У вас вопросы?
У нас ответы:) SamZan.net

Индуктивность и взаимная индуктивность При анализе электрических и магнитных полей потокосцепление y одн

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.4.2025

                           Вопрос 38

 Потокосцепление. Индуктивность и взаимная индуктивность

При анализе электрических и магнитных полей потокосцепление y одного контура с током I определяется магнитным потоком (величина которого пропорциональна току), сцепляющимся с этим контуром. Такой поток называют потоком самоиндукции. Потокосцепление самоиндукции данного контура обозначают yL

(3.14)

Коэффициент пропорциональности L называют собственной индуктивностью контура. Единицей измерения индуктивности является генри (Гн).

Собственная индуктивность всегда положительна.

Если магнитный поток, сцепляющийся с рассматриваемым контуром (например, первым), создается током I2 во втором контуре, то для линейной среды потокосцепление будет пропорционально току I2. При этом потокосцепление называют потокосцеплением взаимной индукции и обозначают y12или y

.

Величину М12 называют взаимной индуктивностью контуров.

Магнитные потоки, создаваемые постоянными токами, определяют статические индуктивности, которые зависят от геометрических размеров контуров, их взаимного расположения, магнитной проницаемости контуров и среды.

Потокосцепление катушки, содержащей N витков (при условии, что магнитный поток сцепляется со всеми витками) можно определить и так

Если магнитное поле создается токами, протекающими в n контурах, которые расположены в среде с m = const, то потокосцепление yk с k – м контуром рассчитывается как сумма потокосцепления самоиндукции, определяемого током Ik в этом же контуре, и потокосцеплений взаимной индукции, определяемых токами в остальных контурах:

Явление электромагнитной индукции

При анализе магнитного поля ранее было установлено, что приращение количества зарядов  q , протекающих через замкнутый электрический контур в течение некоторого времени, пропорционально приращению пронизывающего этот контур магнитного потока  Ф в течение того же времени, взятому с обратным знаком.

,

(1)

где r - сопротивление контура.

Перейдем в выражении (1) к бесконечно малым приращениям

,

(2)

но из определения электрического тока, как количества электрических зарядов перемещающихся через поперечное сечение проводника в единицу времени i=dq/dt, следует, чтоdq=idt. Отсюда

.

(3)

Произведение ir представляет собой падение напряжения в контуре электрической цепи, пронизываемом магнитным потоком Ф, и по второму закону Кирхгофа оно должно уравновешиваться ЭДС, действующей в этом контуре. Следовательно, величина, стоящая в правой части выражения (3), является электродвижущей силой, под действием которой в контуре протекает электрический ток i или

.

(4)

Таким образом явление электромагнитной индукции заключается в появлении (наведении) в проводящем контуре, находящемся в магнитном поле, электродвижущей силы в случае изменения величины магнитного потока, проходящего через поверхность, ограниченную этим контуром.

При этом имеется в виду весь магнитный поток окружающий контур, т.е. создаваемый как внешними магнитными полями, так и током, протекающим в самом контуре. Кроме того,несущественно чем вызвано изменение магнитного потока. Он может изменяться в результате перемещения контура или поля друг относительно друга, или в результате изменения токов в цепях, создающих магнитный поток.

Выражение (4) представляет собой одну из математических записей закона электромагнитной индукции - ЭДС, наводимая в контуре электрической цепи, равна взятой с обратным знаком скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром.

Строго говоря, условие проводимости контура, в котором наводится ЭДС не является необходимым. ЭДС будет наводиться и в непроводящем контуре, т.е. в диэлектрике. Различие для проводящего и непроводящего контуров будет заключаться лишь в том, что в проводящем контуре при замыкании его будет протекать ток проводимости, а в непроводящем - ток смещения.

Если от рассмотрения контура одного витка перейти к катушке, состоящей из некоторого количества витков, то величину магнитного потока во всех выражениях нужно заменитьпотокосцеплением  . Тогда ЭДС, наводимая в катушке будет

.

(5)

 

Формулировка закона электромагнитной индукции, соответствующая выражению (4), относится только к контурам ограничивающим некоторую поверхность и впервые была данаМаксвеллом. Однако ЭДС может наводиться и на отдельных участках контура. Это очевидно, если представить магнитный поток Ф числом единичных магнитных трубок или соответствующих линий N, т.е. Ф = N или  Ф =  N и dФ = dN . Отсюда

,

(6)

Так как трубки магнитного потока непрерывны, то их число может измениться только, если они пересекут поверхность образованную контуром. Следовательно, ЭДС, наводимая в контуре электрической цепи, равна взятой с обратным знаком скорости пересечения контура магнитными линиями.

Такая формулировка соответствует формулировке закона электромагнитной индукции Фарадея. Очевидно, что для контуров, ограничивающих поверхность, обе формулировке тождественны. Однако, магнитные линии могут пересекать не только контур, но и проводник, и в этом случае выражение (6) позволяет определить индуктированную ЭДС.

Пусть, например, прямой отрезок проводника длиной l перемещается в однородном магнитном поле перпендикулярно линиям индукции в направлении перпендикулярном его оси со скоростью (рис. 1 а)). В течение времени dt он переместится на расстояние vdt и опишет поверхность площадью lv dt . Так как число единичных магнитных линий, проходящих через нормальную поверхность численно равно магнитной индукцииB, то число линий dN, которые пересечет проводник за время dt будет равно Blv dt. Отсюда абсолютное значение ЭДС

e = Blv.

Направление ЭДС определяется правилом правой рукиДля этого отведенный большой палец нужно направить в сторону движения, линии индукции должны входить в ладонь, тогда пальцы будут указывать направление ЭДС.

В общем случае проводника произвольной формы и ориентации в пространстве, движущегося в неоднородном магнитном поле, можно написать выражение для элементарной ЭДС de , индуктируемой в элементарном отрезке проводника dl. Если dl - вектор, направленный по оси элементарного проводника (рис. 1 б)), а v - вектор скорости, направленный под уголом  к d, то поверхность, описываемая элементарным проводником за время dt будет равной ds=vdlsin dt , т.е. ее можно представить векторным произведением ds=[v dl]dt . Элементарный магнитный поток через эту поверхность равен dФ=Bds=B[v dl]dt. Отсюда элементарная ЭДС, наводимая в отрезке dl

(7)

ЗАДАЧА 1

Рассмотрим имеющий большое практическое значение частный случай индукции ЭДС в прямоугольной рамке abcd, вращающейся в однородном магнитном поле с угловой частотой  относительно оси перпендикулярной направлению магнитного потока (рис. 2).

Выделим на сторонах ab и da элементарные отрезки dl1 и dl2. Вектора скорости движения этих отрезков v1 и v2 в любой момент времени направлены перпендикулярно плоскости рамки. Поэтому вектора элементарных поверхностей ds1 и ds2, описываемых элементарными отрезками dl1и dl2, будут располагаться в плоскости рамки перпендикулярно сторонам ab и da. Следовательно, для второго элементарного отрезка угол между векторами B и ds2 будет постоянного равен 90 и поток вектора индукции через эту поверхность равен нулю. Отсюда будет равна нулю и ЭДС наводимая в любом элементарном отрезке сторон da и bc вращающейся рамки.

Раскроем выражение (7) для элементарного отрезка dl2 в виде de=Bcos (dl2vsin ), где  = t - угол между вектором и нормалью к поверхности ds2, а  = 90 - угол между векторами v и dl2. Отсюда de=B cos t dl v, но модуль скорости движения равен  bc/2. Таким образом, ЭДС, наводимая в стороне ab рамки равна

,

(8)

где s = ab bc - площадь рамки, представленная через размеры ее сторон.

Очевидно, что если распространить интегрирование на другую сторону рамки bc, то ЭДС будет вдвое больше, т.е. eabcd= Bs cos t .

Таким образом, вращающуюся в магнитном поле рамку можно представить в виде электрической цепи с двумя источниками ЭДС, наводимыми в сторонах ab и cd рамки. Эти стороны называются активными сторонами и играют большую роль в процессах преобразования энергии в электрических машинах. Две другие стороны рамки создают электрическую связь для протекания тока в контуре рамки.

Аналогичный результат можно получить из выражения (4), если учесть, что величина магнитного потока, сцепляющегося с рамкой, это скалярное произведение магнитной индукции на площадь рамки, т.е.

Ф = Bscos(90   ) = Bscos(90   t)= Bssin t.

В этом выражении косинус угла между вектором индукции и нормалью к плоскости рамки представлен через угол  между вектором индукции и плоскостью рамки. Отсюда ЭДС индуктируемая в рамке при вращении

.

(9)

Таким образом, мы получили тождественные выражения для результирующей ЭДС, пользуясь различными представлениями закона электромагнитной индукции. Эти результаты можно обобщить, пользуясь понятием потокосцепления, для рамки с числом витков .

.

(10)

 

Электромагнитная индукция

 

 

Возникновение в проводнике ЭДС индукции

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая ЭДС индукции.

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией.

Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемыевихревые токи распространяются по массивному проводнику и накоротко замыкаются в нем.

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работаиндукционных нагревательных печейсчетчиков электрической энергии и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.




1. ВСТУП1
2. На рейсовом автобусе мы ехали в Томскую область
3. Форма (устройство) государства
4. Формирование у дошкольников навыков правильного поведения на улице Ребенка обучи дашь миру человека
5. Задание 1 Связывание и консолидация рабочих листов в excel
6. Культура козацької держави
7. АР ЛурияЭтапы жизненного пути
8. Реферат- Понятие и виды права природопользования
9. 1] 1.1 Основные направления торговли сырами в России [1
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата медичних наук Спеціальність 14