У вас вопросы?
У нас ответы:) SamZan.net

Лекция 16. Автокорреляция и ее вычисление Пусть задана бесконечная последовательность

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.4.2025

2

Лекция 16. Автокорреляция и ее вычисление

Пусть задана бесконечная последовательность . По ней строится автокорреляционная функция . Эта функция играет огромное значение в при обработке сигналов. Основное назначение - отыскание максимумов функции , которые интерпретируются как аналоги периодов. Из неравенства Коши следует, что . В точках максимума   сдвинутая на  исходная последовательность "похожа" на исходную. В качестве примера рассмотрим фрагмент звукового файла с записью звука "а". Этот сигнал не является периодическим в математическом смысле слова, однако, визуально такая периодичность просматривается. Значения периода находятся по максимумам соответствующей автокорреляционной функции. Найдем преобразование Фурье от . Для непрерывного случая эта задача рассматривалась выше. Положим . Теперь , где  - свертка последовательностей. = . С другой стороны, =. Это означает, что . Если исходная последовательность вещественная, то  и

    (1)

Случай конечной последовательности

При практическом использовании автокорреляционной функции мы имеем дело с конечными последовательностями. Пусть дана последовательность . Определим функцию  ( как обычно, последовательность считается периодической). Повторяя предыдущие рассуждения, получим для конечного преобразования Фурье в вещественном случае аналог (1)

   (2)

Если для заданного  существует схема БПФ, то выгоднее для отыскания значений  сначала найти преобразование Фурье от исходной последовательности, а затем воспользоваться (2) для отыскания значений функции.

В случае конечных последовательностей мы имеем дело с циклической сверткой. Для того, чтобы избавиться от эффекта цикличности, используется следующий прием. Вместо исходной последовательности длины  берется последовательность  длины . Если используются значения , то при их вычислении эффект цикличности не имеет места.

Практическое оценивание частот

В предыдущий рассмотрениях не учитывалась частота выборки  из исходного непрерывного сигнала. Имеем

. Рассматривая последнее выражение как приближение соответствующего интеграла, получим, что данный коэффициент соответствует частоте . При выборе значения  следует учитывать следующее обстоятельство - увеличение  повышает разрешающую способность, но при этом происходит усреднение по длине окна.

Если для оценки периода использована автокорреляционная функция, то максимуму этой функции в точке  отвечает частота




1. Гражданское общество
2. Основные этапы становления Древнерусского государства, его характеристики
3. Курсовая работа- Учет собственного капитала
4. Бухоблік та аудит в сучасних умовах господарювання на Черкаському МППЗТ
5. Роль общения ребенка раннего возраста со взрослыми
6. сервером. Спецификация была предложена для сервера NCS и является основным средством расширеня возможностей
7. 4 Действующее законодательство допускает возможность предоставления по просьбе работника кратковременны
8. Плечи Руки Свечи
9. Нормативные акты налоговых органов
10. ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВРСИТЕТ УЧЕБНОЕ ПОСОБИЕ РАЗВИТИЕ ЛИЧНОСТИ ДЕТЕЙ И ПОДРОСТК