидов дымовыми газами необходимо выполнить расчеты количества выбрасываемых оксидов серы и азота:
, г/с,
где Впар, Ввод - расход топлива на паровые и водогрейные котлы, т/ч; - коэффициент, принимаемый при работе котла на твердом топливе 0,1; на мазуте 0,02; - содержание серы в топливе, % ;
, г/с,
где kпар = 1,9-4,4; kвод=1,3-2,3 - коэффициенты выхода оксидов азота на 1 т условного топлива, которые зависят от производительности парового или водогрейного котла и вида сжигаемого топлива.
Суммарный выброс оксидов серы и азота
, г/с.
Предельно допустимый выброс вредного вещества в атмосферу (ПДВ) от одиночного источника, при котором обеспечивается концентрация, не превышающая ПДК в приземном слое воздуха, определяется по формуле:
, г/с.
Высота дымовых труб должна приниматься 30, 45, 60, 75, 90, 120, 150, 180 м.
Для определения диаметра дымовой трубы рекомендуется принимать для расчетов следующие скорости газов на выходе, м/с:
при естественной тяге 15-20;
при искусственной тяге:
при высоте труб до 100 м - 20-30;
100-180 м - 35-40.
Диаметры выходных отверстий кирпичных и железобетонных дымовых труб определяются на основании изложенных ниже требований и принимаются 1,2; 1,5; 1,8; 2,1; 2,4; 3,0; 3,6; 4,2; 4,8; 5,4; 6,0; 6,6; 7,2; 7,8; 8,4; 9,0; 9,6 м. Минимальный диаметр выходных отверстий кирпичных труб 1,2 м, монолитных железобетонных 3,6 м.
Для предупреждения проникновения дымовых газов в толщу стен кирпичных и железобетонных труб не допускается положительное статическое давление на стенки ствола дымовой трубы. Для этого необходимо соблюдать условия R<1, где R определяющий критерий, равный:
,
где λ - коэффициент сопротивления трению; i - постоянный уклон внутренней поверхности трубы (для расчета кирпичных и железобетонных труб принимается i = 0,02); ρв, ρг - плотности наружного воздуха и дымовых газов при расчетном режиме, кг/м3; dо - диаметр выходного отверстия трубы, м; hо - динамическое давление газа в выходном отверстии трубы
, кгс/м2 ,
где ωо скорость газов в выходном отверстии трубы, м/с; g ускорение силы тяжести, м/с2.
Подводящие газоходы в месте примыкания к дымовой трубе необходимо проектировать прямоугольной формы. Выбор конструкции защиты внутренней поверхности ее ствола от агрессивного воздействия среды должен выполняться исходя из условий сжигания основного и резервного вида топлива.
Используемая в котельных установках и теплосетях исходная вода поступает или из хозяйственно-питьевых водопроводов, или из артезианских скважин, или, наконец, из поверхностных водоемов, в зависимости от чего в ней содержатся различные примеси.
Примеси, содержащиеся в природной воде, по степени крупности их частиц подразделяются на три группы:
В зависимости от тех или иных примесей изменяются показатели качества воды.
Основными показателями качества воды являются:
Основной задачей подготовки воды в котельных является борьба с коррозией и накипью.
Коррозия поверхностей нагрева котлов, подогревателей и трубопроводов тепловых сетей вызывается кислородом и углекислотой, которые проникают в систему вместе с питательной и подпиточной водой.
При нагреве и испарении воды из нее выпадают различные растворенные соли, часть из которых осаждается на поверхностях нагрева в виде плотного слоя с низкой теплопроводностью, называемого накипью. Требования, предъявляемые к воде, используемой в паровых и водогрейных котельных, различны, так как в паровых котлах вода испаряется, а в водогрейных только нагревается.
Наиболее важным показателем качества воды является ее жесткость, т.е. содержание солей, вызывающих накипеобразование (соли кальция и магния). Различается жесткость постоянная (некарбонатная), обусловливаемая наличием в воде хлоридов, сульфатов и других некарбонатных солей кальция и магния, и временная (карбонатная), обусловливаемая присутствием в воде бикарбонатов кальция Са(НСО3)2 и магния Mg(НСО3)2.
Общая жесткость воды (Жо) состоит из карбонатной (временной) жесткости (Жк) и некарбонатной (постоянной) жесткости (Жн).
Жо = Жк + Жн , мг-экв/л .
Щелочность представляет собой сумму содержащихся в воде бикарбонатов, карбонатов, гидратов и солей других слабых кислот, вступающих в реакцию с соляной и серной кислотой с образованием хлористых или сернокислых солей щелочных и щелочно-земельных металлов. Различают щелочности: бикарбонатную (Щб), определяемую анионами НСО3- ; карбонатную (Щк), определяемую анионами СО32-; гидратную (Щг), определяемую анионами ОН- и др.
С известным приближением можно считать, что практически в одном растворе совместно могут быть либо гидратная щелочность с карбонатной, либо карбонатная с бикарбонатной. Щелочность измеряется теми же единицами, что и жесткость, мг-экв/л и мкг-экв/л.
При относительно высокой гидратной щелочности котловая вода приобретает агрессивные свойства по отношению к металлу котла, вызывая в нем межкристаллитную коррозию.
Необходимое качество воды зависит от типа котла и вида топлива, нормы качества питательной воды приведены в табл. 5.
аименование |
Тип котла |
|||||
газо-жаротрубные |
водотрубные |
|||||
давление, МПа (кгс/см2) |
||||||
1,4 (14) |
1,4 (14) |
2,4 (24) |
||||
топливо |
||||||
твердое |
жидкое и газ |
твердое |
жидкое и газ |
твердое |
жидкое и газ |
|
Содержание взвешенных веществ, мг/л |
50 |
5 |
5 |
5 |
5 |
5 |
Общая жесткость, мкг-экв/л |
100 |
30 |
20 |
15 |
15 |
10 |
Содержание соединений железа в пересчете на Fe, мкг/л |
не норми-руется |
300 |
не норми-руется |
300 |
200 |
100 |
Содержание соединений меди в пересчете на Cu, мкг/л |
не нормируется |
|||||
Содержание растворенного О2, мкг/л |
100 |
50 |
50 |
30 |
50 |
20 |
Значение рН при 25 °С |
8,5 9,5 |
|||||
Содержание свободной углекислоты, мкг/л |
не допускается |
|||||
Содержание нитритов в пересчете на мкг/л |
не нормируется |
|||||
Содержание масла и других веществ, экстрагируемых эфиром, мг/л . |
3,0 |
Примечание. Для твердого топлива с местным тепловым потоком более 350 кВт/м2 следует принимать значения, указанные для жидкого топлива и газа. При расположении второй ступени испарения в зоне температур греющих газов меньше 500 °С нормы содержания железа не обязательны.
Влажность пара для котлов без пароперегревателей не должна превышать 1 %, если к пару не предъявляются специальные требования. Содержание углекислоты в паре не должно превышать 20 мг/л.
Качество возвращаемого конденсата должно отвечать следующим нормам: жесткость общая - не более 50 мг-экв/л; содержание масел - не более 10 мг/л; продукты коррозии стали - не более 0,5 мг/л в пересчете на Fe. При загрязненности, не обеспечивающей этих норм, конденсат до возвращения в цикл подвергается предварительной очистке.
Нормы качества подпиточной воды для тепловых сетей закрытых и открытых систем теплоснабжения при подогреве сетевой воды в бойлерах или водогрейных котлах принимаются по табл. 6.
Наименование |
Система теплоснабжения |
|||||||
закрытая |
открытая |
|||||||
температура воды за котлом, °С |
||||||||
115 |
150 |
115 |
150 |
|||||
топливо |
||||||||
твердое |
жидкое и газ |
твердое |
жидкое и газ |
твердое |
жидкое и газ |
твердое |
жидкое и газ |
|
Прозрачность по шрифту, см, не менее |
30 |
40 |
||||||
Карбонатная жесткость сетевой воды с рН до 8,5 мкг-экв/л |
800 |
700 |
750 |
600 |
800 |
700 |
750 |
600 |
Условная сульфатно-кальциевая жесткость, мг-экв/л |
4,5 |
1,2 |
4,5 |
1,2 |
||||
Растворенный кислород, мкг/кг |
50 |
30 |
50 |
30 |
||||
Содержание соединений железа в пересчете на Fe, мкг/л |
600 |
500 |
500 |
400 |
300 |
300 |
300 |
250 |
Значение рН при t = 25 °С |
от 7 до 11 |
от 7 до 8,5 |
||||||
Свободная углекислота |
должна отсутствовать или находиться в пределах, обеспечивающих рН > 7 |
|||||||
Масла и нефтепродукты, мг/кг, не более . |
1,0 |
- |
Примечание. Для котлов на твердом топливе нормы жесткости могут быть увеличены на 25 %. Для теплосетей, в которых параллельно с котлами работают бойлеры с латунными трубами, рН не должно превышать 9,5.
Таким образом, обработка воды в общем случае предусматривает:
16.2 Осветление воды
При использовании воды из поверхностных водоемов для удаления взвешенных и коллоидных примесей ее фильтруют и коагулируют в специальных устройствах - механических фильтрах.
При механическом фильтровании воду пропускают через пористые материалы. В качестве пористых фильтрующих материалов применяются кварцевый песок, дробленый антрацит и мраморная крошка с размерами зерен материала 0,6-1,0 мм.
Размеры механических фильтров выбираются при заданной высоте загрузки h = 800-1000 мм по скорости фильтрации, отнесенной ко всему поперечному сечению фильтрующего материала и равной 5-12 м/ч.
Для освобождения воды от коллоидных примесей применяется коагуляция (свертывание), т.е. в обрабатываемую воду до ее механической фильтрации вводятся хорошо растворимые сернокислые (или хлористые) соли алюминия или железа.
Совместная обработка воды фильтрацией и коагуляцией применяется при содержании взвешенных веществ более 150 мг/л.
Объем дозатора для коагулянта должен обеспечивать непрерывную работу установки в течение 10-12 ч и определяется в зависимости от окисляемости воды и ее расхода.
В практике эксплуатации котельных установок фильтрация и коагуляция, как правило, обособленно не применяются; обычно их используют совместно с умягчением воды.
На рис. 83 показан вертикальный осветлительный фильтр.
Рис. 83. Вертикальный осветлительный
фильтр:
1 вход воды; 2 корпус;
3 фильтрующий материал;
4 патрубок для выхода
осветленной воды
Фильтр ФОВ-1,0-0,6 представляет собой вертикальный цилиндрический аппарат, состоящий из корпуса, нижнего и верхнего (отбойный щиток) распределительных устройств, трубопроводов, запорной арматуры, пробоотборного устройства и фильтрующей загрузки. Верхнее днище приварено к цилиндрической обечайке фильтра, между нижним днищем и обечайкой фильтра имеется фланцевый разъем, в котором зажато нижнее распредустройство типа «ложное дно». Для периодического отвода воздуха, скапливающегося в верхней части фильтра, имеется трубка с вентилем. Верхнее распределительное устройство предназначено для гашения энергии потока воды, состоит из щитка диаметром 450 мм, прикрепленного уголками к верхнему эллиптическому днищу. Трубопроводы и запорная арматура расположены по фронту фильтра. Корпус фильтра, отбойные щитки и трубопроводы изготовлены из углеродистой стали, доска нижнего распредустройства - из стеклопластика АГ-4С, дренажные колпачки (60 шт) из сополимера СНП.
Плоские перегородки, делящие корпус двух- и трехкамерных фильтров по высоте на камеры, скреплены анкерными связями с верхним эллиптическим днищем фильтра. Через анкерные связи, изготовленные из труб, воздух из нижних камер отводится в верхнюю. Внутреннее давление в камерах выравнивается, и все камеры находятся под общим давлением.
16.3. Умягчение воды
Натрий-катионитный метод
Метод катионного обмена, называемый также катионитным, основан на свойстве некоторых естественных и искусственных химических соединений вступать в реакцию с солями жесткости воды. Реакция умягчения воды при натрий-катионировании (наиболее простом способе) состоит в замене ионов кальция и магния, содержащихся в воде, ионами натрия, присоединенными к водоумягчающему веществу - катиониту. Это присоединение осуществляется в результате пропускания через катионит раствора поваренной соли.
Из катионирующих материалов в настоящее время наиболее распространен сульфоуголь, который представляет собой бурый уголь, обработанный крепкой серной кислотой.
При умягчении воды натрий-катионитным методом температуру ее не рекомендуется поднимать выше 60 °С. Этот метод позволяет почти полностью удалить из воды накипеобразователи; остаточная жесткость умягченной воды обычно не превышает 35 мкг-экв/л. В результате такого метода умягчения воды вместо сульфатов и хлоридов кальция и магния (постоянной жесткости) образуются легкорастворимые, не обладающие способностью к накипеобразованию, сернистый натрий Na2SO4 (глауберовая соль) и хлористый натрий NaCl (поваренная соль); взамен бикарбонатов кальция и магния (временной жесткости) образуется эквивалентное количество хорошо растворимого в воде бикарбоната натрия (NaHCO3)2.
В процессе работы сульфоуголь постепенно теряет способность к обмену катионами, что определяется путем химического анализа умягченной воды. Для восстановления обменной способности сульфоуголь сначала взрыхляют и затем промывают (регенерируют) 5-10% -ным раствором поваренной соли в течение 1,5-2 ч.
В целях экономии соли целесообразно предусматривать двухступенчатую регенерацию: сначала пропускать 2% -ный раствор соли в количестве 1,2 м3 раствора на 1 м3 катионита, затем остальное количество соли в виде 7-10% -ного раствора. Скорость фильтрования раствора соли через катионит 5-7 см/мин. Скорость умягченной воды, подаваемой на отмывку, 13-17 см/мин. Первая половина воды от отмывки подлежит спуску в водосток, вторая половина используется при взрыхлении катионита или для приготовления регенерационного раствора. Удельный расход воды на отмывку принимают 4-5 м3 на 1 м3 катионита. Схема фильтра представлена на рис. 84.
Рис. 84. Натрий-катионитный фильтр
I ступени:
1 патрубок для входа воды;
2 катионит; 3 корпус;
4 патрубок для выхода воды;
5 спуск в дренаж
Схема натрий-катионитной установки с механическими фильтрами и повторным использованием раствора соли представлена на рис. 85.
Скорость фильтрации воды в напорных натрий-катионитных фильтрах зависит от жесткости воды и качества катионита и составляет:
при общей жесткости воды до 5 мг-экв/л 40 см/мин;
то же, 10 мг-экв/л 25 см/мин;
то же, 15 мг-экв/л 17 см/мин.
Вода, поступающая на катионитовые фильтры, должна быть светлой с содержанием взвешенных веществ не более 5-8 мг/л.
Для получения глубокоумягченной воды применяется двухступенчатое последовательное натрий-катионирование.
Рис. 85. Схема натрий-катионитной установки с механическими
фильтрами и коагуляцией:
1 подвод исходной воды; 2 насос; 3 бак для раствора
коагулянта; 4 бак для промывки механического фильтра; 5 бак
для промывки катионитного фильтра; 6 выход умягченной
воды; 7 солерастворитель; 8 натрий-катионитный фильтр;
9 осветлительный фильтр; 10 шайбовый дозатор
Солерастворитель (рис. 86) представляет собой сосуд цилиндрической формы, в котором приготовляют концентрированный раствор поваренной соли для регенерации натрий-катионитных фильтров. Корпус солерастворителя рассчитан на рабочее давление 6 ати.
Рис. 86. Солерастворитель Dу=600 мм:
1 слой кварца (от 5 до 10 мм);
2 слой кварца (от 2,5 до 5 мм);
3 слой кварца (от 1 до 2,5 мм);
4 корпус; 5 загрузочная
воронка; 6 патрубок для подвода
воды; 7 патрубок для спуска воды;
8 выход раствора соли;
9 спускная труба
Водород-катионитный метод
Водород-катионитные фильтры предназначены для умягчения и снижения щелочности питательной воды. Умягчение воды происходит в результате фильтрования ее через слой ионитового материала, частицы которого на своей поверхности имеют катионы водорода, способные к катионному обмену с катионами солей жесткости кальция и магния. При таком обмене образуются свободные минеральные кислоты.
Ионитовый материал водород-катионитовых фильтров периодически восстанавливается 1-1,5%-ным раствором серной кислоты. Водород-катионитный метод обычно применяется в сочетании с натрий-катионитным способом. Рабочее давление воды в фильтре 6 ати, температура воды не должна превышать 100 °С .
Регенерация катионита для обогащения его ионами Н+ производится 1-2%-ным раствором Н2SO4.
Корпус и трубопроводы фильтров изготавливаются из углеродистой стали, внутренние поверхности, соприкасающиеся с агрессивной средой, подлежат защите коррозионно-стойким покрытием.
16.4 Деаэрация воды
Для обеспечения надежности работы котлов обязательно удаление из воды растворенных в ней коррозионно-активных газов кислорода и свободной углекислоты. Эти газы вызывают коррозию поверхностей нагрева и трубопроводов котельных и тепловых сетей. Нормами установлено, что содержание кислорода в сетевой воде не должно превышать для стальных водогрейных котлов 0,05 мг/кг, для паровых котлов низкого давления в питательной воде - 0,03 мг/кг. Деаэрация воды основана на повышении ее температуры до кипения, при котором происходит выделение газов из воды.
Процесс деаэрации может быть осуществлен при разном абсолютном давлении. Если давление над поверхностью воды меньше атмосферного, т.е. вода кипит при температуре ниже 100 °С, то такие установки называются вакуумными. Деаэраторы, работающие при давлении, близком к атмосферному (порядка 0,12 МПа), называют атмосферными. Кипение воды в деаэраторе может быть достигнуто за счет снижения давления ниже атмосферного для самовскипания, что осуществляется в вакуумных деаэраторах или за счет нагрева воды паром, поступающим в колонку деаэратора атмосферного типа.
Наибольшее распространение получила термическая деаэрация с применением так называемых струйных деаэраторов атмосферного типа (рис. 87).
Рис. 87. Принципиальная схема деаэрационной установки атмосферного
давления:
1 деаэрационный бак; 2 отвод деаэрированной воды;
3 водоуказательное стекло; 4 манометр; 5, 6, 12 тарелки;
7 спуск воды в дренажный бак; 8 регулятор уровня;
9 охладитель выпара; 10 выпуск пара в атмосферу;
11, 14, 15 трубы и патрубок подачи пара; 13 колонка деаэратора;
16 впуск воды в гидрозатвор; 17 гидрозатвор;
18 перелив воды из гидрозатвора
Деаэратор состоит из бака-аккумулятора 1 и колонки 13, внутри которой установлен ряд распределительных тарелок 5,6,12, по которым стекает вниз тонкими струйками питательная вода, а навстречу ей по патрубку 14 подается греющий пар.
Питательная вода нагревается встречным паром до температуры 104-105 ºС и начинает кипеть. Выделяющиеся при этом растворенные в воде газы (кислород, азот, углекислота и часть несконденсировавшихся паров воды) поступают в охладитель 9, где пары конденсируются, а охладившиеся газы удаляются в атмосферу.
Освобожденная от кислорода и подогретая вода собирается в сборный бак, расположенный под колонкой 13 деаэратора, откуда расходуется на подпитку котлов, тепловых сетей, систем отопления и др.
Вместо тарелок в некоторых типах деаэраторов размещают специальные насадки либо из керамических колец, либо из наклонных или зигзагообразных элементов, создающих высокую плотность орошения.
Для лучшего использования водяных экономайзеров питательную воду из деаэраторов целесообразно охлаждать до 70-80 °С. Для этого устанавливают водо-водяные теплообменники.
Вакуум-деаэрация
Вакуум-деаэрация рекомендуется для котельных, оборудованных водогрейными котлами. В системах с непосредственным водоразбором их можно применять лишь при использовании воды питьевого качества.
Схема вакуум-деаэрационной установки приведена на рис. 88.
Вода после химводоподготовки и автоматических запорных клапанов 1 поступает к эжекторам 2 и подсасывает из деаэрационной головки 3 парогазовую смесь, создавая в ней вакуум 95-97 %. Вода, смешанная с газами, сливается по сбросным трубам 4 в открытый приемный бак 5, из которого газы удаляются в атмосферу. Приемный бак оборудован гидравлическими затворами 6 для отсоединения сбросных труб непосредственно от атмосферы. На сбросных трубах установлены обратные клапаны 7, препятствующие засасыванию воды из приемного бака в деаэратор при отключении эжекторов. Из приемного бака вода подсасывается в деаэратор за счет созданного в нем вакуума. Для предотвращения срыва вакуума при отключении эжекторов всасывающая труба у приемного бака снабжена автоматом 8, который прикрывает всасывающее отверстие трубы по мере понижения уровня воды в приемном баке. Из деаэрационного бака-аккумулятора 9 вода подается подпиточными насосами 10 во всасывающую магистраль сетевых насосов. Эжектор 11 находится в работе, когда отключены эжекторы 2, и предназначен для борьбы с присосами воздуха в установку из атмосферы через неплотности. Для обеспечения необходимой вакуумметрической высоты всасывания подпиточных насосов низ бака-аккумулятора расположен выше оси насосов на 2-2,5 м. Воздушные эжекторы устанавливаются на высоте 4,5-5 м от низа приемного бака.
Рис. 88. Схема вакуум-деаэрационной установки:
1 автоматический запорный клапан; 2, 11 эжектор;
3 деаэрационная головка; 4 сбросная труба; 5 приемный бак;
6 гидравлический затвор; 7 обратный клапан; 8 автомат;
9 бак-аккумулятор; 10 подпиточный насос
Емкость бака-аккумулятора принимается в зависимости от производительности установки; при непосредственном водоразборе берут 15-20 % от производительности. Высота приемного бака 1-1,5 м, а его размеры определяются размещением гидравлических затворов. В качестве подпиточных насосов устанавливаются конденсатные насосы типа КС.
В качестве эжекторов можно использовать отопительные элеваторы, но с укороченным соплом. Головка деаэратора и эжекторы рассчитывают в зависимости от производительности.
Химическая деаэрация
Химические методы удаления из воды растворенных газов заключаются в связывании их в новые химические соединения.
К числу используемых восстановителей относятся такие реагенты, как сульфит натрия, гидразин и окислительно-восстановительные группы, создаваемые на высокомолекулярных, нерастворимых в воде полимерах.
Обработка воды сульфитом натрия основана на реакции окисления сульфита растворенным в воде кислородом
2Na2SO3 + O2 → 2Na2SO4 .
Реакция протекает достаточно быстро при температуре воды не менее 80 °С и рН ≤ 8. При сульфитировании питательной воды увеличивается ее сухой остаток в количестве 10-12 мг/кг на 1 мг/кг растворенного кислорода.
Удаление кислорода из воды возможно также с использованием гидразина в форме гидразин-гидрата (N2H4·H2O), который энергично взаимодействует с кислородом, окисляясь в конечном счете до воды и азота, не повышая солесодержания воды
N2H4·H2O + O2 → 3H2O + N2 .
Основными факторами, определяющими скорость этой реакции, являются температура и рН среды. При комнатной температуре скорость взаимодействия гидразина и кислорода минимальна, но быстро увеличивается с повышением температуры. Так, при t=105 °С, рН= 9 9,5 и избытке гидразина около 0,02 мг/кг время практически полного связывания кислорода составляет 2-3 с. При рН среды менее 7 гидразин практически не окисляется. При рН=9-11 достигается максимум скорости реакции.
Окисление гидразина кислородом при комнатной температуре может быть интенсифицировано введением органических катализаторов, повышающих скорость взаимодействия в 25-100 раз.
При организации гидразинной обработки надо учитывать свойства гидразингидрата. Гидразин токсичен, при концентрациях более 40 % горюч, доставляется и хранится в виде 64 %-ного раствора плотностью 1047 кг/м3 в герметизированной таре из нержавеющей стали. Пары гидразина вызывают тяжелые поражения организма человека, поэтому при обращении с гидразином надо строго соблюдать соответствующие правила техники безопасности.
16.5 Внутрикотловая обработка воды
Труднорастворимые в воде вещества, переходя из раствора в твердую фазу, образуют либо отложения на поверхностях нагрева - накипи, либо взвеси, выпадающие из воды в виде шлама.
Выпадение твердой фазы из раствора происходит:
Накипь, образующуюся из растворенных в воде солей жесткости, называют первичной в отличие от вторичной накипи, получающейся в результате налипания на поверхности нагрева находящихся в воде взвешенных частиц с последующим их затвердеванием.
Образующаяся в паровых котлах накипь состоит в основном из сульфатной накипи CaSO4 и MgSO4 , обладающей большой твердостью и плотностью.
Силикатные накипи в котлах чаще всего встречаются в виде силиката кальция (CaSiO3) и силиката магния (MgSiO3). Накипь твердая, крепко пристающая к стенкам поверхностей нагрева.
Накипь характеризуется тремя показателями: пористость, твердость и теплопроводность.
Твердость и пористость отложений являются показателями, которые позволяют судить о трудности удаления накипи с помощью механических средств (скребки, шарошки и др.).
Теплопроводность отложений является важной характеристикой, определяющей надежность и экономичность работы котельных агрегатов и теплообменных аппаратов. Коэффициенты теплопроводности накипи приведены в табл. 7.
Основными накипеобразователями являются соли кальция и магния. Однако при определенном ионном составе испаряемой воды эти соли выпадают в виде шлама, легко удаляемого из агрегата с продувкой. Систематическое регулирование состава котловой воды заключается в поддержании такого соотношения количества ионов Са2+, Mg2+, ОН-, SiО32-, РО43-, при котором кальциевые и магниевые соли выпадают в виде шлама.
Таблица 7
Средние значения коэффициентов теплопроводности
для различных видов накипи
Вид накипи и ее химический состав |
Характер отложений |
Коэффициент теплопроводности, Вт/(м·К) |
Накипь, содержащая масло |
твердая |
0,12 0,17 |
Силикатная накипь (с содержанием SiO2 20-25 % и более) |
твёрдая |
0,06 0,23 |
Гипсовая накипь (с содер-жанием CaSO4 до 50 %) |
твердая плотная |
0,6 2,9 |
Карбонатная накипь (с содержанием CaCO3, MgCO3 более 50 %) |
от аморфного порошка до твердого котельного камня |
0,6 7,0 |
Смешанная накипь, состоя-щая из гипса, карбонатов и силикатов кальция и магния |
твердая плотная |
0,8 3,5 |
Наиболее распространенным способом внутрикотловой обработки воды является присадка в котловую воду химических реагентов, переводящих соли жесткости в шлам, и удаление его из котлов продувкой.
Фосфатирование служит защитным коррекционным мероприятием против накипеобразования. Для осуществления фосфатного режима в барабан парогенератора вводят растворы: тринатрийфосфата, динатрийфосфата и другие реагенты, в таком количестве, чтобы в парогенераторной воде постоянно поддерживалась заданная концентрация ионов РО43-.
Введение растворов может осуществляться во всасывающие или в нагнетательные патрубки питательных насосов, либо в общую питательную магистраль или в барабан каждого котла отдельно.
При достаточном количестве гидроксильных ионов (рН ≥ 10,0) взаимодействие ионов РО43-, ОН- и Са2+ приводит к образованию рыхлого шлама, удаляемого из котла с продувкой. Однако в слабощелочной среде питательной воды (рН ≤ 7,5-8,0) присутствие фосфатов приводит к образованию фосфорита, который отлагается в виде плотной кристаллической накипи в трубах водяных экономайзеров, а иногда и в питательных трубопроводах. В этом случае фосфаты целесообразно вводить не в питательную воду, а непосредственно в барабан по особой линии.
Относительную щелочность котловой воды при наличии фосфатирования определяют по формуле:
,
где Щкв - щелочность котловой воды, мг-экв/л; РО4 - содержание фосфатов (в пересчете на РО43-), мг/л; Скв - солесодержание котловой воды (сухой остаток за вычетом органических веществ), мг/л.
Для котлов с давлением пара менее 0,7 МПа относительную щелочность не нормируют.
Для полного осаждения накипеобразования в виде шлама минимальную щелочность котловой воды при внутрикотловой обработке рекомендуется поддерживать для всех котлов не ниже 7-10 мг-экв/л.
Обязательной составной операцией внутрикотловой водоподготовки является продувка, величину которой вычисляют по формуле:
,
где Sпв, Sпр - солесодержание питательной и продувочной воды, мг/л.
Для снижения тепловых потерь, связанных с непрерывной продувкой, тепло продувочной воды используется в устанавливаемых сепараторах непрерывной продувки и в теплообменниках, а отсепарированный пар в термических деаэраторах.
Нормы качества котловой воды приведены в табл. 8.
Таблица 8
Нормы качества котловой воды
Тип котла |
Допустимый сухой остаток в продувке, г/кг, при сепарирующих устройствах и ступенчатом испарении |
Общая щелочность |
|||
механические при бесступен-чатом испарении |
механические при двухступен-чатом испарении внутри барабана |
механические при ступенчатом испарении в выносных циклонах |
абсолютная, мг-экв/кг |
относительная, % |
|
Чугунные секционные паровые Р ≤ 0,17 МПа (1,7 кгс/см2) |
не регламентированы |
||||
Жаротрубные и дымогарные Р ≤ 0,8 МПа (8,0 кгс/см2) |
4-16 |
- |
- |
30-80 |
50 |
Водотрубные неэкранированные с нижним барабаном или грязевиком Р ≤ 1,4 МПа (14 кгс/см2) |
4-8 |
7-12 |
10-16 |
30-60 |
20 |
Водотрубные экранированные с нижним барабаном Р ≤ 1,4 МПа (14 кгс/см2) |
2-4 |
3-7 |
5-10 |
15-30 |
20 |
Водотрубные экранированные без нижних барабанов Р ≤ 1,4 МПа (14 кгс/см2) |
1-2 |
1,5-3 |
3-8 |
10-15 |
20 |
Водотрубные экранированные без нижних барабанов Р ≤ 4,5 МПа (45 кгс/см2) |
0,8-1,5 |
1-3 |
3-6 |
9-12 |
20 |
17. ГИДРОДИНАМИКА ПАРОВЫХ КОТЛОВ С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ
17.1. Расчет циркуляционного контура
Простейший контур испарительной системы (рис.89) состоит из обогреваемой подъемной трубы 1, необогреваемой опускной трубы 2, соединительного коллектора 3 и барабана 4, в котором происходит разделение пароводяной смеси на пар и воду.
За счет подвода теплоты в какой-то точке (точка закипания) по высоте подъемной трубы происходит закипание воды и выше нее находится пароводяная смесь.
За счет разности плотностей воды в опускных трубах и пароводяной смеси в подъемных трубах возникает движение воды вниз, а пароводяной смеси вверх и устанавливается естественная циркуляция. Создаваемый при этом движущий напор затрачивается на преодоление сопротивления в системе.
Расчет простого циркуляционного контура сводится к определению движущего напора (Рдв) и гидравлического сопротивления в опускных и подъемных трубах, а также к определению полезного напора контура (ΔРпол).
Рис. 89. Циркуляционный контур экрана:
1 - подъемная труба; 2 необогреваемая опускная труба;
3 - соединительный коллектор; 4 барабан
Движущий напор циркуляции составляет
Рдв = hпол g ρв (hнеоб g ρв + hэк g ρв + hпвс g ρпвс) , Па.
Полная высота контура складывается из высоты необогреваемого участка (hнеоб), экономайзерного участка (hэк) и высоты участка, где образуется пароводяная смесь hпвс
hпол = hнеоб + hэк + hпвс ,
следовательно
Рдв = hпвс g (ρв - ρпвс) , Па .
Таким образом, движущий напор зависит от высоты обогреваемого участка, высоты экономайзерного участка и от разности плотностей воды и пароводяной смеси. При увеличении давления в котле движущийся напор естественной циркуляции снижается, так как уменьшается разность (ρв - ρпвс). При критическом давлении Ркр=22,5 МПа ρв = ρпвс и движущийся напор отсутствует. Поэтому котлоагрегаты с естественной циркуляцией применяются до давлений пара менее 14,0 МПа.
Гидравлический расчет циркуляционного контура сводится к определению сопротивления в опускных и подъемных трубах. В общем случае сопротивление складывается из потерь напора на местные сопротивления и сопротивление трения.
Местные сопротивления
ΔРм = ζ hд , Па ,
где ζ - коэффициент местных сопротивлений (например: поворот, сужение сечения и т.д.); - динамический напор, где w - скорость воды или пароводяной смеси, м/с (скорость воды находится в пределах 1,5-3,5 м/с); ρ плотность воды или пароводяной смеси, кг/м3.
Сопротивление трения
, Па ,
где λ коэффициент трения; l длина (высота) участка, м; dэ эквивалентный диаметр (dвн), м .
Тогда потери напора в опускных трубах
ΔРоп = Σ ΔРм + ΔРтр , Па ,
а в подъемных
ΔРпод = (Σ ΔРм + ΔРтр)в + (Σ ΔРм + ΔРтр)пвс , Па ,
т.е. в подъемных трубах отдельно рассчитывается сопротивление экономайзерного участка и паросодержащего участка.
Движущий напор в циркуляционном контуре затрачивается на преодоление гидравлического сопротивления в опускных и подъемных трубах
Рдв = ΔРоп + ΔРпод , Па .
Разность движущего напора и сопротивления подъемной части циркуляционного контура составляет полезный напор, расходуемый на преодоление опускной части контура
Рпол = Рдв - ΔРпод = ΔРоп , Па .
При гидравлическом расчете предварительно принимается несколько значений скорости циркуляции во входных участках подъемных труб wо = 0,6-1,5 м/с и строятся графические характеристики при этих значениях (рис.90). На пересечении кривых находится расчетная точка А , для которой Рпол = ΔРоп .
По истинному значению скорости w определяется расход воды, циркулирующей в контуре Dв = ρв w fжс и кратность циркуляции К = Dв / Dп , т.е. отношение количества воды, циркулирующей в контуре, к количеству пара, содержащегося в пароводяной смеси на выходе из контура за 1 ход. Кратность циркуляции можно также представить как К = 1/х , где х паросодержание пароводяной смеси.
Для котлов с давлением Рпе ≤ 4,0 МПа кратность циркуляции находится в пределах К = 20-30; Рпе= 4,0-10,0 МПа → К = 10-18; Рпе = 14,0 МПа → К = 6-8.
Рис. 90. Гидравлическая характеристика простого циркуляционного
контура
Сложный циркуляционный контур
Сложный циркуляционный контур (рис. 91) состоит из несложных простых циркуляционных контуров, имеющих одно или более общих звеньев. К сложным контурам относятся также пучки труб, имеющие различную длину и неравномерный обогрев.
Рис. 91. Сложный циркуляционный контур:
1 барабан; 2 опускной стояк; 3,4 опускные трубы бокового и
заднего экранов; 5,6,7 нижние коллектора фронтового, бокового
и заднего экранов; 8,9,10 подъемные трубы фронтового, бокового
и заднего экранов; 11 фестон; 12,13 верхние коллектора
бокового и заднего экранов; 14,15 пароотводящие трубы бокового
и заднего экранов
Циркуляционные контуры фронтового и боковых экранов имеют общий элемент - опускной стояк, поэтому этот контур будет сложным.
Расчет сложного циркуляционного контура выполняется аналогично и ведется по отдельным контурам.
17.2. Нарушения в работе контура естественной циркуляции
Надежная работа контура зависит от его конструкции и условий эксплуатации котлоагрегата.
1. При низком значении кратности циркуляции (при высоком содержании пара в смеси) наблюдается интенсивный процесс образования накипи на внутренних стенках труб контура. Коэффициент теплопроводности накипи низкий и при этом металл труб охлаждается хуже, что приводит к образованию трещин, свищей и т.д. Кратность циркуляции должна быть не менее 4 (k ≥ 4).
2. Режимы со свободным уровнем в подъемных трубах, выведенных в паровой объем барабана (рис.92а).
При определенных режимах работы котлоагрегата (например, растопочный режим), при которых происходит слабый обогрев подъемных труб 3, выведенных в паровое пространство барабана, может прекратиться движение воды вследствие недостаточной величины полезного напора и может образоваться свободный уровень воды высотой hсв, выше которого медленно движется насыщенный пар.
3. Опрокидывание циркуляции (рис. 92б).
Опрокидывание циркуляции может иметь место в циркуляционных контурах, в которых подъемные трубы выведены в водяной объем барабана.
При слабом и неравномерном обогреве подъемных труб в таком контуре в части этих труб (менее обогреваемых) пароводяная смесь может двигаться вниз. При этом появляется скопление в трубе пара, который не может преодолеть динамическое воздействие движущегося вниз потока воды и увлекается вместе с ним, не выходя в барабан (характерно для котлов малой мощности, может возникать в процессе растопки или при очень низких нагрузках работы котлоагрегата).
4. Попадание пара в опускные трубы контура естественной циркуляции
а) При обогреве опускных труб или при снижении давления в барабане котла в них может образовываться пар, что приводит к уменьшению движущего напора, а, следовательно, к нарушению работы контура.
б) Нормальное поступление воды в опускные трубы может нарушиться вследствие образования вихревых воронок над их входными сечениями. При большой скорости может образоваться воронка, глубина которой сравняется с уровнем воды в барабане. Глубина воронки определяется скоростью воды и диаметром опускных труб. Поэтому скорость на входе в опускную трубу не должна превышать 0,4 м/с.
Мероприятия по повышению надежности циркуляции
1. Кратность циркуляции в контуре должна быть не менее 4.
2. Суммарное сечение опускных труб должно быть больше суммарного сечения подъемных труб ΣFоп ≥ ΣFпод .
3. Разделение контура с естественной циркуляцией на отдельные контуры с независимой циркуляцией.
а) б)
в) г)
Рис. 92. Нарушения в работе контура естественной циркуляции:
а - режимы со свободным уровнем; б - опрокидывание циркуляции;
в,г - попадание пара в опускные трубы контура естественной
циркуляции; 1 барабан; 2 подъемные трубы, выведенные в
водяной объем; 3 подъемные трубы, выведенные в паровой объем
барабана; 4 обмуровка; 5 опускные трубы; 6 дефект в обмуровке;
7 воронка, образовавшаяся в водяном объеме барабана
18. ВОДНЫЙ РЕЖИМ И КАЧЕСТВО ПАРА
18.1. Продувка котлоагрегата
В барабанных парогенераторах с естественной и многократной принудительной циркуляцией для исключения возможности образования накипей необходимо, чтобы концентрация солей в воде была ниже критической, при которой начинается их выпадение из раствора. С целью поддержания требуемой концентрации солей из парогенератора путем продувки выводится некоторая часть воды и вместе с ней удаляются соли в таком количестве, в каком они поступают с питательной водой. В результате продувки количество солей, содержащихся в воде, стабилизируется на допустимом уровне, исключающем их выпадение из раствора.
Применяется непрерывная и периодическая продувка парогенератора.
Непрерывная продувка обеспечивает равномерное удаление из парогенератора накопившихся растворенных солей и осуществляется из места наибольшей их концентрации в верхнем барабане.
Периодическая продувка применяется для удаления шлама, осевшего в элементах парогенератора, и производится из нижних барабанов и коллекторов парогенератора через каждые 12 16 ч.
Схема непрерывной продувки парогенераторов показана на рис. 93.
Рис. 93. Схема продувки парогенератора при одноступенчатой
системе испарения:
1 труба с отверстиями по ее длине для отвода продувочной
воды; 2 труба для подвода питательной воды
Вода непрерывной продувки подается в расширитель, где поддерживается давление, меньшее, чем в парогенераторе. В результате часть продувочной воды испаряется, и образовавшийся пар поступает в деаэратор. Оставшаяся в расширителе вода удаляется через теплообменник, и после ее охлаждения сливается в дренажную систему.
Величина непрерывной продувки устанавливается по допустимой концентрации в воде парогенератора растворимых примесей, чаще всего по общему солесодержанию, и выражается в процентах от производительности парогенератора:
,
где и расход продувочной воды и номинальная производительность парогенератора, кг/ч.
Расход питательной воды при наличии непрерывной продувки увеличивается и составляет:
.
Количество воды, удаляемое непрерывной продувкой, устанавливается из уравнения солевого баланса парогенератора
,
где расход питательной воды, кг/ч; , и солесодержание питательной воды, пара и продувочной воды, мг/кг; количество веществ, отлагающихся на поверхностях нагрева, отнесенное к 1 кг получаемого пара, мг/кг.
В парогенераторах низкого и среднего давления количество солей, уносимых паром, незначительно, и член можно приравнять нулю. Отложение солей на поверхностях нагрева при нормальном водном режиме парогенератора не допускается, и член в этом уравнении также должен быть равен нулю. Тогда количество воды, удаляемое с продувкой, должно быть равно:
.
С учетом того, что Dп.в =D + Dпр , получаем:
.
Величину продувки в % определяется как:
.
В парогенераторах высокого давления уносом солей паром вследствие растворимости пренебрегать нельзя, и величину продувки следует определять с учетом солесодержания пара.
Применение непрерывной продувки, являющейся основным средством поддержания требуемого качества воды парогенератора, связано с увеличением расхода питательной воды и тепловыми потерями. На каждый килограмм продувочной воды расходуется тепло, кДж/кг
,
где iпр и iп.в энтальпии продувочной и питательной воды, кДж/кг; h КПД парогенератора.
По правилам технической эксплуатации величина непрерывной продувки при питании парогенератора смесью конденсата и обессоленной воды или дистиллята должна быть не более 0,5 %, при добавке к конденсату химически очищенной воды не более 3 %, а если потери пара, отбираемого на производство, превышают 40 %, не более 5 %.
При указанных нормах продувки и частичном использовании продувочной воды потери тепла с продувкой составляют 0,1 0,5 % тепла топлива.
В целях уменьшения потерь тепла с продувкой следует стремиться к уменьшению количества выводимой из парогенератора воды. Эффективным методом снижения продувки является ступенчатое испарение воды. Сущность ступенчатого испарения или ступенчатой продувки состоит в том, что испарительная система парогенератора разделяется на ряд отсеков, соединенных по пару и разделенных по воде. Питательная вода подается только в первый отсек. Для второго отсека питательной водой служит продувочная вода из первого отсека. Продувочная вода из второго отсека поступает в третий отсек и т.д.
Продувку парогенератора осуществляют из последнего отсека второго при двухступенчатом испарении, третьего при трехступенчатом испарении и т. д. Так как концентрация солей в воде второго или третьего отсека значительно выше, чем в воде при одноступенчатом испарении, то для вывода солей из парогенератора требуется меньший процент продувки. Применение ступенчатого испарения эффективно также как средство уменьшения уноса кремниевой кислоты вследствие высокой гидратной щелочности, возникающей в солевых отсеках. В настоящее время в большинстве барабанных парогенераторов среднего и высокого давления применяется ступенчатое испарение.
Повышение солесодержания воды при нескольких ступенях испарения происходит ступенями и в пределах каждого отсека устанавливается постоянным, равным выходному из данного отсека.
Практически системы ступенчатого испарения и продувки обычно выполняются из двух или трех отсеков. При двухступенчатом испарении система делится на две неравные части чистый отсек, куда подается вся питательная вода и вырабатывается 75 85 % пара, и солевой отсек, где вырабатывается 25 15 % пара.
На рис. 94а показана схема испарительной системы с двухступенчатым испарением с солевыми отсеками, расположенными внутри барабана парогенератора, в его торцах, а на рис. 94б с выносными циклонами, которые вместе с включенными в них экранами образуют солевые отсеки парогенератора.
Допустимые предельные значения солесодержания, кремнесодержания и щелочности воды в барабанных парогенераторах зависят от их конструкции, давления пара и других параметров.
Избежать появления накипи на поверхностях нагрева только путем улучшения качества питательной воды и продувки парогенератора не всегда удается. В таких случаях дополнительно применяется коррекционный метод обработки воды в парогенераторе. Для этого в воду вводятся реагенты коррекционные вещества, анионы которых связывают и осаждают в виде шлама катионы кальция и магния.
Рис. 94. Схема продувки парогенератора при ступенчатой системе
испарения:
а с солевыми отсеками внутри барабана; б с выносными
сепараторами второй ступени испарения; 1 подвод
питательной воды; 2 отвод пара; 3 продувка чистого отсека;
4 продувка солевого отсека; 5 испарительные поверхности
нагрева, включенные в солевой отсек; 6 испарительные
поверхности нагрева, включенные в чистый отсек
В парогенераторах при давлении более 1,6 МПа в качестве корректирующего реагента применяется тринатрийфосфат Na3PO4·12H2O . При введении этого реагента происходит реакция с кальциевыми и магниевыми соединениями, например,
6Na3PO4 + 10CaSO4 +2NaOH = 3Ca3(PO4)2 + Ca(OH)2 + 10Na2SO4 .
Получившиеся вещества Ca3(PO4)2 , , обладают малой растворимостью и выпадают в виде шлама, удаляемого периодически продувкой.
18.2. Сепарация пара. Требования к пару. В насыщенном водяном паре могут находиться различные примеси: газы , , , и соли минеральных веществ, взвешенные или растворенные в паре.
Минеральные примеси могут отлагаться в трубах пароперегревателя, в арматуре паропроводов и в проточной части турбины в количестве, недопустимом для их нормальной работы.
К качеству насыщенного пара барабанных парогенераторов предъявляются следующие основные требования, установленные на основе опыта эксплуатации оборудования и данных теплохимических испытаний:
При давлении, большем 7 МПа, нормируется также содержание кремниевых соединений и содержание допускается не более 25 мкг/кг. При значительной добавке к конденсату химически очищенной воды допускаются количества примесей, больше указанных.
Загрязняющие примеси поступают в пар в основном из питательной воды. Содержание продуктов коррозии при нормальных условиях незначительно. В прямоточных парогенераторах высокого и сверхвысокого давления определяющее значение в загрязнении пара имеют растворенные в нем минеральные неорганические примеси, в основном SiO2, оксиды Fе и Сu, а также соединения натрия. Соотношение между минеральными примесями, выносимыми с паром и откладывающимися на испарительных поверхностях нагрева, характеризуется коэффициентом распределения
,
где Сп и Св содержание минеральных примесей в паре и воде, мкг/кг.
Коэффициент распределения зависит от химического состава минеральных веществ, так как растворение примесей происходит избирательно, и повышается с увеличением давления и температуры пара.
Таким образом, в прямоточных парогенераторах качество насыщенного пара определяется только характеристикой питательной воды. В пароперегревателях с естественной и многократной принудительной циркуляцией отделение пара от воды происходит в барабане. В парогенераторах низкого и среднего давления загрязнение насыщенного пара происходит вследствие выноса вместе с паром капель воды, содержащих минеральные примеси. При высоком давлении пара выносятся также растворенные в нем примеси, в основном соединения кремния.
В общем случае, содержание минеральных нелетучих примесей в насыщенном паре, мкг/кг:
,
где влажность пара, %, обычно = 0,01 0,03%; Кр коэффициент распределения примесей между паром и водой; Св содержание примесей в воде, мкг/кг.
При низких и средних давлениях содержание минеральных примесей в паре практически определяется только их содержанием в находящейся в барабане воде и влажностью пара, так как .
Образование капель воды и унос их паром. В барабане парогенератора при вводе пароводяной смеси под уровень воды происходит ее дробление и образование крупных и мелких капель.
Дробление воды происходит за счет затраты части кинетической энергии всплывающих на ее поверхность пузырей пара и за счет освобождения части энергии поверхностного натяжения при разрыве водных оболочек пузырей.
Унос котловой воды в пар связан в основном с массовым образованием в барабане мелких капель влаги в двух случаях:
Рис. 95. Модель образования влаги в паре:
а при ударе пароводяной струи о зеркало испарения;
б при разрыве пузырьков насыщенного пара на зеркале
испарения
Поток газа (пара), взаимодействуя с жидкостью, может увлекать
с собой капли этой жидкости. При дальнейшем движении пароводяной смеси происходит выпадение отдельных капель из потока в связи с изменением условий стабильности, т. е. нарушения устойчивости границы разделения двух фаз. Таким образом, существует два процесса: сепарация капель влаги и капельный унос. Оба эти процесса имеют большое значение для парогенерирующих агрегатов, работающих на докритическом давлении.
Следовательно, образование мелких капель жидкости происходит в основном за счет поверхностного натяжения, освобождающегося при разрыве оболочек паровых пузырей.
Образовавшиеся на поверхности зеркала испарения капли воды за счет их кинетической энергии будут подпрыгивать на высоту . Если высота подпрыгивания капель больше высоты парового пространства барабана, то капли могут быть унесены из него потоком пара. Если < , то такие капли выпадают обратно из потока пара в водяной объем барабана. Если относительная скорость капли равна скорости ее витания, то высота подъема капли будет неограниченно большой.
После того как начальная скорость капли перестанет оказывать влияние на ее движение, вертикальная составляющая стабилизированного движения капли в восходящем потоке пара будет wу = w" - wвит, где w" - подъемная скорость пара; wвит - скорость витания капли.
Если wвит < w", то капля при отсутствии устройств для ее задержания будет унесена потоком пара из парового пространства барабана, а если wвит > w", то капля упадет на зеркало испарения.
Скорость витания определяется по формуле:
wвит = , м/с.
Например, при давлении пара 10 МПа и достаточной высоте парового пространства барабана < , если подъемная скорость пара составляет w" = 0,1 м/с, то потоком пара будут транспортироваться капли размером меньше 0,1 мм.
Из приведенной характеристики образования капель влаги и выноса их потоком пара следует, что влажность пара зависит от нагрузки зеркала испарения и парового объема барабана, физических характеристик воды и пара, а также солесодержания воды.
Зависимость влажности пара от его подъемной скорости определяется выражением
ω = A(w0")n ,
где А коэффициент, зависящий от физических свойств воды и пара, а также от солесодержания воды.
Подъемная скорость пара пропорциональна нагрузке зеркала испарения Rs и объему парового пространства барабана, т. е. значению или , где D нагрузка котла; F и V площадь зеркала испарения и объем парового пространства барабана. Поэтому зависимости влажности пара от w0" и или идентичны и, следовательно,
.
На рис. 96 показана зависимость влажности пара от нагрузки зеркала испарения.
Рис. 96. Зависимость влажности пара, характеризуемой
коэффициентом уноса солей, %, от нагрузки парового
объема барабана для некоторых значений давления в
барабане (высота от уровня воды в стекле до точки выхода
пара 750 мм):
1 3,5 МПа; 2 9 МПа; 3 10,8 МПа
При малых нагрузках зеркала испарения повышение влажности происходит медленно и n < 2. С ростом нагрузки влажность пара интенсивно увеличивается и n = 2÷4. Дальнейшее увеличение нагрузки приводит к резкому увеличению влажности и n = 8÷12. Повышение давления увеличивает транспортирующую способность пара и долю мелких капель влаги в паре. В результате влажность пара при той же нагрузке будет больше, чем при меньшем давлении.
На рис. 97 показана зависимость влажности пара от высоты парового объема барабана. С увеличением влажность пара сначала резко уменьшается, а затем уменьшение влажности замедляется. При умеренных значениях м3/(м2·ч) увеличение выше 0,8÷1 м не дает существенного уменьшения влажности пара. Существенное влияние на влажность пара оказывает солесодержание воды. Это связано с уменьшением действительной высоты парового пространства барабана вследствие набухания водяного объема при увеличении солесодержания воды, а также повышения доли мелкодисперсных капель влаги, транспортируемых паром. С увеличением влажности пара возрастает и коэффициент уноса солей, равный отношению солесодержания пара к солесодержанию воды: .
Рис. 97. Зависимость влажности пара от высоты парового
пространства барабана при Р = 9 МПа
На рис.98 показана зависимость солесодержания пара и коэффициента уноса от солесодержания воды при постоянных приведенной скорости пара и давлении.
При увеличении солесодержания воды до некоторой величины, называемой критической, солесодержание пара увеличивается пропорционально , и коэффициент уноса К остается постоянным. При критическом солесодержании воды наблюдается резкое увеличение солесодержания пара и коэффициента уноса. Величина критического солесодержания зависит от давления и состава взвешенных и растворенных в воде веществ. С ростом давления критическое солесодержание воды уменьшается.
В барабанных парогенераторах для улучшения качества насыщенного пара необходимо уменьшить содержание в нем капельной влаги и растворенных в паре веществ. При низких и средних давлениях решающее значение для уменьшения солесодержания пара имеет сепарация капельной влаги от пара. В парогенераторах высокого и сверхкритического давления солесодержание пара определяется также содержанием в паре растворенных солей. Уменьшение содержания в паре капельной влаги достигается в барабане парогенератора равномерным распределением по длине и по диаметру барабана пароводяной и паровой нагрузки, а также отделением капель влаги от пара с помощью сепарационных устройств.
Рис. 98. Солесодержание пара и коэффициент уноса в зависимости от
солесодержания воды в барабане при постоянной
приведенной скорости пара:
1 солесодержание пара; 2 коэффициент уноса
В современных барабанных парогенераторах применяются в отдельности или в различных сочетаниях различные сепарационные устройства, схемы которых показаны на рис. 99.
Назначением указанных устройств является:
С помощью сепарационных устройств используются следующие принципы сепарации капель влаги из пара.
Гравитационная сепарация, при которой отделение капель влаги от пара осуществляется при горизонтальном и вертикальном подъемном движении пара со стабилизированной малой скоростью. Эффективность гравитационной сепарации пропорциональна разности плотности воды и пара, т. е. зависит от давления, а также размеров капель воды, скорости пара и длины его пути до выхода из барабана.
При указанных ниже напряжениях парового пространства барабана и скорости подъемного движения пара крупные капли влаги выпадают из потока на зеркало испарения, и в паре остаются частицы менее 50 мкм.
Этот принцип сепарации используется, например, в устройстве, показанном на рис. 99а. Гашение кинетической энергии струи пароводяной смеси и равномерное распределение пара происходят в водяном объеме. Отделение капелек влаги от пара осуществляется в паровом пространстве. Гравитационная сепарация имеет место практически в той или иной мере при всех конструкциях внутрибарабанных устройств.
Рис. 99. Схемы сепарационных устройств в барабане парогенератора:
а при подводе пароводяной смеси под уровень воды в
барабане; б при подводе пароводяной смеси в паровой
объем барабана; в с внутрибарабанными циклонами;
1 распределительный затопленный щит; 2 отбойный щит;
3 пароприемный щит; 4 жалюзийный сепаратор; 5 внутри-
барабанный циклон; 6 трубы испарительной поверхности
нагрева; 7 опускные трубы; 8 пароотводящие трубы
Инерционная сепарация. Отделение более крупных капель воды от пара может быть осуществлено при резком ускорении горизонтального или вертикального потока пара и последующем уменьшении его скорости, а также за счет центробежных сил, действующих на каплю при изменении направления движения или направления закручивания потока влажного пара. Инерционный принцип сепарации используется в различных конструкциях сепарационных устройств, основные из которых, как было указано ранее, показаны на рис. 99.
Простейшим инерционным сепаратором являются глухие или дырчатые стальные листы, размещенные вертикально или наклонно, которые одновременно используются для гашения кинетической энергии пароводяной смеси и отделения основной массы воды от пара (рис. 99б).
Скорость пароводяной смеси на входе под отбойный щит не должна превышать 2 2,5 м/с. Скорость пара на выходе из-под щита в барабан принимается обычно 0,7 1 м/с. Применяемые для равномерного распределения пара по площади зеркала испарения дырчатые щиты устанавливаются примерно на 75 100 мм ниже нижнего уровня воды в барабане. Минимальная скорость пара в отверстиях щита размером 8 12 мм должна быть 0,95 м/с при 4 МПа и 0,5 м/с при 10 МПа.
В жалюзийном сепараторе (рис. 98, б) для инерционного отделения капель воды используется изменение ускорения потока в сепараторе и на выходе из него, а также многократное изменение направления потока, что повышает эффективность сепарации. Предельная скорость пара перед горизонтальным жалюзийным сепаратором 0,5 м/с при 4 МПа и 0,2 м/с при 10 МПа. Если жалюзи вертикальны или наклонены под большим углом, скорость пара может быть в 1,5 2 раза выше.
Центробежный сепаратор циклонного типа, в котором происходит интенсивное закручивание потока влажного пара, показан на рис.100. Циклонные сепараторы обеспечивают эффективное отделение капель влаги за счет действия на них центробежных сил, отбрасывающих капли к стенке циклона, где они задерживаются на пленке воды, стекающей на зеркало испарения. Циклонные сепараторы выполняются либо внутрибарабанными при концентрированном подводе пароводяной смеси с большой скоростью в паровой объем барабана, либо выносными, в том числе для сепарации пара из второй и третьей ступеней испарения.
Эффективность улавливания капель влаги определяется тангенциальной скоростью входа пароводяной смеси в циклон u и осевой скоростью подъема потока в циклоне w0. С понижением отношения u/w0, эффективность работы циклона резко уменьшается, поэтому отношение u/w0 должно быть не меньше 5.
Внутрибарабанные циклоны обычно имеют высоту корпуса 400 500 мм. Осевая скорость пара в циклоне при давлении 4 МПа обычно w0=0,6 0,7 м/с, при 10 МПа w0=0,3 0,4 м/с. Допускаемая паропроизводительность циклона при диаметре 420 мм и давлении пара 4 МПа составляет 6,3 7,5 т/ч, а при 10 МПа около 10 13 т/ч.
Пленочная сепарация основана на использовании способности налипания мелких капель воды, не обладающих инерционными свойствами, на увлажненную и развитую поверхность при соприкосновении с ней потока влажного пара. При ударе потока влажного пара о такую поверхность в результате слияния мелких капель на ней образуется сплошная водяная пленка, которая достаточно прочна и не срывается паром, но в то же время беспрепятственно и непрерывно дренируется в водяное пространство барабана.
Пленочная сепарация используется в циклонных, а также в швеллерковых сепараторах. В швеллерковых сепараторах пленочная сепарация сочетается с инерционной за счет отбрасывания более крупных капель воды при прохождении влажного пара по каналам между швеллерами с четырехкратным поворотом на 90°. Такая конструкция достаточно эффективно отделяет мелкие капли от пара. Допускаемая скорость пара в швеллерковых сепараторах при давлении в барабане 11 МПа 0,2 м/с.
Пароприемные щиты. Для равномерного отвода пара по сечению барабана на выходе из него устанавливается пароприемный дырчатый щит. Скорость в отверстиях щита выбирается из условия
w02ρн/2 = 200 250 Па,
где плотность насыщенного пара, кг/м3.
Для создания достаточного дросселирующего эффекта щита скорость пара в его отверстиях должна быть в 2 раза больше, чем продольная скорость пара в барабане.
Промывка пара. Механические способы сепарации позволяют удалить из пара относительно крупные частицы. От веществ, находящихся в паре высокого давления в виде молекулярных и коллоидных растворов, пар может быть очищен промывкой его чистой водой. Практически промывка пара осуществляется пропуском его через слой воды.
На рис. 100 показано устройство для промывки пара. В паровом пространстве барабана размещается щит, на который подается питательная вода, стекающая затем в водяное пространство барабана. Щит выполняется в виде системы корыт или с перфорированными по его площади отверстиями.
Рис. 100. Схема сепарационного
устройства с промывкой пара:
1 щит с промывочным
корытцем; 2 жалюзийный
сепаратор; 3 пароприемный
щит; 4 разделительный щит;
5 подвод питательной воды;
6 трубы испарительной
поверхности нагрева;
7 опускные трубы;
8 пароотводящие трубы
Пар, проходя над слоем воды в корытах или через отверстия в щите, частично очищается от солей, насыщая ими воду. Основной целью промывки пара при высоком давлении является снижение уноса кремниевой кислоты. В установившемся состоянии кремнесодержание пара становится пропорциональным кремнесодержанию воды, контактирующей с паром. Коэффициент распределения кремнесодержания в паре и воде выражается отношением , которое определяет допустимое кремнесодержание питательной воды при заданном допустимом кремнесодержании в паре.
При промывке пара вследствие несовершенства его контакта с водой соли удаляются не полностью; конечное солесодержание пара определяется по формуле
,
где коэффициент проскока доля пара, прошедшего через промывочное устройство, но не промытого; и солесодержания промытой и непромытой частей пара.
Коэффициент проскока всех солей составляет примерно 10 15 %, а кремниевой кислоты 15 40 %. Для удовлетворительной работы промывочного устройства слой воды на щите должен быть 60 70 мм.
На промывочный щит подают не более 50 % питательной воды в целях уменьшения конденсации пара в барабане, которая вызывает необходимость повышения паросодержания в испарительных поверхностях нагрева. Для уменьшения выноса капельной влаги в питательную воду, находящуюся на щите, необходимо иметь достаточную высоту парового пространства под щитом.
В прямоточном парогенераторе с промывочно-сепарационным устройством промывка пара осуществляется путем впрыска воды в слегка перегретый пар с доведением его влажности до 2 %. При этом примеси в паре растворяются в воде. Далее влага отделяется от пара в центробежном сепараторе и после использования части ее тепла выводится в дренаж.
19. КОРРОЗИЯ ПОВЕРХНОСТЕЙ НАГРЕВА
19.1. Высокотемпературная коррозия поверхностей нагрева
В результате химического и электрохимического воздействия внешней среды на металл элементов котла возникают коррозионные процессы.
В зависимости от места возникновения различают коррозию внутренних поверхностей котла и наружную коррозию поверхностей нагрева, омываемых потоком продуктов сгорания топлива, содержащих O2, H2O, SO2 и SO3, которая рассматривается далее.
Различают низкотемпературную кислородную и сернокислотную коррозию, которая может возникать при использовании всех видов топлива, и высокотемпературную, в том числе ванадиевую коррозию, которая имеет место при сжигании мазута.
Механизм низкотемпературной коррозии рассмотрен в разделе 4.
В результате воздействия продуктов сгорания высокой температуры на поверхности металла образуется оксидная пленка. При высокой температуре металла процесс образования окалины усиливается. Наиболее интенсивная высокотемпературная коррозия имеет место при наличии сернистых соединений в продуктах сгорания. В области высоких температур газов при соприкосновении газов с горячими поверхностями нагрева имеет место образование SO3 из SO2. В частности, нагретый до высокой температуры металл пароперегревателя служит катализатором окисления SO2 до SO3, при этом наибольшую каталитическую активность имеет пленка окалины Fe2O3. Каталитическое воздействие на образование SO3 оказывает также слой золы при температуре примерно 600°С. При наличии оксидов серы в газах происходит соединение их со щелочными компонентами золы и образование сульфидов.
Трубки выходных ступеней пароперегревателей наиболее подвержены газовой коррозии. Повреждение трубок пароперегревателей вызывается окислением SO2 до SO3 и образованием при этом сульфидных оксидов железа на поверхности труб, разрушающе действующих на защитную пленку окалины.
Наличие в золе топлива оксида ванадия V2O5, в частности в минеральных примесях мазута, также усиливает газовую высокотемпературную коррозию вследствие растворяющего ее действия на защитные пленки окалины. Обычно ванадиевая высокотемпературная коррозия наблюдается на трубках пароперегревателя парогенераторов высокого и сверхвысокого давления и на поверхности стальных неохлаждаемых деталей, находящихся в области высоких температур газов. Опасность ванадиевой коррозии может быть снижена путем увеличения скорости газового потока и мероприятиями по уменьшению отложения золы, а также защитой трубок, например, графитовыми покрытиями.
19.2. Коррозия металла внутренних поверхностей элементов котла
В результате физико-химических процессов, возникающих при взаимодействии металла с омывающей его средой, может возникать процесс разрушения металла, который и называют коррозией. Если коррозионный процесс сопровождается протеканием электрического тока, его называют электрохимической коррозией. Неоднородность поверхности металла, имеющего кристаллическую структуру и неравномерный состав образующихся на поверхности нагрева отложений и коррозионных образований, является причиной образования электрических микропар. Водный раствор служит электролитом. На аноде микропары накапливаются молекулы металла, а на катоде гидроксильные группы ОН- . Там, где в толще раствора встречаются продукты анодной и катодной реакции, образуется гидрооксид железа Fe(OH)2, который осаждается на стенках. Так как микропары расположены не сплошь по поверхности, продукты коррозии обычно образуют рыхлую пленку, неспособную предохранять поверхность нагрева от дальнейшей коррозии.
Если процесс коррозии подчиняется законам химических гетерогенных реакций, и при этом не возникает электрический ток, его называют химической коррозией. При повышенных температурах металлической стенки определяющее значение имеет химическая коррозия, при которой происходят диффузионные процессы в металлической стенке в результате на ее поверхности образуется защитная пленка.
Химическая коррозия возникает при взаимодействии с металлом агрессивных газов О2 и СО2, а также пара при высоких температурах стенки. Соответственно различают кислородную и пароводяную коррозии.
При температуре металла выше 250 °С на его поверхности образуется оксидная пленка в виде плотного слоя, состоящего в основном из Fe3O4, препятствующая дальнейшему развитию коррозии. Образованию плотной пленки Fe3O4 способствует повышенное значение рН воды. Наличие растворенной в воде СО2 увеличивает коррозию, поскольку повышается кислотность среды, понижается рН и уменьшается прочность защитной пленки из продуктов коррозии. Для кислородной коррозии характерно появление местных изъязвлений, в том числе в местах соединения отдельных деталей.
Взаимодействие водяного пара с металлом происходит при температурах выше 500 °С путем диффузии
3Fe + 4H2O = Fe3O4 + 4H2 .
Образующаяся в результате процесса пленка защитных окислов при температуре ниже 570 ○С преимущественно состоит из Fe3O4.
В испарительных поверхностях нагрева в результате взаимодействия металла с едким натром NaOH при высокой его концентрации в воде (более 3 %) возникает щелочная коррозия. Разновидностью щелочной коррозии является межкристаллическая коррозия каустическая хрупкость металла, которая возникает в вальцовочных соединениях под влиянием высоких механических напряжений при наличии высокой щелочности воды. Предотвращение щелочной коррозии достигается уменьшением агрессивных свойств воды путем поддержания в ней в определенном соотношении концентраций гидратной щелочи и других ионов.
20. ЗАГРЯЗНЕНИЕ ПОВЕРХНОСТЕЙ НАГРЕВА
В процессе работы парогенератора возникает загрязнение внешних поверхностей нагрева. На экранах и ширмах топки, работающей на пылевидном твердом топливе, возможны отложения шлака. Эти отложения образуются при температуре газов на выходе из топки, более высокой, чем температура размягчения золы, а также в высокотемпературных зонах топки при неудовлетворительной аэродинамической организации топочного процесса в тех случаях, когда расплавленные частицы золы, не успевшие охладиться и затвердеть, выносятся потоком газов на стенки топок и трубы экранов. Обычно шлакование начинается в промежутках между экранными трубами, а также в застойных зонах и участках топки.
Если температура топочной среды в зоне образования шлаковых отложений ниже температуры начала деформации золы tA, то наружный слой шлака состоит из отвердевших частиц. При повышении температуры наружный слой шлака может оплавляться, что способствует налипанию новых частиц и прогрессирующему шлакованию. При температуре окружающей среды выше точки начала жидкоплавкого состояния tC наружный слой шлака будет оплавляться и дальнейшего его нарастания не будет, так как шлак будет стекать со стенок топки. В таком режиме работают ошипованные экраны топок с жидким шлакоудалением.
Шлакование уменьшает тепловосприятие поверхностей нагрева, расположенных в топке, и повышает температуру продуктов сгорания на выходе из топки, что может привести к нарушению нормального гидроди- намического режима работы экранов и ширм. В области пароперегревателя, если температура газов ниже tA, имеют место уплотненные отложения твердых частиц золы. Прочные отложения образуются при наличии в золе топлива свободной извести СаО, которая, соединяясь с SO3, образует сульфат кальция, связывающий между собой и поверхностью труб частицы золы.
В экономайзере образуются рыхлые сыпучие отложения мелких фракций золы, причем рост загрязняющего слоя сопровождается разрушением его более крупными частицами, в результате чего устанавливаются динамическое равновесие и устойчивое состояние загрязняющего слоя.
В зоне низких температур могут образовываться липкие связанные отложения. Переход от сыпучих к вязким отложениям в области низких температур, где может иметь место конденсация влаги, связан с тем, что в результате смачивания золы серной кислотой образуется гипс вещество с вяжущими свойствами.
Отложения золы на конвективных поверхностях нагрева образуются в основном на кормовых поверхностях труб, а при малых скоростях потока - и на лобовых их поверхностях. Более крупные частицы золы оседают на лобовых поверхностях, более мелкие, огибая трубы и попадая в вихревую зону, оседают на кормовых поверхностях.
Количество отложений на конвективных поверхностях нагрева зависит от скорости потока продуктов сгорания, геометрических характеристик поверхности нагрева и физических свойств золы.
Существенно влияет на загрязняющие отложения скорость потока газов. Число соприкосновений с трубами мелких частиц увеличивается пропорционально скорости потока, а разрушающие действия крупных частиц растут пропорционально этой скорости в третьей степени. В итоге с увеличением скорости потока динамическое равновесие между процессами оседания золы и разрушения ее осевшего слоя наступает при меньших размерах потока.
Существенно влияют на загрязнение труб их диаметр, шаг между трубами, а также порядок их расположения коридорный или шахматный. Уменьшение диаметра труб и продольного шага в шахматных пучках значительно снижает их загрязнение. Коридорные пучки труб подвержены загрязнению больше, чем шахматные.
Уменьшение размера частиц золы повышает загрязнение конвективных поверхностей нагрева. Однако частицы с размером менее 20 мк практически не оседают на трубах. Крупные частицы золы оказывают разрушающее влияние на слой отложений золы. Зольность топлива не влияет на толщину загрязнений. По достижении определенной толщины загрязнений зола больше не осаждается на загрязненных трубах. Толщина липких загрязнений в области низких температур зависит от зольности топлива и характеристик золы и прогрессирует во времени.
Вследствие загрязнения конвективных поверхностей нагрева ухудшаются условия теплопередачи и повышаются их аэродинамические сопротивления. В результате повышается температура уходящих газов, увеличиваются потери теплоты с уходящими газами и расход электроэнергии на тягу. Для нормальной и надежной работы котла поверхности нагрева необходимо поддерживать чистыми.
Очистка поверхностей нагрева от загрязнений
В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяют паровую и пароводяную обдувку, а также вибрационную очистку, а для конвективных поверхностей нагрева паровую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самообдувку.
Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрационная очистка. Радикальным является применение самообдувающихся поверхностей нагрева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми.
Паровая обдувка. Очистка поверхностей нагрева от загрязнений может быть осуществлена за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью.
Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа.
Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления.
Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие достаточно эффективно. При давлении пара 4 МПа перед обдувочным аппаратом динамический напор струи на расстоянии примерно 3 м от сопла составляет более 2000 Па.
Для удаления отложений с поверхности нагрева динамический напор струи должен составлять примерно 200250 Па для рыхлых золовых отложений, 400500 Па для уплотненных золовых отложений, 2000 Па для оплавленных шлаковых отложений.
Обдувочные аппараты. Конструктивная схема обдувочного аппарата приведена на рис. 101.
Рис. 101. Обдувочный аппарат:
1, 5 электродвигатели; 2 обдувочная труба; 3, 6 редуктора;
4 каретка; 7 монорельс; 8 звездочка; 9 бесконечная цепь;
10 запорный клапан; 11 тяга с клином; 12 рычаг;
13 неподвижный паропровод; 14 стержень
Обдувочный аппарат включает в себя:
Обдувочная труба соединена при помощи сальника с неподвижным паропроводом 13, подводящим к ней пар от запорного клапана. Двутавровый монорельс 7 несет на себе все указанные механизмы, а сам крепится к каркасу котла. При получении импульса от предыдущего обдувочного аппарата, закончившего свою работу, пускатель включает электродвигатели 1 и 5. При этом включается сигнальная лампа, расположенная на щите программного управления обдувкой. Каретка 4, перемещаясь по монорельсу, вводит обдувочную трубу 2 в газоход. Когда обдувочная труба выходит на позицию обдувки, стержень 14, воздействуя на рычаг, увлекает при помощи тяги клин 11, который через толкатель отжимает запорный паровой клапан, открывающий доступ пара в обдувочную трубу. Пар из обдувочной трубы выходит через сопла, обдувая поверхность нагрева.
При поступательно-вращательном движении трубы 2 обдувка производится по винтовой линии. После полного ввода обдувочной трубы внутрь газохода штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели электродвигателя 5, переключает прибор на обратный ход. При этом обдувка поверхности нагрева производится так же, как и при движении обдувочной трубы внутрь газохода.
До того как сопловая головка будет выведена из газохода, стержень 14, воздействуя через рычаг 12 на клин 11, выведет его в исходное положение, и запорный паровой клапан под действием пружины закроется, прекратив доступ пара в обдувочную трубу.
С возвратом обдувочной трубы в исходное положение штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели, отключает электродвигатели 1 и 5, и следующий по схеме прибор получает импульс на включение.
Зона действия обдувочного аппарата до 2,5 м, а глубина захода в топку до 8 м. На стенах топки обдувочные аппараты размещаются так, чтобы зона их действия •охватывала всю поверхность экранов.
Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева.
Для регенеративных воздухоподогревателей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводится к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподогревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухоподогревателя. Для очистки регенеративного воздухоподогревателя парогенераторов, работающих на твердом топливе, в качестве обдувочного агента применяется пар, а парогенераторов, работающих на мазуте щелочная вода. Вода хорошо промывает и нейтрализует сернокислотные соединения, имеющиеся в отложениях.
Пароводяная обдувка. Рабочим агентом обдувочного аппарата служит вода парогенератора или питательная вода.
Аппарат представляет собою сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Высокая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.
Вибрационная очистка. Вибрационная очистка основана на том, что пpи колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка свободно подвешенных вертикальных труб, ширм и пароперегревателей. Для вибрационной очистки преимущественно применяют электромагнитные вибраторы (рис. 102).
Трубы пароперегревателей и ширм прикрепляются к тяге, которая выходит за пределы обмуровки и соединяется с вибратором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электромагнитный вибратор состоит из корпуса с якорем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,30,4 мм.
Дробеочистка. Дробеочистка применяется для очистки конвективных поверхностей нагрева при наличии на них уплотненных и связанных отложений. Очистка происходит в результате использования кинетической энергии падающих на очищаемые поверхности чугунных дробинок диаметром 35 мм. В верхней части конвективной шахты парогенератора помещаются разбрасыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает
Рис. 102. Вибрационное устройство для очистки вертикальных труб:
а вид сбоку; б сопряжение виброштанги с обогреваемыми
трубами, вид сверху; 1 вибратор; 2 плита; 3 трос;
4 противовес; 5 виброштанга; 6 уплотнение прохода
штанги через обмуровку; 7 труба
осевшую на трубах золу, а затем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с частицами золы направляется в циклон, где происходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом, а зола, осевшая в циклоне, удаляется в систему золоудаления котельной установки.
Транспорт дроби осуществляется по всасывающей или нагнетательной схеме. При всасываемой схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагнетательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воздуха 40 50 м/с.
В последнее время дробеочистка практически не используется. Это связано с деформацией поверхностей нагрева и относительно низкой эффективностью.
21. КОТЕЛЬНЫЕ СТАЛИ
Котельные стали работают в очень жестких условиях, на них одновременно действуют высокое давление воды и пара, высокая температура дымовых газов, воды и пара, агрессивность воды и дымовых газов, следствием которых является образование коррозии. Одновременно действуют механические нагрузки на элементы котлоагрегата, вызывая изгиб, растяжение, сжатие, поэтому стали должны обладать следующими свойствами:
1) прочность;
2) твердость;
3) хорошая свариваемость;
4) пластичность;
5) стойкость против коррозии и окалинообразования.
Пыле-, газо-, воздухопроводы, лестницы, площадки, ограждения изготавливаются из обычных углеродистых сталей марки Ст.3.
Барабаны котлоагрегата при температуре стенки не более 450 оС изготавливаются из углеродистых сталей марок Ст.15К и Ст.20К (К котловая сталь) и из сталей Ст.09Г2С; Ст.16ГС (Г марганец, С кремний - придают жаропрочность). С повышением температуры стенки барабана применяется сталь марки Ст.16НМ (никель, молибден).
Трубы поверхностей нагрева. Для котлоагрегата с Р ≤ 4,0 МПа (tст ≤ 450 оС) применяется сталь Ст.20, из нее изготавливаются и питательные трубопроводы. В котлоагрегатах высокого давления (Р> 4,0 МПа) трубы изготавливаются из сталей марок Ст.12 МХ, Ст.15 МХ (Х хром придает стойкость, прочность, окалиностойкость). С повышением параметров пара (Р = 25,5 МПа, tпер = 570 оС) применяются высоколегированные стали марок Ст.12Х1МФ (Ф - ванадий) и Ст.15Х1М1Ф, причем Ст.12Х1МФ для пароперегревателей, коллекторов и паропроводов, Ст.15Х1М1Ф только для коллекторов и паропроводов. При температуре стенки труб поверхности нагрева до 620 оС применяются высоколегированные стали Ст.Х18Н12Т (Т - титан) обладающие очень высокой жаропрочностью и окалиностойкостью. Трубы, изготовленные из этой стали, плохо свариваются, и при незначительных отклонениях от нормалей в сварных швах появляются трещины.
21.1. Расчет на прочность элементов котлоагрегата, работающих
под давлением
Расчет на прочность элементов парогенератора, работающих под давлением рабочей среды, имеет целью определить необходимую толщину стенки элемента или допускаемое в нем давление. Элементы парогенератора, работающие под давлением рабочего тела барабаны, коллекторы, поверхности нагрева выполняются в виде цилиндрических конструкций и из труб. В этих элементах имеют место внутренние напряжения (остаточные и температурные) и внешние, возникающие под действием давления рабочего тела, его массы и собственной массы элемента. Остаточные напряжения, возникающие в процессе изготовления элемента, ликвидируются перед его монтажом термической обработкой.
Температурные напряжения в стенках обогреваемых деталей вызываются перепадом температур по толщине стенки детали или по ее периметру. Предотвращение значительных перепадов температур по толщине стенки и соответственно высоких температурных напряжений достигается ограничением толщины стенки и конструктивными и режимными мероприятиями, обеспечивающими минимальные перепады температур в стенке.
Исходя из указанных положений, основной нагрузкой, по которой должна определяться толщина стенки элемента парогенератора, принято давление рабочей среды. Дополнительные внешние нагрузки, осевые усилия, изгибающие и крутящие моменты, действующие на элемент, в частности нагрузки от собственной массы, регламентируются предельными значениями и учитываются снижением общего запаса прочности. Например, для постоянных внешних нагрузок принято снижение запаса прочности на 10 %.
В основу методов расчета элементов парогенератора на прочность положен принцип оценки прочности по предельной нагрузке. Расчетная формула для определения толщины стенки сосуда, учитывающая его ослабления отверстиями для труб и лючков, если расчет ведется по внутреннему диаметру, имеет вид:
, м,
где Р избыточное давление на внутреннюю поверхность, Па; Dвн внутренний диаметр, мм; σдоп допускаемое напряжение, Па; φ коэффициент прочности сосудов; С поправка для учета допусков на толщину стенки при прокате, а также на износ и коррозию.
Допустимое давление при данной толщине стенки, если номинальным является внутренний диаметр, определяется по формуле:
, Па ,
где Sф фактическая толщина стенки, мм.
Величина расчетного давления принимается равной номинальному давлению пара на выходе из парогенератора, увеличенному на потерю давления от гидравлического сопротивления в тракте, расположенном между рассчитываемым элементом и выходом пара из парогенератора. Для элементов, содержащих жидкую среду, надо учитывать давление столба жидкости над рассчитываемым элементом. Если сумма потерь и гидростатического давления не превышает 3 % номинального давления, их можно не учитывать.
Коэффициенты прочности сосудов, ослабленных отверстиями для труб, определяются для всех направлении по формулам (рис. 103):
для продольного направления
;
для поперечного направления
;
для косого направления, приведенного к продольному
,
где n = tк/ t .
В расчет вводится наименьшая из величин φ, φпр , 2φ1.
а) б)
Рис. 103. Схема ослабления элемента при наличии отверстий:
а расположение отверстий в поперечном направлении в
коридорном порядке; б расположение отверстий в шахматном
порядке
Коэффициент прочности стыковых сварных соединений φ для углеродистой, низколегированной марганцовистой, хромомолибденовой и аустенитной сталей принимается φ = 1, а для хромомолибденованадиевой и высокохромистой сталей φ = 0,85.
Величина С поправка для учета допусков на толщину стенки при прокате, а также на износ и коррозию. При небольших толщинах (до 30 мм) С составляет 0,10,3, а для большей толщины (>50 мм) С принимается от 0,7 до 1 мм.
Определенная толщина стенки округляется до ближайшего размера по сортаменту труб.
Допускаемое напряжение определяется по формуле
σдоп = ησ*доп ,
где σ*доп номинальное допускаемое напряжение, Па; η коэффициент, учитывающий конструктивные и эксплуатационные особенности рассчитываемого элемента.
Номинальные допускаемые напряжения σ*доп зависят от температуры стенки. Расчетная температура стенки, по которой определяется величина номинального допускаемого напряжения, принимается в зависимости от рода и температуры среды, условий обогрева элемента газами и охлаждения рабочей среды ( для котельных пучков, фестонов: tст = tкип + 60 оС; для необогреваемого барабана tст = tнас ; для труб экономайзера tст = tср.пит + 30 оС; для пароперегревателя tст = tср.пе + (100÷120 оС).
Во всех случаях расчетная температура стенки не должна приниматься ниже 250 °С. При расчете барабана и коллекторов парогенератора, когда расстояние между опорами барабана более 8 м и коллекторов более 6 м, следует проверить напряжения, возникающие при их изгибе.
Формулу можно пользоваться и в поверхностных расчетах, при уточнении S, а, зная S, определяют Ррасч, называемое Рдоп - допустимое.
ЗАКЛЮЧЕНИЕ
Основные направления развития парогенераторной техники:
Библиографический список
Липов Ю.М., Третьяков Ю.М. Котельные установки и парогенераторы. М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2004.
Сидельковский Л.Н., Юренев В.Н. Парогенераторы промышленных предприятий. М.: Энергия, 1978.
Ковалев А.П., Лелеев Н.С., Виленский Т.В. Парогенераторы.-М.: Энергоатомиздат, 1985.
Смородин С.Н., Иванов А.Н. Тепловой и аэродинамический расчеты котельных установок: учеб. пособие/ СПбГТУРП. СПб., 2008.
Белоусов В.Н., Смирнова О.С., Смородин С.Н. Основы сжигания газа: учеб. пособие/ СПбГТУРП. СПб., 2009.
PAGE 122