Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Случайная величина и случайное событие могут быть связаны соотношением {}

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

6.Случайная величина (random values)

и функция распределения  (distribution function)

Пусть – пространство элементарных событий.

Случайная величина   это функция , определенная на множестве , принимающая числовые значения и такая, что для любого действительного  определена вероятность

.                              (6.1)

Случайная величина  и случайное событие  могут быть связаны соотношением

= {},                                        (6.2)

означающим попадание случайной величины в интервал  .


Вероятность того, что случайная величина  примет значение,

меньшее произвольного действительного числа ,

называется функцией распределения случайной величины  

и обозначается:

.                  (6.3)

Некоторые свойства:

  1.  ;
  2.  ;
  3.   и .


Функция распределения в случае

дискретных и непрерывных случайных величин

Если  дискретная случайная величина, принимающая значения  с вероятностями , то

(т.е. суммируются вероятности тех значений , которые  меньше )

Если   непрерывная случайная величина с функцией плотности вероятности , то

Замечание.

Функция распределения содержит всю информацию

о случайной величине!


Примеры наиболее важных функций распределения

Случайная величина  с «колоколообразной» функцией плотности вероятности

,                            (6.5)

называется нормально(гауссово) распределенной 

с параметрами .

Обозначение: .  называется стандартным нормальным распределением.


7. Характеристики положения

и рассеяния случайной величины


7.1. Математическое ожидание (
expectation/mean value) случайной величины

Если   дискретная случайная величина, принимающая значения  с вероятностями , то

Если   непрерывная случайная величина с функцией плотностью вероятности , то

ее математическое ожидание – это

сумма

интеграл

Свойства: 1) если , то ;

2) если  существует и k=const, то ;                                                          

3) если  и  независимые и ,  существуют, то:

и .




1. Архитектура Цель курсовой работы- Научить студента основным приемам объемно планировочной компон
2. ВОЛГОДОНСКИЙ ТЕХНИКУМ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ БИЗНЕСА И ДИЗАЙНА им
3. тема римского частного права Римское частное право совокупность норм регулирующих вопросы имущественны
4.  Согласно СК РФ если лицо наряду с гражданством иностранного государства имеет гражданство Российской Феде
5. Функционирование конвенциональной нормы при переводе текста
6. Модуль Фонетический материал Грамматический материал Лексикограмматиче
7. Тема 25. Управление маркетингом Основные вопросы по теме- Место маркетинга в управлении организацие
8. 27 ~пульмонологія А В Т О Р Е Ф Е Р А Т дисертації на здобуття наукового ступеня кандидата медич
9. Вулкани Сонячної Системи укр
10. греческий чай В старинных легендах о шалфее говорилось как о продлевающем жизнь
11.  Понятие правонарушения
12. Облік операцій з давальницькою сировиною
13. тема вищих та центральних органів влади парламентурядВерховнийсуд 2 однасистемазаконодавства 3 єдин
14. е гг. ХХ века произошел развал СССР и на его территории образовались независимые государства.
15. Идейным отцом французской системы индикативного планирования является Ж
16. задание Вариант 12
17. во Цена 3160100003HD Опора шаровая Meyle BMW 3
18. Вісник податкової служби УкраїниПередплатні індекси ~ 22599 укр
19. УПРАВЛІННЯ ПЕРСОНАЛОМ ДО ДЕРЖАВНОГО ІСПИТУ 1
20. Молочница