Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Статья- О компьютерном моделировании случайных величин

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

О компьютерном моделировании случайных величин

М.В. Кретов

1. Моделирование случайной величины,  распределенной по равномерному закону

Непрерывная случайная величина  имеет равномерное распределение на отрезке , если ее функция распределения задается следующей формулой:

, 

Плотность распределения вероятностей при этом имеет вид:

Математическое ожидание и дисперсия случайной величины  соответственно равны [3]:

, .

Обозначим буквой  случайную величину с равномерным распределением на отрезке . Для этой случайной величины функция распределения и плотность распределения вероятностей соответственно имеют вид:

 , 

Если , то вероятность

Моделировать случайную величину  можно многими способами [1].

Мы рассмотрим метод псевдослучайных последовательностей, который наиболее просто реализуется в компьютере. Для получения псевдослучайной последовательности используем алгоритм, который называется методом середины квадратов [4]. Поясним его на примере. Возьмем некоторое число . Пусть  Возведем его в квадрат:  Выберем четыре средние цифры этого числа и положим  Затем возводим  в квадрат:  и снова выбираем четыре средние цифры. Получаем  Далее находим     и т. д. Последовательность чисел  принимают за последовательность значений случайной величины  имеющей равномерное распределение на отрезке . Для оценки степени приближения последовательности  к последовательности случайных чисел с равномерным распределением используют статистические критерии, например, аналогичные критерию, который используется в работе [2].

2. Моделирование последовательности независимых случайных испытаний

Пусть проводится последовательность  независимых испытаний. В результате каждого испытания может произойти одно из  несовместных событий  объединение которых совпадает с пространством элементарных событий . Известна вероятность появления каждого события , , которая не изменяется при переходе от одного испытания к другому. Очевидно, что .

Моделирование последовательности испытаний проводится следующим образом. Разделим отрезок  на  участков  длины которых соответственно равны  Получаем последовательность значений  случайной величины  Если , то считаем, что в -м испытании наступило событие , так как

.

. Моделирование случайной величины дискретного типа

А. Общий алгоритм моделирования.

Если случайная величина  дискретная, то ее моделирование можно свести к моделированию независимых испытаний. В самом деле, пусть имеет место следующий ряд распределения:

Обозначим через  событие, состоящее в том, что случайная величина  примет значение , при этом . Тогда нахождение значения, принятого случайной величиной  в результате испытания, сводится к определению того, какое из событий  появится. Так как события  несовместны и вероятность появления каждого из них не изменяется от испытания к испытанию, то для определения последовательности значений, принятых случайной величиной  можно использовать алгоритм моделирования последовательности независимых испытаний.

Б. Моделирование случайной величины с биномиальным распределением.

Случайная величина  считается распределенной по биномиальному закону, если

где ; —вероятность появления некоторого события  в каждом отдельно взятом испытании; —вероятность появления события  в  независимых испытаниях  раз.

Введем случайную величину  —число появлений события  в -ом испытании,  Для этой величины имеет место:

, . (1)

Тогда случайное число  появлений события  в  испытаниях определяется по формуле

. (2)

Исходя из формул (1) и (2), значения случайной величины  определяются следующим образом:

) находят последовательность значений  случайной величины 

) для каждого числа ,  проверяют, выполняется ли неравенство  если неравенство выполняется, то полагают  в противном случае считают 

) находят сумму значений  случайных величин  которая совпадает со значением 

Повторяя этот алгоритм, получим последовательность значений  случайной величины с биномиальным законом распределения.

В. Моделирование случайной величины, распределенной по закону Пуассона.

Распределением Пуассона называется распределение вероятностей дискретной случайной величины, задаваемое формулой:

, , 

где —число событий простейшего потока, наступающих за некоторый промежуток времени. Распределение Пуассона применяется вместо биномиального распределения тогда, когда число  независимых испытаний велико (порядка нескольких сотен), а вероятность  появления события в каждом отдельно взятом испытании мала, при этом желательно, чтобы имело место .

Алгоритм моделирования случайной величины , распределенной по закону Пуассона при заданном параметре  можно представить следующим образом:

) выбираем  таким образом, чтобы вероятность  была достаточно малой, например, меньше 0, 01;

) получаем последовательность значений случайной величины , равномерно распределенной на отрезке ;

) для каждого числа ,  проверяем, выполняется ли неравенство ; если это неравенство выполняется, то полагают , в противном случае считаем ;

) вычисляем сумму  которая совпадает со значением случайной величины  распределенной по закону Пуассона.

. Моделирование случайной величины

абсолютно непрерывного типа

А. Метод обратных функций.

Пусть случайная величина  имеет монотонно возрастающую функцию распределения . Известно, что  значит, случайная величина  с монотонно возрастающей функцией распределения  связана со случайной величиной  соотношением

.

Отсюда следует, что значение  случайной величины является решением уравнения

, (3)

где —значение случайной величины  т. е.

.

Последовательности значений  случайной величины соответствует последовательность  значений случайной величины  с функцией распределения .

Б. Моделирование случайной величины с равномерным распределением на отрезке .

Пусть случайная величина  имеет равномерное распределение на отрезке . Тогда ее функция распределения имеет вид:

.

Составим уравнение (3), получим

, 

откуда

.

Последовательности значений  случайной величины  соответствует последовательность значений

, ,

случайной величины  равномерно распределенной на отрезке .

В. Моделирование случайной величины с показательным распределением.

Пусть случайная величина  имеет показательное распределение с параметром . Тогда функция распределения этой случайной величины

, .

Составим уравнение (3). Имеем

. (4)

Решаем уравнение (4) относительно  получаем

. (5)

Так как —случайная величина, равномерно распределенная на , то и  является также случайной величиной, распределенной по равномерному закону на отрезке . Поэтому вместо формулы (5) для моделирования случайной величины  можно использовать формулу

.

Г. Моделирование случайной величины с нормальным распределением.

Случайная величина  имеет нормальный закон распределения, если ее функция распределения имеет вид:

, 

где  и  —параметры.

Для компьютерного моделирования случайной величины с нормальным законом распределения можно использовать как метод обратных функций, так и метод, специально разработанный для нормального закона.

Согласно центральной предельной теореме, если случайные величины  независимы, одинаково распределены и их математическое ожидание и дисперсия конечны, то при увеличении  закон распределения суммы

приближается к нормальному. Требуется найти значения случайной величины  распределенной по нормальному закону с математическим ожиданием  и дисперсией .

Пусть —независимые случайные величины, равномерно распределенные на отрезке . Обозначим

. (6)

Учитывая   , найдем:

 .

При достаточно большом  можно считать, что случайная величина  имеет нормальный закон распределения с математическим ожиданием  и дисперсией .

Пронормируем случайную величину , получим:

. (7)

Для случайной величины  имеет место

, .

Перейдем от случайной величины  к стандартной нормально распределенной случайной величине

.

Тогда

.

Учитывая (6) и (7), получаем:

Например, при 

.

Отсюда значение  случайной величины  определится по формуле

, (8)

где  —значения случайной величины , равномерно распределенной на отрезке .

Таким образом, имея 12 значений случайной величины  и подставляя их в формулу (8), получаем значение случайной величины  имея следующие 12 значений величины  и подставив их в формулу (8), получим следующее значение случайной величины  и т. д.

Список литературы

1. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высш. шк., 2001.

. Кретов М.В. Вероятностные методы оценки прочности строительных материалов // Международная научная конференция «Инновация в науке и образовании—». Калининград, 2003. С. 228.

. Кретов М.В. Теория вероятностей и математическая статистика. Калининград: Янтарный сказ, 2004.

. Нейман Ю. Вводный курс теории вероятностей и математической статистики. М.: Наука, 1968.

Для подготовки данной работы были использованы материалы с сайта http://old.albertina.ru/




1. реферат дисертації на здобуття наукового ступеня кандидата економічних наук Київ
2.  Общие положения 14
3. Медный всадник и Золотая рыбка Поэма-сказка Пушкина
4. Реферат- Теории возникновения Вселенной
5. а вывод. В таблице.
6. Theories of European Integration
7. Вершины карьеры не предел развития
8. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата економічних наук.2
9. 8 О порядке совершенствования стипендиального обеспечения обучающихся в федеральных государственных образо
10. Бакунина Женева.
11. реферату- Джеймс Фенімор Купер ~ видатний американський письменникРозділ- Література світова Джеймс Фенім
12. Тема- Толерантность
13. январь Назидательное чтение для новоначальных Владимир Немыченков Не будем подробно описывать историю
14. на тему- ldquo;Едгар Алан По ~ видатний американський письменникrdquo; В історію американської літератури
15. Герой-бунтарь в творчестве Байрона
16. тема и объект управления Система ~ это совокупность или множество элементов связанных между собой определ
17. Классификация видов рекламы в СКСиТ по содержанию рекламного сообщения По содержанию рекламного сообщени
18. Горы для всех 1 декабря 2013 г
19. Медведей Сложно найти более популярный сериал на отечественном телевидении чем сериал Медведи которы
20. Просвещение 2011 УДК 37