Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Реферат на тему- Построение геометрических линийсплайны задача сглаживания.

Работа добавлена на сайт samzan.net:


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования «Пензенский филиал Российского Государственного университета инновационных технологий и предпринимательства»

Кафедра «Информационные системы»

                         

Реферат на тему: 

Построение геометрических линий(сплайны), задача сглаживания.

                                                                              Выполнил: ст. гр. 12 ин 1 Скотников Дмитрий

                                                                                         Проверил: к.т.н., доцент Такташкин Д. В.

Пенза 2013

1. Команда Ломаная – . Позволяет построить ломаную линию, состоящую из отрезков прямых.

2. Сплайновые кривые. Термин "сплайн" происходит от английского слова spline. Так называется гибкая полоска стали, при помощи которой чертежники проводили через заданные точки плавные кривые. Раньше подобный способ построения плавных обводов различных тел, таких как, например, корпус корабля, кузов автомобиля был довольно широко распространен в практике машиностроения. Сплайном называли и разметочную веревку, кривизна которой регулировалась подвешенными грузиками (рис. 1). В результате форма тела задавалась при помощи набора очень точно изготовленных сечений – плазов. Появление компьютеров позволило перейти от этого механического метода к более эффективному математическому способу задания поверхности обтекаемого тела.

Рис. 1.

Сплайн – это гладкая кривая, которая строится с использованием дуг и проходит через две или более контрольных точек, управляющих формой сплайна. Чем больше используется контрольных точек, тем кривая получается более гладкой.

В основе этого подхода к описанию поверхностей лежит использование сравнительно несложных формул, позволяющих восстанавливать облик изделия с необходимой точностью. Для большинства тел, встречающихся на практике, невозможно найти универсальную формулу, которая может описать соответствующую поверхность глобально или, как принято говорить, в целом. Вместе с тем аналитическое описание (описание посредством формул) внешних обводов изделия, то есть задание в трехмерном пространстве двумерной поверхности, должно быть достаточно экономным. Это особенно важно, когда речь идет об обработке изделий на станках с числовым программным управлением.

Два из наиболее общих типов сплайнов – кривые Безье и В-сплайны (би-сплайны). Типичным примером сплайнов являются также неоднородные рациональные NURBS-кривые ("нурбс"-кривые).

3. Кривая Безье – . В начале 70-х годов профессор Пьер Безье, проектируя на компьютере корпуса автомобилей "Рено", впервые применил для этой цели уравнения, описывающие кривые, впоследствии названные его именем.

Кривые Безье записываются в памяти компьютера в виде математических формул, поэтому рисунки, полученные с помощью этих кривых, обеспечивают возможность масштабирования без потери качества изображения

Обобщение методов Безье и B-сплайнов в начале 70-х годов позволило получить одно из мощнейших и универсальных средств геометрического моделирования криволинейных обводов − NURBS-технологию. Из-за своей гибкости и точности NURBS-модели могут использоваться в любом процессе иллюстрации, анимации и промышленного дизайна.

4. NURBS-кривая – . Сокращение (аббревиатура) NURBS обозначает Non-Uniform Rational B-Splines, то есть неравномерные рациональные B-сплайны. Это математические объекты для задания двумерных кривых и гладких поверхностей в трехмерном пространстве.

Неоднородный (Non-Uniform) означает, что различные области объектов NURBS (кривых или поверхностей) обладают различными свойствами (весами), значения которых не равны между собой.

Рациональный (Rational) означает, что объект NURBS может быть описан с помощью математических формул.

Большинство современных САПР и систем компьютерной анимации поддерживают моделирование с использованием NURBS-кривых и поверхностей;

- с помощью NURBS   кривых проще имитировать поверхности природных объектов или объектов, поверхности которых имеют сложным образом искривленные профили;

- NURBS-модели обеспечивают лучшее качество визуализации закругленных краев объектов благодаря разбиению на грани, выполняемому с использованием аналитических выражений. Например, обводы корпуса автомобиля моделируются с использованием NURBS-сплайнов.

Часть 1. Построение ломаной линии и сплайновых кривых

Задание 1. Построение различных видов кривых по указанным точкам

1.1. Запустите систему КОМПАС-3D LT.

1.2. Закройте окно справки.

1.3. Выполните команду ФайлСоздать…Фрагмент.

1.4. Постройте четыре точки (0; 0), (20; 50), (50; 50) и (70; 0). Стиль – Вспомогательная точка. При построении точек используйте поля ввода координат.

1.5. Постройте по указанным точкам ломаную линию:

выберите команду Ломаная – ;

привяжитесь последовательно к точкам A, B, C и D (рис. 2);

Рис.2. Построение ломаной по выбранным точкам.

после привязки к последней точке на Панели свойств выберите команду Создать объект или выберите из объектного меню команду Создать ломаную. Ломаная линия создается как единый объект;

прервите выполнение команды.

1.6. Постройте по указанным точкам кривую Безье:

на расширенной панели команд выберите Кривая Безье – ;

привяжитесь последовательно к точкам A, B, C и D;

после привязки к последней точке на Панели свойств выберите команду Создать объект или выберите из объектного меню команду Создать кривую Безье;

прервите выполнение команды.

Сравните ломаную линию и кривую Безье (. 3).

Рис. 3.

Согласитесь с тем, что кривая Безье действительно напоминает гибкую линейку, которая закреплена в вершинах.

При редактировании сплайновых кривых вы увидите, что они обладают более интересными свойствами.

1.7. Постройте по указанным точкам NURBS-кривую:

выберите команду NURBS-кривая – ;

привяжитесь последовательно к точкам A, B, C и D, затем создайте объект – NURBS-кривую, и прервите выполнение команды.

После выполнения этого задания вы получите следующее изображение –рис.4.

Рис. 4.

1.8. Сохраните результаты построений.

Часть 2. Редактирование ломаной линии и сплайновых кривых

Команду редактирования можно выбрать в объектном (контекстном) меню по выделенному графический объект.

Другой способ запуска редактирования параметров объекта: двойной щелчок мышью на этом объекте.

В этом режиме характерные точки отображаются в виде маленьких черных квадратов, а объект выделяется цветом. Теперь вы можете:

– изменить вид линии;

– перемещать характерные точки линии;

– добавлять и удалять характерные точки.

1. Перетаскивание характерной точки при помощи мыши.

Подведите курсор к характерной точке, при этом он изменит свою форму. Нажмите левую кнопку мыши и, не отпуская ее, перемещайте точку. Когда нужное положение точки будет достигнуто, отпустите кнопку мыши.

2. Перемещение характерной точки при помощи клавиатуры.

Подведите курсор к характерной точке при помощи клавиш со стрелками. Когда курсор изменит форму, нажмите клавишу Enter, активизировав тем самым характерную точку. Теперь характерная точка будет перемещаться вместе с курсором при помощи клавиш-стрелок. При достижении нужного положения вновь нажмите клавишу Enter, зафиксировав тем самым ее новое положение. Обратите внимание на то, что при этом способе перемещение характерной точки будет дискретным, кратным текущему шагу курсора.

3. Перемещение характерной точки с осуществлением привязки.

При перетаскивании характерной точки (как при помощи мыши, так и при помощи клавиатуры) срабатывают включенные в данный момент глобальные привязки.

При перетаскивании точки можно также воспользоваться локальными привязками. Для этого в процессе перемещения нажмите правую кнопку мыши или комбинацию клавиш Shift+F10 и вызовите из контекстного меню нужную привязку. Перемещайте курсор, а когда привязка сработает, щелкните левой кнопкой мыши или нажмите клавишу Enter.

При перетаскивании точки можно воспользоваться клавиатурными привязками. Для этого в процессе перемещения нажмите комбинацию клавиш, вызывающую нужную привязку, а после выполнения привязки отпустите левую кнопку мыши или нажмите клавишу Enter (комбинации клавиш перечислены в разделе справки Клавиатурные комбинации).

4. Задание координат характерной точки.

Активизируйте характерную точку. В Строке параметров объекта появятся поля с координатами этой точки. Введите в поля координат новые значения и зафиксируйте их, нажав клавишу Enter. После этого характерная точка займет новое положение.

5. Добавление характерной точки.

Подведите курсор к кривой (при этом он должен изменить свою форму) и щелкните левой кнопкой или нажмите клавишу ^ Enter. Новая характерная точка кривой добавлена.

6. Удаление характерной точки.

Активизируйте характерную точку и нажмите клавишу Delete. После этого характерная точка исчезнет, и объект перестроится в соответствии с положением оставшихся характерных точек.

Примечание.

1. При редактировании характерных точек перечисленные способы можно комбинировать. Для этого следует выбрать из объектного меню команду Редактировать точки.

2. Редактирование объекта завершается нажатием кнопки Создать объект или выбором соответствующей команды из объектного меню.

Задание 2. Редактирование построенных кривых

2.1. Редактирование ломаной линии:

войдите в режим редактирования ломаной линии;

освойте все перечисленные выше приемы редактирования характерных точек;

прочитайте дополнительную справку и попробуйте проделать описанные действия с характерными точками ломаной линии. Обратите внимание на происходящие изменения;

создайте объект.

2.2. Редактирование кривой Безье:  войдите в режим редактирования кривой. Обратите внимание, что у каждой вершины кривой Безье появились касательные векторы, на концах которых есть управляющие точки или маркеры  (рис.5).

Рис. 5. редактирование кривой Безье.

Вы можете:

– перемещать вершины кривой Безье;

– перемещать управляющие точки (маркеры) и поворачивать касательные векторы;

– добавлять и удалять вершины кривой Безье;

попробуйте проделать эти операции и обратите внимание на изменения, которые происходят с кривой Безье.

2.3. Редактирование NURBS-кривой:

войдите в режим редактирования NURBS-кривой (рис.6).

Рис. 7.

Панель свойств NURBS-кривой имеет вид, показанный на рис. 8.

Рис. 8. Панель свойств NURBS–кривой.

Здесь:

т − координаты выделенной (указанной) характерной точки,

Вес точки – образно говоря, сила притяжения кривой к точке;

Порядок NURBS-кривой – число, на единицу большее степени полиномов, описывающих участки, из которых состоит кривая;

Режим построения NURBS-кривой: разомкнутая/замкнутая – ;          попробуйте поменять параметры NURBS-кривой. Изучите влияние веса точки и порядка кривой.

Сглаживание B-сплайнами

Математическое представление тела, составленного из простых геометрических форм (сфер, цилиндров или конусов) несложно. Но очень часто это не так; кузова автомобилей, поверхности самолетов, флюзеляжи и многое другое не так-то просто описать. Процедура, обычно используемая в этих случаях, состоит обычно в следующем:

поверхность покрывается двумя воображаемыми группами линий; первая идет в продольном направлении, вторая — трансверсальна к первой. Эта сетка линий определяет множество ячеек, каждая из которых (в случае гладкой поверхности), будет ограничена четырьмя гладкими кривыми;

координаты узлов этой воображаемой сетки измеряются на модели или на наборе чертежей поперечных сечений поверхности;

с помощью интерполяции (усреднения) математически описываются эти две группы линий, образующие сетку.

Можно строить достаточно гладкие кривые и поверхности с использованием полиномов. Допустим, что мы хотим построить поверхность в виде графика функции z = z(x, y). Линия y = const на этой поверхности будет представлена линией z = z(x), она будет проходить через последовательность точек (x0, z0), ..., (xi, zi), ..., (xn, zn) с x0 < ... < xi < ... < xn. Наша цель — провести через эти точки составную кривую f(x), имеющую следующие свойства:

на каждом подынтервале xi-1 <= x <= xi, i = 1, 2, ..., n функция f(x) является кубическим полиномом;

ее первые и вторые производные непрерывны в узлах.

Полученная гладкая кривая называется кубическим сплайном. Термин «сплайн» возник по аналогии: это название чертежного инструмента — тонкой металлической линейки, которая может изгибаться так, чтобы проходить через заданные точки. Физически такая кривая минимизирует энергию внутренних напряжений. Математически — имеет минимальную среднеквадратичную кривизну, то есть она наиболее гладкая. Сплайны имеют много приложений в конструировании криволинейных форм. Однако они имеют и некоторые ограничения:

локальное изменение влечет за собой вычисление заново всего сплайна;

могут возникать проблемы при аппроксимации прямой, имеющей разрывы вторых производных (например, сопряжения прямой линии и дуги окружности);

с точки зрения эстетики не всегда приемлемы, так как кривизна поверхности, сконструированной с помощью сплайнов, изменяется иногда неравномерно, что приводит к искажениям (например, причудливые искажения предметов, отраженных от кузова автомобиля).

Первое ограничение можно устранить с помощью B-сплайна. Общая форма полученной в этом случае кривой показана на рис. 20.1.

рис. 20.1.

На этом рисунке сплайн продолжен от его конечных точек xi-4, xi прямыми линиями, идущими вдоль оси x. В результате получается кубический сплайн на любом числе отрезков, но он не равен нулю только на четырех из них. Такая функция называется B-сплайном (или фундаментальным сплайном) четвертого порядка (или третьей степени). Про него говорят, что он имеет минимальный носитель (носитель — это число отрезков, на которых сплайн отличен от нуля).

Заметим, что кубический B-сплайн полностью определяется множеством узлов, на которых он определен, и только одной заданной величиной z. В более общем виде B-сплайн Mmi(x) порядка m (или степени m - 1) на данном множестве узлов везде равен нулю, кроме m последовательных отрезков xi-m < x < xi. Опять-таки Mmi(x) определяется множеством узлов и одной величиной z. Принято исключать последнюю степень свободы и фиксировать амплитуду B-сплайна некоторым стандартным образом.

Часто удобно для вычислений использовать нормализованный B-сплайн Nmi(x), связанный с Mmi(x) соотношением Nmi(x) = (xi - xi-m)Mmi(x).

Любой сплайн порядка m на множестве узлов x0, x1, ..., xn может быть выражен в виде линейной комбинации B-сплайнов, определенных на том же множестве узлов, расширенном (m - 1) дополнительными узлами на каждом из концов интервала, которые можно выбрать произвольно: x-m+1, x-m+2, ..., x-1 и xn+1, ..., xn+m-1. Можно построить m + n - 1 последовательных B-сплайнов на расширенном множестве узлов, каждый из которых отличен от нуля на m последовательных отрезках. Поэтому можно записать:

j(x) = Sci * Mmi(x),

где j(x) — любой сплайн степени (m - 1) на первоначальном множестве узлов и Mmi(x) есть B-сплайн на расширенном множестве узлов, отличный от нуля при xi-m < x < xi; ci  суть числовые коэффициенты; суммирование ведется по i = 1, ..., m + n - 1.

Если имеется множество векторов r0, r1, ..., rn, то можно использовать их: r(u) = Sri * N4, i+1(u) (суммирование ведется по i = 0, ..., n). Так как имеется (n + 1) векторных коэффициентов, то необходим набор из (n + 1) B-сплайнов. Последняя формула для 0 <= u <= n - 2 является уравнением кривой, образованной кубическими B-сплайнами.

Свойства

Некоторые простейшие свойства следуют из тождества SN4, i+1 = 1, 0 <= u <= n - 2, i = 0..n. При u = 0 следует: r(0) = N42(0)(r1 - r0). Из этого следует, что если r0, r1, .., rn — вершины некоторой замкнутой ломанной, то кривая, построенная на основе B-сплайна, начинается в r0 и ее касательная в этой точке имеет направление (r1 - r0). Аналогичное утверждение верно и для другого конца. Главное преимущество этого сплайна заключается в том, что изменение одной из вершин влечет за собой изменение только четырех отрезков кривой. Далее, мы также можем построить кривую, аппроксимирующую ломанную с любым желаемым числом сторон. Отрезок сплайна всегда лежит в выпуклой оболочке:

рис. 20.2

Важным следствием этой выпуклой оболочки является вырождение ее в прямую линию, если 4 последовательные вершины ломанной коллинеарны, значит соответствующий сегмент кривой должен быть прямолинейным.

Имеется еще 2 полезных факта:

кривая проходит вблизи средней точки каждой стороны, за исключением 1-ой и последней точками;

при k = 2, ..., n - 2 кривая проходит через точки: 1/6rk-1 + 2/3rk + 1/6rk+1 = 2/3rk + 1/3(1/2(rk-1 + rk+1))

Эти точки, как показано на рис. 20.3, лежат на 1/3 расстояния от rk на прямой, соединяющей rk с серединой отрезка между rk-1 и rk+1.

рис. 20.3




1. Тема- Управление человеком и управление группойК профессиональным качествам руководителя ориентированного
2. тема общих знаний о природе обществе и человеке
3. то количество денег которое получила семья или определенный индивид за определенный промежуток времени;
4. Це мутації які можуть змінювати висоту рослин або змінити вигляд її насіння від гладкого до грубого
5. а. УЗ ультразвук это механические колебания упругой среды имеющие одинаковую с шумом физическую природу
6. Национальный исследовательский университет
7. прибыль, как финансовый результат ее деятельности и факторы, ее определяющие
8. Кубок Металлурга проводятся согласно Упрощенным Правилам игры в минифутбол с целью выявления сильнейш
9. КАМАЗ. Теперь эту ставшую незаменимой машину можно видеть буквально на всех дорогах страны
10. регулярные колебания уровней производства занятости и дохода продолжающиеся обычно от 2 до 10 лет
11. Ness ity ism ship dom ment tion ery cy ge ed y
12. Реферат з дисципліни- системи технологiй
13. широколистяних лісів
14. КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Факультет А.
15. История политических и правовых учений специальность Юриспруденция для студентов заочного обучения
16. ЛЕКЦИЯ 18 ЧАСТЬ 2
17.  Wht building professions do you know Cn you explin the following Vocbulry pprentice to be considered trdesmn crf
18. 1 где сопротивление вольтметра диаметр проволоки
19. это связующее звено между обществом и природой
20. Понятие о музыкальных интервалах и аккордах