У вас вопросы?
У нас ответы:) SamZan.net

Случайная величина и случайное событие могут быть связаны соотношением {}

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 2.2.2025

6.Случайная величина (random values)

и функция распределения  (distribution function)

Пусть – пространство элементарных событий.

Случайная величина   это функция , определенная на множестве , принимающая числовые значения и такая, что для любого действительного  определена вероятность

.                              (6.1)

Случайная величина  и случайное событие  могут быть связаны соотношением

= {},                                        (6.2)

означающим попадание случайной величины в интервал  .


Вероятность того, что случайная величина  примет значение,

меньшее произвольного действительного числа ,

называется функцией распределения случайной величины  

и обозначается:

.                  (6.3)

Некоторые свойства:

  1.  ;
  2.  ;
  3.   и .


Функция распределения в случае

дискретных и непрерывных случайных величин

Если  дискретная случайная величина, принимающая значения  с вероятностями , то

(т.е. суммируются вероятности тех значений , которые  меньше )

Если   непрерывная случайная величина с функцией плотности вероятности , то

Замечание.

Функция распределения содержит всю информацию

о случайной величине!


Примеры наиболее важных функций распределения

Случайная величина  с «колоколообразной» функцией плотности вероятности

,                            (6.5)

называется нормально(гауссово) распределенной 

с параметрами .

Обозначение: .  называется стандартным нормальным распределением.


7. Характеристики положения

и рассеяния случайной величины


7.1. Математическое ожидание (
expectation/mean value) случайной величины

Если   дискретная случайная величина, принимающая значения  с вероятностями , то

Если   непрерывная случайная величина с функцией плотностью вероятности , то

ее математическое ожидание – это

сумма

интеграл

Свойства: 1) если , то ;

2) если  существует и k=const, то ;                                                          

3) если  и  независимые и ,  существуют, то:

и .




1. Водные свойства почвы
2. Ekseption
3. Тема- Робота з таблицями графічними об~єктами математичними формулами у середовищі текстового процесора MS W
4. Учет и отчетность о движении денежных средств седьскохозяйственного предприятия
5. Структура наказу про облікову політику та оптимальні шляхи впровадження.html
6.  Ты не можешь знать что добро что зло
7. Стаття 23 Пріоритетність земель сільськогосподарського призначення 1
8. реферат курсовая работа дипломная работа научная статья диссертация является одним из важнейших этапов н
9. ПЕРЕЧЕНЬ видеофильмов по БЖ.html
10. Неспецифический язвенный колит