Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Методика расчета и оптимизации ячеек памяти низковольтовых последовательных ЭСППЗУ

Работа добавлена на сайт samzan.net:


ОГЛАВЛЕНИЕ

1 ВВЕДЕНИЕ

ОБЩИЕ СВЕДЕНИЯ

.1 Элементы СППЗУ

.1.1 Элементы ЭСППЗУ, программируемые с помощью туннельного эффекта

МОДЕЛИРОВАНИЕ ЯЧЕЙКИ ЭСППЗУ

.1 Упрощенная модель ячейки памяти

.1.1 Расчет Vtun

.1.2 Расчет пороговых напряжений

.1.3 Зависимость порогов от времени записи/стирания

.2 Полная модель ячейки

.2.1 Расчет плавающего затвора и потенциалов канала

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

.1 Запоминающая ячейка

.1.1 Методика исследования элементной базы ЭСППЗУ

.2 Результаты исследования элементной базы

.2.1 Исследование характеристик туннельного окисла

.2.2 Эквивалентная схема замещения туннельного окисла

.2.3 Построение и расчет ячейки ЭСППЗУ

ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА

.1 Краткая характеристика проведенной работы

.2 Методика определения сметной калькуляции и цены на ОКР

.3 Расчет сметной калькуляции, плановой себестоимости и цены на ОКР

ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1. ВВЕДЕНИЕ

Запоминающие устройства имеют очень широкое применение в самых различных областях электроники, вычислительной техники, контрольно-измерительного оборудования. Они присутствуют везде где необходимо запоминание и хранение любого вида информации. ЭСППЗУ являются одной из разновидностей запоминающих устройств и по своим специфическим особенностям они составляют основу блоков электронной аппаратуры, кредитных и телефонных карточек, устройств где необходимо хранить информацию с отключением источника питания.

В современных условиях основное внимание во всем мире уделяется энергосберегающим технологиям. Развитие электроники связано с уменьшением норм топологического проектирования интегральных схем, и это требует разработки и применения элементной базы интегральных схем с пониженным напряжением питания. Анализ состояния научно-технических разработок зарубежных производителей интегральных микросхем показывает, что все новые разработки выполняются только с 3-х вольтовым напряжением питания. Ряд иностранных фирм, таких как Siemens, Philips, Microchip и др., производят изделия с нижней границей напряжения питания 2,5 В, а их научные подразделения уже разрабатывают приборы с напряжением питания 1,0 В.

В настоящее время на НПОИнтегралусилия разработчиков интегральных микросхем направлены на переход на стандарт с пониженным напряжением питания (3 В) и, соответственно, с пониженной потребляемой мощностью электронных приборов. Однако, переход на новый стандарт для некоторого типа приборов связан с определенными трудностями. В частности, это относится для целого направления последовательных ЭСППЗУ, которые сейчас широко используются в серии микросхем для телевизионных приемников и телефонных карточек.

Изделия этого класса имеют некоторые специфические технические характеристики. Так, например, напряжение питания их составляет 5 В, что не позволяет создавать электронные приборы с автономным питанием, использование их в автомобильной электронике, и исключает их прямое согласование с элементной базой основанной на 3-х вольтовом стандарте. Нижняя граница напряжения питания этого класса схем определяется элементной базой, схемотехническими и топологическими решениями узлов ЭСППЗУ, определяющими режимы записи информации в запоминающую ячейку. Существующие решения не позволяют достигать требуемой длительности цикла записи при низком значении напряжения питания (3 В). Это требует оптимизации запоминающих элементов (ячеек).

Целью работы является разработка методики расчета и оптимизации ячеек памяти низковольтовых последовательных ЭСППЗУ. Разрабатываемая модель запоминающей ячейки должна позволить в полном объеме проводить моделирование и расчет ЭСППЗУ.


2. ОБЩИЕ СВЕДЕНИЯ

Цифровые полупроводниковые микросхемы памяти предназначены для применения в оперативных (ОЗУ) и постоянных (ПЗУ) запоминающих устройствах. Наиболее распространены БИС памяти с произвольной выборкой, основной частью которых является накопительматрица запоминающих элементов (элементов памяти), каждый из которых предназначен для хранения одного бита информации. Совокупность элементов представляет собой информационную емкость БИС. С помощью систем шин строк Х и столбцов Y возможна выборка произвольного элемента памяти.

Микросхемы ПЗУ хранят информацию при отключении источника питания, тогда как в микросхемах ОЗУ она теряется.

Важнейшими параметрами элемента памяти являются площадь, занимаемая им на кристалле, и потребляемая мощность. Для достижения максимальной информационной емкости площадь элемента, а значит, и размеры транзисторов (длина, ширина канала и др.) должны быть минимальными. Они зависят от разрешающей способности фотолитографии, задающей минимальный топологический размер. При сравнении элементов памяти разных типов удобно оценивать их площадь не в абсолютных, а в относительных единицахчислом литографических квадратов со стороной. Относительная площадь характеризует «качество» схемотехники и топологического проектирования элементов памяти.

Репрограммируемые ПЗУ хранят информацию при отключенном источнике питания. Ввод информации называют программированием. Установку элементов памяти в исходное одинаковое состояние, соответствующее хранению лог. О (или лог. 1), называют стиранием информации. В зависимости от типа элементов памяти оно может осуществляться электрическим или неэлектрическим способом. Соответствующие устройства обозначают ЭСППЗУ (электрически стираемые программируемые ПЗУ) или СППЗУ. В СППЗУ стирание осуществляется сразу для всех элементов накопителя, в ЭСППЗУ его можно произвести в отдельной строке и даже в произвольно выбранном одном элементе. Стирание и последующее программирование образуют цикл перепрограммирования.

Элементы памяти основываются на бистабильных МДП-транзисторах, которые могут находиться в одном из двух состояний, соответствующих хранению лог. 1 или лог. О. Наиболее распространенными являются транзисторы с «плавающим» затвором, у которых между управляющим затвором и подложкой расположен второй затвор, со всех сторон окруженный диэлектриком. Потенциал второго затвора изменяется в зависимости от заряда на нем, отсюда и название «плавающий». Хранимая информация определяется зарядом на плавающем затворе.

2.1 Элементы СППЗУ

В отличие от постоянных запоминающих устройств (ПЗУ) и однократно программируемых постоянных запоминающих устройств (ППЗУ), которые не допускают изменения однажды записанной информации, в стираемых ПЗУ информацию можно перезаписывать многократно. Стирание информации производится с помощью ультрафиолетового облучения. Длительность хранения записанной информации может доходить до нескольких лет и более. Поэтому стираемые ПЗУ часто называют энергонезависимой памятью (памятью с сохранением информации при выключении электропитания). Существует много различных типов стираемых ПЗУ незначительно отличающихся принципами действия и структурой, причем каждый тип имеет свои разновидности.

Электрически программируемые ПЗУ (ЭППЗУ) не требуют для стирания информации ультрафиолетового облучения. Запись и удаление информации из запоминающего элемента производится с помощью приложения высокого напряжения. Примером ЭППЗУ является структура с плавающим затвором и туннельным переходом (ПЛТМОП). В таких ПЗУ информация стирается электрически последовательно бит за битом.

В настоящее время моделирование и оптимизация конструкции ЭСППЗУ осложнено отсутствием модели запоминающего элемента, основой которого является участок с туннельным окислом. Для модели требуется создание схемы замещения этого участка на основе анализа элементной базы низковольтовых ЭСППЗУ, а также методики расчета и оптимизации конструкции ячейки.

В случае хранения лог. 1 на плавающем затворе существует отрицательный заряд электронов и пороговое напряжение по управляющему затвору, получается высоким (несколько вольт). Если хранится лог. О, то заряд на плавающем затворе равен нулю или положителен, тогда пороговое напряжение, низкое (или даже отрицательное). Так как токи утечки диэлектрика ничтожно малы, то время хранения, являющееся важным параметром элемента памяти, большое. По оценкам оно превышает 10 лет при повышенной температуре (70...100'С), когда токи утечки максимальны.

В режиме считывания на шину выбранной строки подают напряжение, лежащее в пределах порогового, а на шины остальных строкнапряжение, меньшее порогового, так что в элементах памяти этих строк транзисторы закрыты. В выбранной строке транзисторы будут открытыми или закрытыми в зависимости от хранимой информации. Следовательно, в шине выбранного столбца в случае хранения лог. 0 будет протекать ток, а в случае хранения лог. 1 ток равен О. Ток в шине столбца воспринимается усилителем считывания. Время считывания определяется значением тока, чувствительностью и быстродействием усилителя и других схем обслуживания. Оно того же порядка, что и в СБИС ОЗУ.

В режиме программирования напряжение на шине выбранного столбца устанавливается высоким (около 15..20 В), если необходимо создать отрицательный заряд на плавающем затворе (запрограммировать лог. 1). В противном случае это напряжение равно 0. Напряжение на шине выбранной строки также устанавливается высоким, причем большим напряжения программирования столбца. Программирование основано на инжекции горячих электронов в окисел у стокового конца канала. Они генерируются в сильном электрическом поле, высокая напряженность которого обусловлена малой длиной канала и большим напряжением программирования. Число инжектированных электронов пропорционально току канала, составляющему несколько миллиампер. Так как напряжение на управляющем затворе выше, чем на стоке, в диэлектрике существует вертикальная составляющая вектора напряженности электрического поля, благодаря которой инжектированные в окисел электроны дрейфуют к плавающему затвору и накапливаются на нем. Ток через диэлектрик очень мал (единицы пикоампер), поэтому время программирования одного элемента памяти весьма велико (около 1 мс) и на 4 порядка превышает время считывания.

Стирание (удаление электронов с плавающего затвора) производится облучением кристалла ультрафиолетовым светом, для чего в корпусе микросхемы предусматривается окно с кварцевым стеклом. Под действием света электроны приобретают энергию, достаточную для перехода с плавающего затвора в диоксид. Далее они дрейфуют в подложку, потенциал которой должен быть выше, чем на управляющем затворе. Время стирания порядка 1 мин. Для проведения этой операции микросхема должна быть извлечена из устройства и поставлена в специальную установку стирания, что практически не всегда удобно, причем стирается содержимое всего накопителя.

В каждом цикле перепрограммирования происходят небольшие изменения в физической структуре элемента. Протекание токов через диоксид приводит к захвату в нем электронов ловушками и образованию дополнительного поверхностного заряда. Установлено, что после большого числа циклов разность порогового напряжения 0 и 1 уменьшается. Поэтому существует максимально допустимое число циклов перепрограммирования (около 103).

Достоинством рассмотренного элемента является его простота и малая площадь (6...10 литографических квадратов). Это позволяет создавать СБИС большой информационной емкости (1 Мбит и выше).

2.1.1 Элементы ЭСППЗУ, программируемые с помощью туннельного эффекта

Ha рисунке 1 показана структура, а на рисунке 2 эквивалентная схема элемента памяти. Левая часть структуры образует бистабильный транзистор (1исток, 2сток, 3управляющий затвор, совмещенный с шиной программирования строки Хпрог, 4плавающий затвор). Слой диоксида 5, отделяющий сток 2 от затвора 4, имеет очень малую толщинупорядка 10 нм (туннельно-тонкий диоксид). При программировании на шину Хпрог выбранной строки подают высокое напряжение (20 В). Если на плавающий затвор надо ввести заряд (запрограммировать лог. 1), то на стоке следует установить нулевое напряжение. Тогда происходит туннелирование электронов из стока в слой 5 и их дрейф на плавающий затвор. Если же не надо вводить заряд, то на стоке устанавливают такое же напряжение, как и на управляющем затворе. Для стирания (удаления заряда) на управляющий затвор необходимо подать нулевое напряжение, а на стоквысокое. Тогда электроны совершают обратный переход с плавающего затвора в сток. Таким образом, программирование и стирание идут с одинаковой скоростью. Эти процессы отличаются только знаком напряженности электрического поля в слое 5 и направлением движения электронов.

Достоинством рассмотренного элемента является возможность стирания информации в произвольно выбранном элементе памяти за малое время (менее 1 мс). Максимальное число циклов перепрограммирования достигает 106больше, чем для элементов, использующих инжекцию горячих электронов. 0днако площадь элемента памяти в 3...4 раза больше, чем у элементов ПЗУ и составляет 30...40 литографических квадратов. Недостатком также является необходимость получения тонкого высококачественного диоксида, что сложно технологически и ухудшает надежность. 

Рисунок 1

Рисунок 2

Толщина диоксида может быть увеличена в несколько раз, если использовать туннелирование с шероховатой поверхности поликремния. Структура элемента памяти содержит три слоя поликремния, взаимное расположение которых показано на рисунок 3 (области истока, стока и шины Х, Y для простоты не показаны). Источником электронов при программировании служит электрод 1 первого слоя поликремния, являющийся общей шиной (он соединяется с областью истока транзистора). Плавающий затвор 2 создают нанесением второго, а затвор управления 8третьего слоя поликремния. Толщина диоксида между слоями 1 и 2, 2 и 3 около 0,04 мкм. В такой структуре возможно только одностороннее туннелирование с электрода 1 вверх. Обратное туннелирование вниз невозможно, так как нижняя поверхность плавающего затвора гладкая, а напряженность электрического поля из-за большой толщины диэлектрика мала.

Для удаления электронов с плавающего затвора при стирании используют туннелирование вверх и дрейф электронов на управляющий затвор. В обоих режимах программирования и стирания на управляющий затвор (шину Хпрог )подают высокое напряжение 15...20 В. Чтобы при программировании не было перехода электронов с плавающего затвора на управляющий, а при стирании- с электрода 1 на плавающий затвор, между плавающим затвором и специальной управляющей шиной Упрог создают конденсатор связи Cсв. При программировании (рисунок 3) на Упрог подают положительное напряжение U0, дополнительно повышающее потенциал плавающего затвора. Разность потенциалов между ним и управляющим затвором получается малой, и туннелирование с плавающего затвора вверх отсутствует. При стирании (рисунок 4) на управляющей шине Упрог устанавливают нулевое напряжение, понижающее потенциал плавающего затвора. В результате разность потенциалов между затворами 3 и 2 получается высокой и идет интенсивное туннелирование электронов с затвора 2 вверх. В то же время разность потенциалов между электродами 2 и 1 мала и туннелирование с электрода 1 отсутствует.

Элемент памяти по сравнению с предыдущим характеризуется меньшей площадью (1520 литографических квадратов), что позволяет создать СБИС с большей информационной емкостью (256 Кбит1Мбит). Из-за гораздо больших токов туннелирования время программирования получается меньше (0,003 мс/байт).


Рисунок 3

Рисунок 4


3. МОДЕЛИРОВАНИЕ ЯЧЕЙКИ ЭСППЗУ

В данной работе будет рассмотрен теоретический анализ и экспериментальные данные по программированию и стиранию ячейки памяти программируемой туннельным током.

Структура такой ячейки изображена на рисунке 5. Это n-канальный транзистор с плавающим затвором. Тонкий окисел (~100 ангстрем) между плавающим затвором и стоком способен пропускать электроны (туннелирование) инжектируемые и поглощаемые плавающим затвором во время операций записи/стирания согласно эффекту Фаулера-Нордхайма.

Во время записи плавающий затвор заряжается отрицательно электронами, туннелирующими из стоковой области через тонкий оксид. Это достигается за счет приложения положительного потенциала к верхнему (управляющему) затвору, в то время как сток и подложка заземлены. Накопившийся отрицательный заряд на плавающем затворе сдвигает пороговое напряжение транзистора на большую положительную величину. При последующем считывании транзистор будет закрыт.

Операция стирания заключается в снятии отрицательного заряда с плавающего затвора с помощью приложенного к стоку высоковольтного импульса, в то время как исток свободен (не подключен), а оба затвора и подложка заземлены. Величина порогового напряжения смещается в отрицательном направлении, и транзистор открывается при последующем чтении.

Во время считывания прикладывается достаточно низкое напряжение, поэтому туннельный ток незначительный и плавающий затвор практически изолирован. При таких условиях считывания заряд нужной величины (информация) может храниться до 10 лет.

В схемах памяти используется двухтранзисторная ячейка. Дополнительный транзистор вводится для изоляции ячейки от воздействия сигналов соседних ячеек во время циклов записи/стирания.

В данной работе рассматривается анализ и моделирование режимов записи/стирания, учитывая эффекты, которые возникают во время стирания.

Рисунок 5

3.1 Упрощенная модель ячейки памяти

Для того чтобы получить представления о работе ячейки используется упрощенная модель эквивалентной схемы прибора, представленная на рисунке 6. Более детальный анализ будет рассмотрен в главе 3.2.

Плотность тока текущего через тонкий окисел приближенно вычисляется при помощи уравнения Фаулера-Нордхайма:

Jtun = Etun  (exp ( -/Etun)); (1)

где Etyn это электрическое поле в окисле, а  и  - константы. Электрическое поле в тонком окисле рассчитывается так:

Etyn = Vtun /Xtun; (2)

где Vtun это напряжение туннелирования через окисел, а Xtun это толщина тонкого окисла. Напряжение туннелирования может быть рассчитано через емкостную эквивалентную схему ячейки


Рисунок 6

3.1.1 Расчет Vtun

Cpp это емкость между плавающим и управляющим затвором, Ctun это емкость тонкого окисла, Cgox это емкость подзатворного окисла между плавающим затвором и подложкой, Qfg это заряд, накопившийся на плавающем затворе. Vtun может быть рассчитан для электрически нейтрального затвора по простому соотношению коэффициентов:

Vtun запись = Vg  Kw; (3)

Где Kw = Cpp/(Cpp + Cgox + Ctun); (4)

и Vtun стирание = Vd  Ke; (5)

где Ke = 1 - (Ctun/(Cpp + Cgox + Ctyn); (6)

где Vg и Vd напряжения на затворе и истоке соответственно, а коэффициенты Ke и Kw обозначают напряжение, которое проходить сквозь тонкий окисел при стирании и записи соответственно. Формулы (3) и (5) справедливы, только если Qfg=0. Во время записи сохраненный на плавающем затворе потенциал понижает пороговое напряжение тонкого окисла согласно следующей формуле:

Vtun запись= Vg  Kw + (Qfg/(Cpp + Cgox + Ctyn) (3’)

Во время стирания отрицательный начальный потенциал плавающего затвора повышает пороговое напряжение тонкого окисла согласно соотношению:

Vtun стирание = Vd  Ke –(Qfg/(Cpp + Cgox + Ctyn); (5’)

После завершения операции стирания, когда затвор заряжен положительно последний коэффициент уравнения (5) понижает напряжение потенциал тонкого окисла.

3.1.2 Расчет пороговых напряжений

Начальное пороговое напряжение ячейки, которое соответствует Qfg=0, обозначается как Vti. Начальный заряд смешает порог согласно соотношению:

Vti = -Qfg/Cpp (7)

Используя соотношения (3') и (5') для определения Qfg при снятии импульса записи/стирания пороговые напряжения определяются так:

Vtw = Vti - Qfg/Cpp = Vti + Vg(1 - (Vtun/Kw  Vg)) (8)

Vte = Vti - Qfg/Cpp = Vti - Vd(Ke/Kw - (Vtun/Kw  Vd)) (9)

Здесь Vtw это порог записи ячейки, а Vte это порог стирания ячейки.Vg и Vd это амплитуды импульсов записи и стирания соответственно, а Vtun это напряжение в тонком окисле после снятия импульса. Предположим, что импульс записи/стирания по времени достаточно длинный, тогда электрическое поле в тонком окисле уменьшится до значений близких 1107В/см. При такой напряженности поля туннелирование практически прекращается. Приближенное значение Vtun может быть получено из выражения (2) и подставлено в (8) и (9) для получения приближенных значений окна программирования ячейки, зависимости параметров ячейки и напряжения программирования. Типичные результаты представлены графиками на рисунке 7.

Для того чтобы увеличить окно ячейки нужно увеличить толщину тонкого окисла и напряжение записи/стирания, причем значения связывающих коэффициентов должны быть максимально приближены друг к другу. Оба связывающих коэффициента должны увеличиваться при уменьшении Ctun и увеличении Cpp. При увеличении толщины тонкого окисла это обычно достигается за счет уменьшения площади тонкого окисла и внедрения дополнительной поликремниевой области перекрытия в транзисторе ячейки. Типичное значение связующих коэффициентов равно 0,7, причем Ke всегда больше Kw. Увеличение емкости подзатворного окисла Cgox увеличивает Ke, но уменьшает Kw.

Рисунок 7

3.1.3 Зависимость порогов во время записи/стирания

Аналитическое выражение зависимости пороговых напряжений ячейки от времени программирования получается при решении следующего дифференциального уравнения:

DQfg/dt = Atun  Jtun; (10)

Подставляя это уравнение в (1),(2),(3’),(5’) и (7) получим:

Vtw(t) = Vti + Vg –(1/Kw) (B/ln(A  B  t + E1); (11)

Vte (t) = Vti –(Vd  Ke)/Kw + 1/Kw  [ B /(ln (A  B  t + E2)) ]; (12)

Где A = (Atun  )/(Xtun  (Cpp + Cgox + Ctun)); (13)

B =  Xtun; (14)

E1 = exp[ B/(Kw  (Vg + Vti - Vt(0))) ]; (15)

E2 = exp[ B/(Vd  Ke + Kw  Vt(0) + Kw  Vti) ]; (16)

Vt(0) это пороговое напряжение ячейки при t = 0, которое не может быть спутано с Vtiпороговое напряжение нейтральной ячейки. Atun это область тонкого окисла. Надо отметить, что в уравнении (11) пороговое напряжение остается практически неизменным при t = 0, если Vg прикладывается на время меньшее, чемхарактеристическая временная константа , которая определяется следующим выражением:

= (1/AB) exp[ B/(Kw  (Vg + VtiVt(0)) ]; (17)

При больших значениях времени t пороговое напряжение асимптотически приближается к кривой описанной следующим уравнением:

Vtw(t) = Vti + Vg –[ B/(Kw  ln(A  B  t)) ]; (18)

Аналогичное выражение для операции стирания выводится из уравнения (12). Это приближение полезно использовать при проектировании ячеек памяти, а также оно может быть применено для оценки времени программирования, порога окна, операционного времени для любого набора параметров ячейки(A, B, Vti, Kw, Ke).

3.2 Полная модель ячейки

3.2.1 Расчет плавающего затвора и потенциалов канала

Эквивалентная схема ячейки памяти ЭСППЗУ с учетом паразитных емкостей и емкостей обедненного слоя представлена на рис.8. Эффект утечки дырок в подложку исключен и предположим, что ячейка у нас спроектирована. Cgs и Cgd это емкости перекрытия подзатворного диэлектрика, Cfld это емкость области окисла между плавающим затвором и подложкой. Падение напряжения на емкости обедненного слоя равно s и sn для канала и n+ области соответственно. Накопившийся на плавающем затворе заряд Qfg это сумма зарядов всех емкостей:

Qfg = Cpp(VfgVg) + Cgd(VfgVd) + Cfld(VfgVsub)

+ Ctun(Vfg –(VD - sn))+ Cgs(Vfg-Vs)

+ Cgox(Vsub +s)); (19)

Во время записи в области n+ накапливается заряд и sn принимается равным нулю. Канал формируется так, что поверхность канала и свободный исток составляют напряжение на стоке Vd = 0. Таким образом, Vfg может быть вычислено из соотношения (19).

Во время стирания sn принимается постоянной. Состояние поверхности канала определяет следующий способ нахождения Qfg: во-первых, истощение принято и последний часть в уравнении (17) может быть заменена следующим выражением:

Qdep = Ach  (2q  si  0  Nb  s)-2 (20)

Для предполагаемого условия Vfg связано с s следующим соотношением:

Vfg = Vfb + s + Ach/Cgox  (2q  si  0  s)-2 (21)

Это выражение включенное в выражение (17) и равнодействующее квадратичное уравнение решено для (s)-2. Если уравнение не имеет положительных решений, то поверхность канала накоплена и s берется равным 0. Напряжение на истоке эквивалентно s. Уравнение (17) решено для Vfg с учетом s.

Рисунок 8


4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4.1 Запоминающая ячейка

В настоящее время на НПОИнтегралиспользуются две разновидности конструкции запоминающей ячейки для ЭСППЗУ: обычная и её масштабированная (уменьшенная) топологическая модификация. Конструктивно ячейки состоят из адресного транзистора (транзистора выборки) и транзистора с «плавающим» затвором, на котором хранится информация.

Для сравнения нами был проведен анализ аналогов ЭСППЗУ, производимых некоторыми зарубежными фирмами: Siemens и Philips.

На всех проанализированных образцах ЭСППЗУ, произведенных фирмой Philips (PCF 8582, PCF 8594, PCF 85116), используются различные топологические рисунки запоминающего элемента. Аналогична ситуация и у фирмы Siemens (SDA 2586, SDE 2526).

На рисунке 9 приведена электрическая схема запоминающей ячейки ЭСППЗУ одного из иностранных аналогов, а на рисунке 10ее топологический чертеж.

Основные отличия в электрических схемах запоминающих ячеек ЭСППЗУ отечественной разработки и ее иностранного аналога состоит в том, что они имеют различную организацию.

Топологическая площадь запоминающего элемента аналога 5,0 мкм  11,25 мкм  56,25 мкм2, а площадь ячейки, разработанной на НПОИнтегралравна 11,0 мкм х 18,5 мкм = 203,5 мкм2. Это связано с разными нормами топологического проектирования элементной базы (0,6 мкм у аналога и 1,0 мкм на НПОИнтеграл”).

Необходимо отметить, что корректное сравнение различных запоминающих ячеек затруднительно. Выбор конкретного варианта реализации топологии зависит от множества факторов: норм проектирования элементной базы и технологического процесса их изготовления, схем электрических блоков обрамления матрицы запоминающего устройства (дешифраторы, разрядная схема, усилители считывания, схемы управления напряжением программирования), статических, динамических, надежностных характеристик всего устройства, режимов программирования и многого другого.

Более детальный анализ и формирование требований к параметрам ячейки могут быть осуществлены после моделирования микросхемы.

cd

c7

d0 

d21




1. Тема 1 Введение Географическая оболочке и ее составные части; вещественный состав границы и основные
2. Курсовая работа- Реформирование бухгалтерского учета в России
3. История психологии- ЭКСМО; Москва; 2008 ISBN 9785699255313 Аннотация Информативные ответы на все вопросы кур
4. EURO GmbH зав кафедрой теории и практики муниципального управления ВШППИнститута проректор Пермского институ
5. тема автоматического управления процессом сушки зерна предусматривает- автоматический розжиг топки подач.html
6. Основные субъекты и объекты конституционно-правовых отношений
7. Анализ затрат и себестоимости продукции методы их расчета 1
8. Гроссман
9. Менеджмент продуктивности
10. Conslt Stndrd Qulity ответственностью
11. Курсовая работа- Психологические особенности раннего детства
12. реферат диссертации на соискание ученой степени кандидата педагогических наук Москва 1998 Рабо
13. Курсовая работа - Предложения по проведению рекламной кампании для конкретного предприятия
14. ВВЕДЕНИЕ Конституция СССР придает особое значение укреплению правовой основы государственной и об.html
15. дело стоящее Долгосрочно можно тем самым выиграть столько сколько вы заслуживаете вашей силой игры
16. Моніторинг та сценарний аналіз виникнення і розвитку НС
17. Спортивная психология
18. Организация производства
19. Проектирование переналаживаемых средств измерения
20. I Матеріальна відповідальність як інститут трудового права