Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Микрофлора воздуха почвы и воды. Процессы, идущие в этих средах.
Во многих экосистемах земной биосферы микроорганизмы занимают важное место или являются единственными формами жизни. Все экосистемы рассмотреть невозможно, поэтому мы должны ограничиться лишь несколькими. В эту небольшую выборку следовало бы включить почву как пример наземной экосистемы и океаны и моря как пример водных экосистем. Изучение плодородного пахотного слоя почвы в высшей степени интересно, но из-за наличия здесь огромного числа весьма разнородных организмов в очень малом пространстве экосистема почвы очень сложна. Поэтому мы сосредоточим свое внимание на водных системах, особенно в связи с тем, что большая часть микробиологических превращений происходит в водной среде. Типичными водными экосистемами являются океаны, моря, озера, пруды и проточные водоемы.
Океаны. Морская микробиология составляет часть биологии моря. Первичными продуцентами в море служат одноклеточные водоросли - фитопланктон. В пищевую цепь входят бактерии, простейшие, членистоногие и рыбы. Хотя океаны поглощают и накапливают наибольшее количество солнечной энергии, они участвуют в продукции пищи очень слабо; лишь 5-10% производимого на Земле белка образуется в океане. Продуктивность распределена здесь очень неравномерно. Эту неравномерность первичной и вторичной продукции органического вещества можно проиллюстрировать данными об уловах рыбы. Открытый океан, занимающий 90% водной поверхности нашей планеты, дает только 0,7% всего улова рыбы; на прибрежные зоны, составляющие около 10% площади, приходится 54% улова, а естественные области подъема глубинных вод (0,1% поверхности) дают 44% общего улова. Улов рыбы, очевидно, тесно связан с общей продукцией биомассы. Его распределение позволяет ясно увидеть зависимость первичного образования биомассы от количества питательных веществ, главным образом нитратов и фосфатов. Поэтому поступление богатых питательными веществами сточных вод в мировой океан не приводит к его загрязнению - более того, оно служит предпосылкой для производства биомассы в морях. Без постоянного притока таких веществ даже моря не могут давать больших уловов.
Интересные с точки зрения бактериологии превращения происходят в краевых участках моря, около устьев рек (в эстуариях), в засоленных маршах и в области солоноватых вод. Повсеместное присутствие в морской воде сульфата приводит к тому, что в анаэробных зонах и микро местообитаниях благодаря деятельности сульфатредуцирующих бактерий образуется сероводород, который оказывает воздействие на все остальное бактериальное сообщество.
Галофильные бактерии из прибрежных зон морей пока не настолько хорошо изучены, как они того заслуживают. Не только для познавательных целей, но и для решения практических задач необходимо постоянно держать в поле зрения и морские бактерии. В настоящее время большое внимание уделяется микроорганизмам сточных вод и вопросам распада трудноразложимых веществ в таких водах. Сточные воды загрязнены не только органическими примесями, но и значительными количествами солей, в том числе сульфатов. Таким образом, в них создаются условия, сходные с условиями морских экосистем. Эти соображения относительно биологии сточных вод подчеркивают необходимость уделять больше внимания микробиологическим превращениям, происходящим в экосистемах морей.
Озера. Наука об озерах и прудах (лимнология) позволила нам лучше понять частичные кругообороты и их интеграцию. Озера и более мелкие пресные водоемы представляют собой хорошо отграниченные, легко поддающиеся описанию водные экосистемы. В них имеются как аэробные, так и анаэробные зоны. Такие зоны можно обнаружить и в большинстве почв; но если в почве они сосредоточены поблизости друг от друга в очень тесном пространстве и потому их трудно изучать, в озерах такие зоны весьма обширны и легко поддаются исследованию. Однако есть основания полагать, что результаты лимнологических исследований в принципе можно перенести и на почву с ее микрогетерогенностью.
На биологические процессы в озерах и прудах большое влияние оказывают физические свойства воды. Вода имеет наибольшую плотность при 4°С. С увеличением глубины меняется температура воды; может наблюдаться более или менее устойчивая слоистость (стратификация) в зависимости от времени года.
Стратификация характерна для озер двух типов. К одному типу относятся пресно водные озера умеренных широт. Весной холодная вода озера прогревается солнцем; поверхностный слой воды становится теплым, его плотность уменьшается. Этот слой называют эпилимнионом. Он лежит поверх более холодного слоя воды - гиполимниона. Слои разделены переходной зоной, называемой термоклином или металимнионом; эта граница между слоями иногда бывает очень резкой. В глубоких озерах такое разделение может сохраняться в течение всего лета. В результате процессов аэробного распада растворенный в воде кислород, начиная с придонного слоя, расходуется, и в гиполимнионе создаются анаэробные условия. Эпилимнион соприкасается с кислородом воздуха, перемешивается с помощью ветра, и поэтому, как правило, условия здесь остаются аэробными. Это приводит к образованию градиентов окислительно-восстановительного потенциала и химических параметров в области термоклина, в связи с чем термоклин называют также хемоклином. Осенью происходит охлаждение эпилимниона. Если температура эпилимниона становится ниже температуры гиполимниона, происходит перемешивание обоих слоев, чему способствуют осенние бури. В случае полного перемешивания глубинные слои воды поднимаются вверх и вновь обогащаются кислородом. Благодаря этому ежегодно восстанавливается равномерное распределение питательных веществ, которыми богаты глубинные воды. Озера с полным перемешиванием воды называют голомиктическими. Зимой может происходить обратное расслоение. Температура воды на глубине составляет 4°С, а над ней на ходится слой более холодной воды, имеющей меньшую плотность, а иногда и слой льда. Когда весной температура в поверхностном слое поднимается выше 4°С, стратификация снова нарушается.
Если глубинные воды, богатые питательными веществами, попадают на поверхность, начинается массовое размножение цианобактерий и зеленых водорослей («цветение воды»). Масштабы превращений вещества и продукции биомассы зависят от количества питательных веществ в водоеме: в богатых этими веществами (эвтрофных) озерах такие пре вращения весьма интенсивны, а в бедных (олиготрофных) едва заметны.
От голомиктических отличают меромиктические и амиктические озера, в которых происходит лишь частичное перемешивание или его не происходит вовсе, так что образуется стабильный анаэробный гиполимнион («монимолимнион»), сохраняющийся независимо от времени года. Такая перманентность стратификации свойственна главным образом тропическим озерам, где температура поверхностного слоя воды редко опускается ниже температуры глубинного слоя. Но меромиктические озера встречаются и в умеренных широтах. Стабильность стратификации в них чаще всего поддерживается высокой соленостью глубинной воды (в рукавах фиордов) или особыми географическими условиями.
На примере голомиктического озера можно описать биологические процессы, которые приводят к летнему расслоению и продолжаются несколько месяцев. В пронизанном лучами света эпилимнионе фитопланктон (диатомеи, жгутиковые, зеленые водоросли, цианобактерий) продуцирует биомассу. Обычно из окружающей среды в озеро поступает дополнительный органический материал. Часть этого органического вещества, в особенности частицы, содержащие целлюлозу, опускается на дно озера и разлагается. В начальной аэробной стадии разложения расходуется кислород, и на дне создаются анаэробные условия. В результате анаэробного распада образуются органические продукты брожения Н2, H2S, CH4 и СО2. Поскольку конвекции не происходит, эти продукты поступают из донных отложений в толщу воды очень медленно. Один только метан - главный продукт анаэробной цепи питания в донных осадках - выделяется в виде пузырьков газа. На своем пути к поверхности водоема часть метана переходит в раствор и окисляется использующими этот газ аэробными бактериями. Быстрое потребление кислорода в гиполимнионе обусловлено ускоренным распределением метана и ростом метанокисляющих бактерий. В конце концов во всем гиполимнионе создаются анаэробные условия.
Как только в гиполимнионе исчезает кислород, там снова начинаются превращения с участием анаэробных микроорганизмов. Первичные продукты брожения используются для восстановления нитрата и сульфата. Основная масса сероводорода образуется при восстановлении сульфата в толще вод.
Гиполимнион и термоклин основное место обитания анаэробных бактерий. При наличии H2S и достаточной интенсивности света ниже термоклина растут пурпурные и зеленые серобактерии, образующие второй слой с высокой первичной продукцией биомассы. В этой зоне можно найти формы, обладающие газовыми вакуолями, такие как Lamprocystis, Amoebobacter, Thiodictyon, Thiopedia, Pelodictyon и Ancalochloris, а также передвигающиеся с помощью жгутиков виды Chromatium и Thiospirillum. Образование биомассы за счет аноксигенного фотосинтеза значительно; об этом свидетельствует количество инфузорий, веслоногих и ветвистоусых рачков, которые живут непосредственно над термоклином и питаются там фототрофными бактериями. Образуемый серными пурпурными бактериями сульфат быстро снова восстанавливается до H2S; при этом продукты, выделяемые фототрофными бактериями, вероятно, служат для сульфатредуцирующих бактерий донорами водорода.
Для зоны термоклина тоже характерна высокая биологическая активность. Здесь развиваются некоторые цианобактерии, способные переносить присутствие сероводорода и отсутствие О2, в том числе Oscillatorialimnetica.
В стратифицированном озере имеются два типа водной среды, в которых идет первичное образование биомассы за счет фотосинтеза: в слоях, близких к поверхности эпилимниона, происходит оксигенный фотосинтез, а в верхнем слое гиполимниона - аноксигенный фотосинтез.
Проточные водоемы. В естественных, незагрязненных проточных водоемах часто бывает так мало одноклеточных организмов, что вода кажется кристально прозрачной. Следует, однако, вспомнить, что суспензия, содержащая 106 бактерий в 1 мл, остается на вид незамутненной. До тех пор пока загрязнение водоемов было незначительным, участок ручья или реки длиной в несколько километров мог минерализовать весь легко разлагаемый органический материал, поступающий из прибрежных селений. Состав микрофлоры и микрофауны в проточном водоеме служит хорошим индикатором степени его загрязнения. Если в водоеме еще встречаются дафнии - значит, вода чистая. Присутствие «гриба сточных вод» Sphaerotilus natans указывает на сильное загрязнение органическими веществами, а запах сероводорода свидетельствует об анаэробной сульфатредукции, т.е. служит сигналом тревоги.
Очистка сточных воды.
Очистное сооружение в принципе представляет собой проточный водоем, в котором при участии грибов и бактерий (аэробных и анаэробных) происходит разложение органических веществ. Загрязнения в сточных водах могут быть различного рода в зависимости от того, что сбрасывается, - только фекалии и бытовые отходы или также навоз, сточные воды боен или другие промышленные отходы. Во многих случаях сточные воды содержат тяжелые металлы или устойчивые органические соединения. Цель очистки сточных вод состоит в освобождении их от твердых и жидких минеральных и органических веществ, прежде чем эти воды попадут в ручьи и реки. Особые усилия требуются для минерализации органического материала микробиологическим путем.
Содержание органических веществ, разлагаемых микробами, оценивают по так называемому «биологическому потреблению кислорода» (БПК). Это количество кислорода, необходимое микроорганизмам для окисления органического материала в процессе дыхания. Например, БПК 5-это количество кислорода (мг), которое будет потреблено микроорганизмами в процессе разложения органических веществ за 5 дней. «Химическое потребление кислорода» (ХПК) означает количество кислорода, необходимое для полного химического окисления тех же веществ до СО2 и Н2О.
Для очистки сточных вод в очистных системах используются раз личные технические приемы, однако при этом осуществляются в принципе одни и те же основные этапы:
1) удаление относительно легко осаждаемых твердых частиц в пескоуловителе и в первичном отстойнике;
2) микробиологическое окисление растворенных органических веществ с применением активного ила либо с использованием биофильтра;
3) инкубация осадка, удаленного из первичного и вторичного отстойников, в анаэробных условиях в метантенке, где в результате образуется метан и выпадает осадок. После обезвоживания из этого осадка можно получать компост и использовать его в качестве удобрения или сжигать.
Затем очищенная, осветленная вода сбрасывается в реки - непосредственно или через водоприемник. Эта вода еще содержит продукты минерализации - ионы фосфата, нитрата, аммония и другие. В результате ее сброса в реке может создаться такой избыток питательных веществ, что это вызовет увеличение первичной продукции. Для того чтобы избе жать такой эвтрофизации водоемов, можно либо использовать очищенные сточные воды для орошения полей или удобрения лесных почв, либо добавить к обычной процедуре еще один этап очистки и путем денитрификации освобождать сточные воды хотя бы от связанного азота. Дополнительно их можно очищать путем химического осветления, а именно осаждения ионов фосфата с помощью солей железа. Возможно проведение и других мероприятий по очистке сточных вод.
Микрофлора человека
Организм взрослого человека населен огромным количеством разнообразных видов микроорганизмов, живущих на поверхности тела и в полостях, имеющих естественные сообщения с окружающей средой. Изучая микробный пейзаж тела здорового человека, можно условно разделить обнаруживаемые микроорганизмы на три группы: 1) случайные, транзиторные, неспособные к Длительному существованию в организме человека, быстро отмирающие; 2) постоянно живущие, полезные для человека микробы обитатели его тела (способные расщеплять и усваивать питательные вещества, продуцировать витамины, выступающие как антагонисты патогёиных, например, бифидобактерии); 3) постоянноживущие, но потенциально опасные для человека, способные проявить свои болезнетворные свойства при снижении резистентности организма, изменении состава нормальной микрофлоры и других условиях, так называемые условно-патогенные микроорганизмы.
Микроорганизм и его микробное население в нормальных условиях находятся в состоянии динамического равновесия. Симбиотические взаимоотношения между ними сложились и закрепились в процессе длительного эволюционного развития, поэтому для микрофлоры каждой области тела человека характерно относительное постоянство. Изменения в состоянии макроорганизма находят отражение в изменении микробного пейзажа всех участков тела.
Заселение микробами организма новорожденного начинается в процессе родов: микробы попадают па кожу, в полости; возможно заражение и патогенными микробами (например, гонококками от больной гонореей матери, которые вызывают у ребенка конъюнктивит бленнорею). Затем микрофлора формируется под влиянием окружающей среды, в зависимости от питания и других действующих на растущий организм факторов.
Микрофлора кожи человека включает постоянных обитателей на поверхности (сарцины, стафилококки, дифтсроиды, некоторые виды стрептококков, грибов) и в глубоких слоях в волосяных мешочках, просветах сальных и потовых желез (эпидермальные стафилококки). Кроме характерной для кожи аутомикрофлоры, могут быть обнаружены транзиторные микроорганизмы, быстро исчезающие под влиянием бактерицидных, стерилизующих свойств кожи. Большей способностью к самоочищению обладает чисто вымытая кожа. Бактерицидность кожи отражает общую резистентность организма.
Следует помнить, что загрязнение лекарств микроорганизмами в процессе их приготовления возможно через грязные руки, содержащие как аутомикрофлору. так и транзиторные микробы, способные вызвать порчу настоев, отваров и других препаратов.
В дыхательные пути вместе с воздухом попадают пылевые частички и микроорганизмы, Треть которых задерживаются в носоглотке. Здесь чаще всего обнаруживаются анаэробные бактероиды, стафилококки, стрептококки, пневмококки, нейссерии. Трахеи и бронхи, как правило, стерильны.
Микрофлора желудочно-кишечного тракта наиболее обильна и разнообразна по видовому составу.
В полости рта обнаруживаются микроорганизмы более 100 видов, что объясняется наиболее благоприятными условиями существования: достаточная влажность, щелочная реакция среды, наличие остатков пищи, постоянная температура. В полости рта человека живут стрептококки, стафилококки, лактобактерии, клебсиеллы, коринебактерии, спириллы и спирохеты, простейшие, грибы.
Микрофлора желудка очень скудна. Желудочный сок вызывает гибель микроорганизмов, попадающих в него с пищей, водой. При обследовании в содержимом желудка здорового человека можно обнаружить сарцины, дрожжи, молочнокислые бактерии.
Бедна также микрофлора тонкой кишки. Высокие отделы по характеру микрофлоры приближаются к желудку; в нижних отделах, постепенно обогащаясь, микрофлора сближается с флорой толстой кишки.
Микрофлора толстой кишки наиболее обильна и многообразна: в 1 г фекалий содержится до 250 млр микробов. По современным представлениям, в составе микрофлоры толстого отдела кишечника здорового человека превалируют анаэробные бактерии, составляющие 96% всех видов кишечной аутофлоры. Основные представители: неспоровые грамположительные (бифидум-бактерии, лактобактерии, пептококки,' катенобактерии) и грамотрицательные палочки, среди которых основное место занимают бактероиды. Особенно для пищеварения человека важны бифидум и лактобактерии.
Значительная роль в микрофлоре кишечника принадлежит кишечной палочке Е. coli грамотрицатсльной, подвижной бактерии, обладающей энергичной ферментативной деятельностью. Кишечная палочка имеет выраженные антагонистические свойства протип патогенных представителей семейства Enterobacteriaceae, против стафилококков и грибов Candida. К представителям нормальной микрофлоры кишечника относится энтерококк, или фекальный стрептококк, образующий .епочки из диплококков. Постоянно в кишечнике живут ожжеподобные грибы, споровые анаэробы, спирохеты, простейшие, вирусы, включая фаги.
В соответствии со своей ролью и функцией в балансе природы организмы разделяются на три группы. Зеленые растения синтезируют органические вещества, используя энергию солнца и углекислоту, поэтому их называют продуцентами. Животные являются потребителями (консументами); они расходуют значительную часть первичной биомассы для построения своего тела. Тела животных и растений в конце концов подвергаются разложению, при котором органические вещества превращаются в минеральные, неорганические соединения. Этот процесс, называемый минерализацией, осуществляют в первую очередь грибы и бактерии; в балансе природы они служат деструкторами. Таким образом, биоэлементы участвуют в циклических процессах. Здесь уместно коротко остановиться на биогеохимических круговоротах углерода, азота, фосфора и серы.
Круговорот углерода.
В круговороте углерода микроорганизмы выполняют функцию, очень важную для поддержания жизни на Земле. Они обеспечивают минерализацию углерода, переведенного зелеными растениями в органические соединения, и тем самым поддерживают весьма неустойчивое равновесие (рис. 1.1). Атмосферный воздух содержит чуть больше 0,03% двуокиси углерода (12 мкМ/л).
Фотосинтетическая же продуктивность зеленых растений так велика, что запас СО2 в атмосфере был бы исчерпал примерно за 20 лет. Это относительно короткий срок в человеческих масштабах времени; ведь считается, что запасов энергии и угля на Земле хватит на срок от 1000 до 3000 лет. Да же если учесть запасы СО2 в океанах, то этого газа хватило бы лишь примерно на 2000 лет.
Зеленым растениям пришлось бы вскоре прекратить фиксацию СО2, если бы низшие животные и микроорганизмы не обеспечивали возвращение этого газа в атмосферу в результате непрерывной минерализации органического материала. В общем балансе веществ на земном шаре почвенным бактериям и грибам принадлежит не меньшая роль, чем фотосинтезирующим зеленым растениям. Взаимозависимость всех живых существ на Земле находит наиболее яркое выражение в круговороте углерода.
Следует отметить еще одну особенность процесса минерализации: небольшая часть минерализованного углерода (1-1,5%) поступает в атмосферу не в виде СО2, а в форме метана. Этот газ образуется из органических веществ в местах, недоступных для кислорода воздуха (в почве тундр, на рисовых полях, в рубце жвачных), попадает затем в атмосферу и окисляется там ОН-радикалами через окись углерода (СО) до СО2. В процессе образования метана, так же как и других газов, встречающихся в следовых концентрациях (Н2, СО, N2О, NО2), участвуют главным образом например метановые бактерии.
Моря на первый взгляд кажутся огромным резервом углекислоты. Однако следует учесть, что скорость обмена СО2 атмосферы с С02 морей, где более 90% этого вещества находится в форме HCO3, очень мала; за один год таким образом обменивается только десятая часть атмосферной двуокиси углерода. К тому же в газообмене моря с атмосферой участвует лишь тонкий поверхностный слой воды. Огромные количества С02, находящиеся в океанах ниже слоя температурного скачка, выходят на поверхность лишь в немногих областях (Западная Африка, Чили) и обогащают там атмосферу (до 0,05%). Уже на протяжении многих лет содержание двуокиси углерода в воздухе неуклонно возрастает. С одной стороны, это следует отнести за счет сжигания нефти и угля; на Земле было израсходовано (в основном сожжено) около 3,2*109 т нефти. С другой стороны, повышение концентрации СО2 в атмосфере связано, вероятно, с уменьшением фотосинтетической фиксации углерода в результате сведения больших лесных массивов и деградации почвы. Следует подчеркнуть, что Мировой океан представляет собой мощную буферную систему, которая стремится поддерживать содержание СО2 в атмосфере на определенном уровне.
В результате фотосинтетической фиксации СО2 зелеными растениями образуются в первую очередь сахара и другие родственные им соединения. Основная масса фиксированного углерода как у древесных, так и у травянистых растений на время откладывается в форме поли мерных углеводов. Примерно 60% двуокиси углерода, фиксируемой на суше, идет на образование древесины. Древесина состоит на 75% из полисахаридов (целлюлоза, гемицеллюлозы, крахмал, пектины и арабиногалактаны) и содержит лишь немногим больше 20% лигнина и лигнанов; белка в ней очень мало (1%). У злаков и других травянистых растений содержание полисахаридов еще выше.
Преобладание полисахаридов среди продуктов ассимиляции зеленых растений обусловливает большую роль Сахаров в питании всех живых организмов, нуждающихся в органической пище. Глюкоза и другие сахара в форме полимеров - это количественно преобладающие субстраты для процессов минерализации в природе; в виде мономеров они служат предпочитаемыми питательными веществами для большинства гетеротрофных микроорганизмов.
Круговорот азота
. Центральное место в круговороте азота занимает аммоний. Он является продуктом разложения белков и аминокислот, попадающих вместе с остатками животного и растительного происхождения в почву. В хорошо аэрируемых почвах аммоний подвергается нитрификации; бактерии родов Nitrosomonas и Nitrobacter окисляют его до нитрита и нитрата. В качестве источника азота растения могут использовать и ассимилировать как аммоний, так и нитрат. В отсутствие кислорода из нитрата образуется молекулярный азот (денитрификация). Бактерии, участвующие в этом процессе, используют при этом нитрат в качестве окислителя (акцептора водорода), т.е. «дышат» с помощью NO2 вместо О2; в этом случае говорят о «нитратном дыхании». Денитрификация ведет к потере азота почвой. Наряду с этим бактерии способны и к фиксации молекулярного азота. Связывающие азот бактерии живут или свободно в почве (вне симбиоза), или в симбиозе с высшими растениями (симбиотические азотфиксаторы). Основную роль в круговороте азота наряду с животными и растениями играют бактерии.
Круговорот фосфора.
В биосфере фосфор представлен почти исключительно в виде фосфатов. В живых организмах фосфорная кислота существует в форме эфиров. После отмирания клеток эти эфиры быстро разлагаются, что ведет к освобождению ионов фосфорной кислоты. Доступной для растений формой фосфора в почве служат свободные ионы ортофосфорной кислоты (Н3Р04). Их концентрация часто очень низка; рост растений, как правило, лимитируется не общим недостатком фосфата, а образованием малорастворимых его соединений, таких как апатит и комплексы с тяжелыми металлами. Запасы фосфатов в месторождениях, пригодных для разработки, велики, и в обозримом будущем производство сельскохозяйственной продукции не будет ограничиваться недостатком фосфора; однако фосфат должен быть переведен в растворимую форму. Во многих местах фосфат из удобрений попадает в проточные водоемы и озера. Так как концентрация ионов железа, кальция и алюминия в водоемах невысока, фосфат остается в растворенной форме, что приводит к эвтрофизации водоемов, особенно благоприятной для развития азотфиксирующих цианобактерий. В почвах же из-за образования нерастворимых солей фосфаты чаще всего быстро становятся недоступными для усвоения.
Круговорот серы
В живых клетках сера представлена главным образом сульфгидрильными группами в серусодержащих аминокислотах (цистеин, метионин, гомоцистеин). В сухом веществе организмов доля серы составляет 1%. При анаэробном разложении органических веществ сульфгидрильные группы отщепляются десульфуразами; образование сероводорода при минерализации в анаэробных условиях называют также десульфурированием. Наибольшие количества встречающегося в природе сероводорода образуются, однако, при диссимиляционном восстановлении сульфатов, осуществляемом сульфатредуцирующими бактериями.
Этот сероводород, образующийся в отсутствие молекулярного кислорода в осадках водоемов, может быть окислен анаэробными фототрофными бактериями (Chromatiaceae) до серы и сульфата. Когда сероводород проникает в зоны, содержащие О2, он окисляется либо абиотическим образом, либо аэробными серобактерия ми до сульфата. Серу, необходимую для синтеза серусодержащих аминокислот, растения и часть микроорганизмов получают путем ассимиляционной сульфатредукции; животные же получают восстановленные соединения серы с пищей.Фосфор и азот как факторы, лимитирующие продукцию биомассы. Элементами, которые ограничивают рост растений и тем самым продукцию биомассы, являются фосфор и азот. Они играют такую роль и на суше, и в океанах. На этот счет имеются точные данные для морской воды. Основываясь на данных табл. 1.1, можно рассчитать, сколько биомассы может быть создано (в граммах сухого вещества) из элементов, содержащихся в одном кубометре морской воды. Из 28 г углерода (С) может образоваться 60-100 г биомассы, из 0,3 г азота (N) - 6 г, а из 0,03 г фосфора (Р) - только 5 г. Отсюда следует, что продукцию биомассы в конечном счете лимитируют фосфаты. Таким образом, в морской воде даже азотфиксирующие организмы цианобактерии - не имеют селективного преимущества перед другими.