У вас вопросы?
У нас ответы:) SamZan.net

Случайная величина и случайное событие могут быть связаны соотношением {}

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 19.5.2025

6.Случайная величина (random values)

и функция распределения  (distribution function)

Пусть – пространство элементарных событий.

Случайная величина   это функция , определенная на множестве , принимающая числовые значения и такая, что для любого действительного  определена вероятность

.                              (6.1)

Случайная величина  и случайное событие  могут быть связаны соотношением

= {},                                        (6.2)

означающим попадание случайной величины в интервал  .


Вероятность того, что случайная величина  примет значение,

меньшее произвольного действительного числа ,

называется функцией распределения случайной величины  

и обозначается:

.                  (6.3)

Некоторые свойства:

  1.  ;
  2.  ;
  3.   и .


Функция распределения в случае

дискретных и непрерывных случайных величин

Если  дискретная случайная величина, принимающая значения  с вероятностями , то

(т.е. суммируются вероятности тех значений , которые  меньше )

Если   непрерывная случайная величина с функцией плотности вероятности , то

Замечание.

Функция распределения содержит всю информацию

о случайной величине!


Примеры наиболее важных функций распределения

Случайная величина  с «колоколообразной» функцией плотности вероятности

,                            (6.5)

называется нормально(гауссово) распределенной 

с параметрами .

Обозначение: .  называется стандартным нормальным распределением.


7. Характеристики положения

и рассеяния случайной величины


7.1. Математическое ожидание (
expectation/mean value) случайной величины

Если   дискретная случайная величина, принимающая значения  с вероятностями , то

Если   непрерывная случайная величина с функцией плотностью вероятности , то

ее математическое ожидание – это

сумма

интеграл

Свойства: 1) если , то ;

2) если  существует и k=const, то ;                                                          

3) если  и  независимые и ,  существуют, то:

и .




1. Внимая ужасам войны 1855 или 1856 гг ~ Крымская война с Османской империей 18531856 в которую позже включились
2. трудовыми процессами в условиях становления нового способа производства ~ инновационной экономики требует
3. а Solnge mn jung ist ist ds Essen notwendig um zu leben
4. Арабская среднеазиатская и еврейская философия средневековья
5. Введение Существенной особенностью физических возможностей человека является наличие громадных нераскры
6. Мальчик 11 лет в течение четырех последних лет страдает бронхиальной астмой с обострениями которые возника
7. Понимание межличностных отношений
8. Понятие производственного процесса Производственный процесс ~ совокупность всех действий людей и оруд
9. Контрольная работа- Структура и система категорий юридической психологии
10. человек впечатлительный не сумеет вынести этого; ему обязательно поплохеет