Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

реферата состоит в том что наука гистология изучает строение тканей живых организмов.

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

План:

Актуальность.

Цитология.

Реакция клеток на повреждающие воздействия.

Старение и смерть клеток.

Заключение.

Список использованной литературы.

Актуальность

Актуальность данного реферата состоит в том ,что наука гистология изучает строение тканей живых организмов.А ткани в свою очередь состоят из клеток.Таким образом для дальнейшего изучения гистологии нам нужно узнать строение клеток.В этом нам поможет наука цитология.

Так что же такое клетка?

Кле́тка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток (многоклеточные животныерастения игрибы), либо являются одноклеточными организмами (многие простейшие и бактерии).

Цитология

Цитология (от греч. κύτος – пузырьковидное образование и λόγος – слово, наука) – раздел биологии, наука о клетках, структурных единицах всех живых организмов, ставит перед собой задачи изучения строения, свойств, и функционирования живой клетки.

Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа – в 17 веке. Термин «клетка» впервые предложил 1665 г. английский естествоиспытатель Роберт Гук (1635–1703) для описания ячеистой структуры наблюдаемого под микроскопом среза пробки. Рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»)». В 1674 году голландский учёный Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано.

Однако бурное развитие цитологии началось только во второй половине 19 в. по мере развития и усовершенствования микроскопов. В 1831 Р. Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. В 1838–1839 гг. немецкие учёные М. Шлейден (1804–1881) и Т. Шванн (1810–1882) практически одновременно выдвинули идею клеточного строения. Утверждение о том, что все ткани животных и растений состоят из клеток, составляет сущность клеточной теории. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу.


Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления. В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в.

Фундаментальное значение для дальнейшего развития клеточной теории имела концепциягенетической непрерывности клеток. Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р. Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Второй этап в развитии цитологии начинается с 1900 гг., когда были ясно сформулированы законы наследственности, открытые австрийским учёным Г.И. Менделем еще в 19 в. В это время из цитологии выделяется отдельная дисциплина – генетика, наука о наследственности и изменчивости, изучающая механизмы наследования и гены, как носители наследственной информации, заключённые в клетках. Основой генетики явилась хромосомная теория наследственности – теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь еще больших успехов в изучении строения клетки. На данный момент цитологические методы активно используются в селекции растений, в медицине – например, в изучении злокачественных образований и наследственных заболеваний.

Основные положения клеточной теории

В 1838-1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения клеточной теории:

1. Клетка есть единица структуры. Все живое состоит из клеток и их производных. Клетки всех организмов гомологичны.

2. Клетка есть единица функции. Функции целостного организма распределены по его клеткам. Совокупная деятельность организма есть сумма жизнедеятельности отдельных клеток.

3. Клетка есть единица роста и развития. В основе роста и развития всех организмов лежит образование клеток.

Клеточная теория Шванна–Шлейдена принадлежит к величайшим научным открытиям XIX в. В то же время, Шванн и Шлейден рассматривали клетку лишь как необходимый элемент тканей многоклеточных организмов. Вопрос о происхождении клеток остался нерешенным (Шванн и Шлейден считали, что новые клетки образуются путем самозарождения из живого вещества). Только немецкий врач Рудольф Вирхов (1858-1859 гг.) доказал, что каждая клетка происходит от клетки. В конце XIX в. окончательно формируются представления о клеточном уровне организации жизни. Немецкий биолог Ганс Дриш (1891) доказал, что клетка – это не элементарный организм, а элементарная биологическая система. Постепенно формируется особая наука о клетке – цитология.

Дальнейшее развитие цитологии в XX в. тесно связано с разработкой современных методов изучения клетки: электронной микроскопии, биохимических и биофизических методов, биотехнологических методов, компьютерных технологий и других областей естествознания. Современная цитология изучает строение и функционирование клеток, обмен веществ в клетках, взаимоотношения клеток с внешней средой, происхождение клеток в филогенезе и онтогенезе, закономерности дифференцировки клеток.
В настоящее время принято следующее определение клетки. Клетка – это элементарная биологическая система, обладающая всеми свойствами и признаками жизни. Клетка есть единица структуры, функции и развития организмов.

 

Повреждение клетки

Повреждение клетки это изменение функционирования клетки, которое сохраняется после удаления повреждающего агента.

Повреждение клетки может быть частичным или полным, обратимым или необратимым. Необратимое повреждение может привести к деструкции и гибели клетки.

Повреждение клетки может быть первичным и вторичным.

Реакция клеток на повреждение проявляется в структурных и функциональных изменениях клетки.

Основные структурные изменения следующие:

а) повышение проницаемости мембраны пострадавшей клетки;

Ь) уменьшение дисперсности коллоидов цитоплазмы и ядра

с) увеличение вязкости цитоплазмы, которому иногда предшествует уменьшение вязкости

1) увеличение сродства цитоплазмы и ядра к ряду красителей.

Степень выраженности зависит от силы и продолжительности повреждающего агента.

По степени выраженности различают:

а) паранекроз — обратимые нарушения структуры и функции клетки

Ь) некробиоз — необратимые повреждения (гибель) части клеток в ткани.

с) некроз — массовая гибель клеток с активацией лизосомальных ферментов и разрушением других клеточных структур. Этот процесс называется аутолизом. Значение аутолиза — удаление мертвых клеток и замена их новыми клетками или элементами соединительной ткани.


ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК

 

1. Увеличение проницаемости цитоплазматической мембраны:

1) белкам и коллоидным краскам (макромолекулы);

2) к аминокислотам и глюкозе (вещества с низкой молекулярной массой);

3) к ионам.

2. Уменьшение электрического сопротивления ткани.

Электрическое сопротивление ткани называется импеданс. Он состоит из омической и емкостной составляющей. Емкостная составляющая обусловлена тем, что клеточные мембраны, по сути, представляют собой конденсаторы. Омическая составляющая зависит от омического сопротивления цитоплазмы и мембран.

3. Увеличение сродства к красителям цитоплазмы и ядра клетки.

Это явление связано с тем, на фоне повышенной проницаемости мембраны при окраске клетки красителя в нее поступает значительно больше.

4. Изменение мембранного потенциала.

Это явление чрезвычайно характерно для неспецифического ответа клетки на повреждение. Причины:

1) прямое повреждение мембраны;

2) нарушение работы мембранных ионных насосов за счет снижения содержания в клетке АТФ. Снижение мембранного потенциала наблюдается при холодовом, радиационном, аллергическом повреждениях клеток и их органелл.

5. Выход ионов К+ из клеток.

В норме внутри клетки содержится больше ионов К+, чем вне ее. Такое соотношение обеспечивается:

1) работой Nа+ -К+ -АТФ-азы, которая постоянно накачивает К+ внутрь клетки;

2) спонтанным выходом К+ из клетки за счет диффузии в область с более низкой концентрацией. Причина потери ионов К+ - нарушение работы Nа+ -К+ -АТФ-азы в результате угнетения окислительного фосфорилирования в митохондриях.

6. Накопление ионов Са2+ в гиалоплазме. В норме поступающий в клетку Са2+ аккумулируется в митохондриях, поэтому в гиалоплазме концентрация ионов Са2+ примерно в 10 000 раз ниже, чем вне клетки. При повреждении накопление в митохондриях угнетается и содержание ионов Са2+ в гиалоплазме нарастает. Причина: нарушение окислительного фосфорилирования в митохондриях и уменьшение мембранного потенциала митохондрий.

7. Набухание клеток.

Форма и объем клеток зависят от:

1) состояния цитоскелета клетки;

2) разницы между онкотическим и осмотическим давлением внутри и вне клетки (онкотическое п осмотическое давление определяется количеством белков и ионов в единице объема. Другое название этой величины «коллоидно-осмотическое давление».

Увеличение объема клеток происходит при

1) накоплении белков и ионов внутри клетки;

2) снижении их концентрации вне клетки. В результате коллоидно-осмотическое давление в клетке становится больше, чем вне ее и молекулы воды переходят в клетку с целью выравнивания концентраций.

Последствия: сдавление микрососудов и нарушение микроциркуляции.

8. Нарушение структуры и функции митохондрий.

Всего 4 нарушения:

1) снижение потребления кислорода — связано с уменьшением скорости переноса электронов по дыхательной цепи.

2) увеличение проницаемости внутренней митохондриальной мембраны может привести к разобщению окислительного фосфорилирования в митохондриях и изменению показателей работы митохондрий. Существует 2 (два) показателя работы митохондрий: коэффициент Р/О и коэффициент дыхательного контроля ДК. Коэффициент Р/О - это отношение количества синтезированной АТФ к количеству поглощенного кислорода. Коэффициент дыхательного контроля — это отношение скорости дыхания митохондрий в присутствии субстратов окисления, АДФ и ортофосфата к скорости дыхания митохондрий в отсутствии АДФ. Снижение ДК до единицы и Р/О до 0 говорит о разобщении окислительного фосфорилирования в митохондриях.;

3) снижение способности накапливать кальций — приводит к увеличению его концентрации в гиалоплазме. Развивается в результате снижения мембранного потенциала и разобщения окислительного фосфорилирования в митохондриях;

4) набухание митохондрий — связано с поступление воды внутрь митохондрий и приводит к их разрыву. Различают активное и пассивное набухание митохондрий. Пассивное набухание митохондрий - происходит за счет движения молекул воды в митохондрию при увеличении коллоидно осмотического давления внутри нее и не требует затрат энергии. Активное набухание митохондрий — это движение молекул воды в митохондрию исключительно вслед за фосфатом К+. Фосфат К+ поступает в митохондрии при уменьшении мембранного потенциала ниже 170-180 мВ со знаком «минус».

9. Активация лизосомальных ферментов и ацидоз. Увеличение проницаемости клеточных и внутриклеточных мембран касается и мембран лизосом. Из них выбрасываются активные липазы, протеазы, нуклеазы и другие ферменты. Немедленно начинается распад белков, жиров, пуриновых и пиримидиновых оснований. Образуются кислоты: амино-, жирные и нуклеиновые. Они диссоциируют на водород и кислотный остаток и среда закисляется. РН падает до 6,0 и ниже.

10. Апоптоз — это запрограммированная гибель клетки, которая необходима для удаления старых клеток или замены одних клеток другими. Стадии апоптоза:

1) поступление сигнала на поверхность клетки. Сигнал — поступление или непоступление определенных веществ;

2) связывание сигнальной молекулы с рецептором на поверхности клетки;

3) запуск каскада реакций внутриклеточной сигнализации;

4) активация синтеза деструктивных ферментов, в частности эндонуклеаз;

5) аутолиз.

11. Повреждение генетического аппарата клетки — это разрушение нуклеиновых кислот ядра и рибосом.

12. Последовательность нарушений в клетке при гипоксии 

СТАРЕНИЕ КЛЕТОК

Несмотря на универсальность, процессу старения трудно дать четкое определение. С возрастом происходят физиологические и структурные изменения почти во всех системах органов. При старении имеют большое значение генетические и социальные факторы, характер питания, а также связанные с возрастом болезни — атеросклероз, сахарный диабет, остеоартроз. Повреждения клеток, обусловленные возрастом, также являются важным компонентом старения организма.

С возрастом прогрессивно страдает ряд функций клеток. Снижается активность окислительного фосфорилирования в митохондриях, синтеза ферментов и рецепторов клеток. Стареющие клетки обладают сниженной способностью к поглощению питательных веществ и восстановлению хромосомных повреждений. К морфологическим изменениям в стареющих клетках относятся неправильные и дольчатые ядра, полиморфные вакуолизированные митохондрии, уменьшение эндоплазматической сети и деформация пластинчатого комплекса. Одновременно происходит накопление пигмента липофусцина.

Старение клеток является многофакторным процессом. Он включает эндогенные молекулярные программы клеточного старения, а также экзогенные влияния, приводящие к прогрессирующему вторжению в процессы выживаемости клеток.

Феномен клеточного старения интенсивно изучается в опытах in vitro. Показано, что в стареющих клетках происходит активация специфических для старения генов, повреждаются гены — регуляторы роста, стимулируются ингибиторы роста, а также включаются и другие генетические механизмы.

Предполагают, что генные дефекты могут быть обусловлены телометрическим укорочением хромосом. Теломеры играют важную роль в стабилизации терминальных порций хромосом и прикреплении их к ядерному матриксу. Например, длина теломеров уменьшается в последних пассажах культуры клеток и в культуре клеток людей старческого возраста. Обнаружена связь между длиной теломера и активностью теломеразы.

Приобретенные повреждения клеток при старении возникают под действием свободных радикалов. Причинами этих повреждений может быть воздействие ионизирующей радиации или прогрессирующее снижение активности антиоксидантных механизмов защиты, например витамина Е, пероксидазы глютатиона. Повреждение клетки свободными радикалами сопровождается накоплением липофусцина, однако сам по себе пигмент не токсичен для клетки. Кроме того, СПОЛ и свободные радикалы вызывают повреждение нуклеиновых кислот как в ядре, так и митохондриях. Мутации и уничтожение митохондриальной ДНК с возрастом становятся просто драматическими. Свободные радикалы кислорода катализируют также образование модификаций белков, включая ферменты, делая их чувствительными к повреждающему действию нейтральных и щелочных протеаз, содержащихся в цитозоле, что ведет к дальнейшему нарушению функций клетки.

Посттрансляционные изменения внутриклеточных и внеклеточных белков также возникают с возрастом. Одна из разновидностей таких изменений — неферментное гликозилирование белков. Например, связанное с возрастом гликозилирование белков хрусталика лежит в основе старческой катаракты.

Наконец, имеются данные о нарушении образования стрессорных белков in vitro у экспериментальных животных при старении. Образование стрессорных белков — важнейший механизм защиты от различных стрессов.

Заключение

В данном реферате мы рассмотрели что такое цитология,ученых изучающих ее и этапы ее развития.Подробно рассмотрели клетку.А также узнали как реагирует клетка на повреждающие воздействия.Подробно рассмотрели механизм старения клетки и ее смерти.

Список использованной литературы

http://vmede.org/index.php?topic=103.0

http://www.vevivi.ru/best/Povrezhdenie-kletki-ref168780.html

http://biofile.ru/bio/19286.html

https://ru.wikipedia.org/wiki/%D6%E8%F2%EE%EB%EE%E3%E8%FF

http://yandex.kz/images/search?img_url=http%3A%2F%2Fwww.livelib.ru%2Fselepic%2F016208%2Fm%2F2836%2FDzhentlmen_v_kletku___kletchataya_seriya_knig_Vudhausa.png&uinfo=sw-1366-sh-768-ww-1345-wh-659-pd-1-wp-16x9_1366x768&_=1411022353077&p=1&viewport=wide&text=%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B0&pos=59&rpt=simage




1. Основные варианты верстки колонцифр в печатных СМИ
2. Рост и развитие сорных растений в условиях техногенного загрязнения почвы
3. Курс лекций по «Режимам работы и эксплуатации ТЭС»
4. Тема 6- Отечественная философия Душа мира связующее звено между Богом и его творением по В
5. х гг. советским руководством было принято решение о проведении экономической реформы более глубокой и проду.
6. Роль кредитных учреждений на европейском финансовом рынке и тенденции их развития
7. Оформление трудовых отношений 2
8. Реферат- Правила знакомства в русском речевом этикете
9. Липецкий край в годы Великой Отчественной Войны
10. Проблемы устранения противоречий при использовании международных норм в правовом регулировании трудовых отношений в РФ
11. правовой формы адреса и телефоны близлежащих аптек.
12. Формування в молодших школярів пізнавального інтересу засобами усної народної творчості на уроках курсу Я і Україна
13. Тема 1. Общество
14. Участие оренбуржцев во внешней политике России XIX века
15. БЦРБ; Ворожищева Светлана Александровна администрация Белоярского района; Ведерникова Евгения МОСШ
16. тематизированную подготовку к Единому государственному экзамену ЕГЭ и включает в себя материалы по трем со
17. Первые попытки десталинизации
18. Курский государственный технический университет Кафедра теоретической и экспериментальной ф
19. Аналитическое бюро Молодежь Удмуртии- тенденции перспективы Результаты первог
20. Как научить детей ценить деньги