У вас вопросы?
У нас ответы:) SamZan.net

Движение заряженной частицы в магнитном поле

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.2.2025

38.  Движение заряженной частицы в магнитном поле. Сохраняющиеся и изменяющиеся величины. Расчет радиуса и шага спирали.

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке: . Эта сила сообщает ускорение

  

где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением  , если заряд частицы положителен (q > 0), и будет противоположно  , если заряд отрицателен (q<0).

Если электростатическое поле однородное (  = const), то ускорение  a= const и частица будет совершать равноускоренное движение (при отсутствии других сил).

Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась   или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый 0 < α < 90° (или тупой), то заряженная частица   будет двигаться по параболе.  

Во всех случаях при движении заряженной частицы будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

1.  Заряженная частица влетает в магнитное поле со скоростью , направленной вдоль поля  или противоположно  направлению магнитной индукции поля  .

В этих случаях сила Лоренца     и частица будет продолжать двигаться равномерно прямолинейно.

2. Заряженная частица движется перпендикулярно линиям магнитной индукции

тогда сила Лоренца  , следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы.

В результате частица будет двигаться по окружности , радиус которой можно найти на основании второго закона Ньютона:

  

Отношение      — называют удельным зарядом частицы.

  

Период вращения частицы

то есть период вращения не зависит от скорости частицы и радиуса траектории.

3. Скорость заряженной частицы направлена под углом  к вектору.

  

Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью  и движения по окружности с постоянной по модулю скоростью  в плоскости, перпендикулярной полю.

Радиус окружности определяется аналогично предыдущему случаю, только надо  заменить  на   , то есть

В результате сложения этих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю. Шаг винтовой линии

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость заряженной частицы составляет угол α с направлением вектора    неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, тο R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией  действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца:  . Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

Движение заряженных частиц

в

однородном электрическом поле

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e[uB] , где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

 (1)

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью  попадают в электрическое поле плоского конденсатора.

Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем: . Так как магнитного поля нет, то . В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение частиц в этом случае происходит под действием постоянной силы и подобно движению горизонтально брошенного тела в поле тяжести. Поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол  , на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (3.2), находим:

Интеграция второго уравнения даёт:

Так как при t=0 (момент вступления частицы в конденсатор) u(y)=0, то c=0, и поэтому

Отсюда получаем для угла отклонения:

Мы видим, что отклонение пучка существенно зависит от величины удельного заряда частиц e/m.

2 Сила Лоренса - это сила, действующая на движущийся в магнитном поле электрический заряд.

Правило левой руки:

          

- угол поворота между B и v.

    Так как сила Лоренца направлена перпендикулярно скорости движения частицы, то она предаёт этой частице центростремительное ускорение. Следовательно, движение заряженной частицы в магнитном поле будет осуществляться по окружности либо по спирали.   




1. Статья 27 Об общих принципах ФЗ131 Закон Воронежской области О территориальном общественном самоуправл
2. Тема 11. Продуктовая стратегия туристского предприятия 11
3. Курсовая работа- Профилировщик приложений
4. 1 Основные понятия качества обслуживания 4
5. Социализация студентов в период обучения в вузе
6. реферат дисертації на здобуття наукового ступеня доктора філологічних наук К
7. Модуль Скани Семінари Підсумок Залік 1
8. ТЕМА 8. Управлінський контроль Поняття та процес контролю
9. 06.2013г Имя игрока ник Первая игра
10. это совокупность моральных норм которые определяют отношение человека к своему профессиональному долгу