У вас вопросы?
У нас ответы:) SamZan.net

. За рубежом реакторов канального типа аналогичным РБМК не строят.

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 20.3.2025

Сравнение реакторов типов ВВЭР и РБМК

В России работает 14 водо-водяных реакторов типа ВВЭР общей мощностью 10640 МВт и 11 канальных графитовых реакторов типа РБМК общей мощностью 11000 МВт (см. табл. 5.1). За рубежом реакторов канального типа, аналогичным РБМК, не строят.

Главное отличие реакторов типа ВВЭР от РБМК состоит в их большей безопасности. Это определяется тремя причинами:

  1.  реактор ВВЭР принципиально не имеет так называемых положительных обратных связей, т.е. в случае потери теплоносителя и потери охлаждения активной зоны цепная реакция горения ядерного топлива затухает, а не разгоняется, как в РБМК;
  2.  активная зона ВВЭР не содержит горючего вещества (графита), которого в активной зоне РБМК содержится около 2 тыс. т;
  3.  реактор ВВЭР имеет защитную оболочку, не допускающую выхода радиоактивности за пределы АЭС даже при разрушении корпуса реактора; выполнить единый защитный колпак для РБМК невозможно из-за большой разветвленности труб реакторного контура.

Главное преимущество ВВЭР — большая безопасность, значение которого полностью осознали лишь после Чернобыльской катастрофы, хотя это было известно давно. Сейчас Россия производит только усовершенствованные высоконадежные реакторы типа ВВЭР. Завод «Атоммаш» может изготавливать от 4 до 8 реакторов в год.

Корпус ВВЭР имеет гигантские размеры, а изготовление его весьма трудоемко. Его размеры ограничены достижением предельного состояния прочности, так как механические напряжения, разрывающие корпус, пропорциональны его диаметру и внутреннему давлению в нем (при этом необходимо учитывать  охрупчивание  металла под действием нейтронного облучения).

Технологическая схема  АЭС

Принцип работы двухконтурной АЭС на водо-водяном реакторе приведен на рисунке. По двухконтурной схеме отвод теплоты из  реактора осуществляется теплоносителем, который затем передает теплоту рабочей среде непосредственно. Первый контур расположен в реакторном отделении.  Рабочая среда и теплоноситель второго контура нерадиоактивны, что упрощает эксплуатацию и повышает безопасность АЭС.

Через реактор 1 типа ВВЭР прокачивается вода под давлением 15,7 МПа (160 ат). На входе в реактор вода имеет температуру 289 °С, на выходе — 322 °С. При давлении в 160 ат вода может закипеть только при температуре 346 °С и, таким образом, в первом контуре двухконтурной АЭС всегда циркулирует только вода без образования пара. Из ядерного реактора 1 вода с температурой 322 °С поступает в парогенератор 3. Парогенератор — это горизонтальный цилиндрический сосуд (барабан), частично заполненный питательной водой второго контура; над водой имеется паровое пространство. В воду погружены многочисленные трубы парогенератора, в которые поступает вода из ядерного реактора. В парогенераторе происходит выпаривание воды при повышенном давлении. С помощью питательного насоса ПН и соответствующего выбора турбины в парогенераторе создается давление существенно меньшее, чем в первом контуре (для реактора ВВЭР-1000 и турбины мощностью 1000 МВт это давление свежего пара р0 = 60 ат). Поэтому уже при нагреве до 275 °С вода в парогенераторе закипает вследствие нагрева ее теплоносителем, имеющим температуру 322 °С. Таким образом, в парогенераторе, являющимся связывающим звеном первого и второго контура (но расположенном в реакторном отделении), генерируется пар с давлением р0 = 60 ат и температурой t0 = 275 °С (свежий пар). Влажность пара очень мала (0,5 %). В этом состоит особенность АЭС — низкие начальные параметры и влажный пар на входе в турбину.

Этот пар направляется в паровую турбину 4. Здесь он расширяется до давления примерно 1 МПа (10 ат). При этом давлении влажность пара увеличивается до 10—12 %. Возрастание влажности  приводит к интенсивной эрозии деталей проточной части цилиндра высокого давления ЦВД паровой турбины. Чтобы избежать этого, пар перед поступлением в цилиндр низкого давления ЦНД направляется в сепаратор-пароперегреватель (СПП). В сепараторе С от пара отделяется влага, и он поступает в пароперегреватель, где его параметры доводятся до значений 10 ат, 250 °С, влажность 0,5 %. Таким образом, пар на выходе из СПП является перегретым, и эти параметры выбраны такими, чтобы получить допустимую влажность в конце турбины, где угроза эрозии еще большая, чем за ЦВД. Расширившись в ЦНД, пар поступает в конденсатор 5, а из него в конденсатно-питательный тракт, состоящий из конденсатного насоса 6, подогревателей низкого и высокого давления 9,13, даэратора 10, питательного насоса 12. 7, 8, 11 – пар от отбора, предназначенный для подогрева воды в 9, 13, 10. Турбина вращает электрический генератор, ток от которого поступает в электрическую сеть.

Эксплуатационные особенности АЭС.

АЭС не могут работать в маневренных режимах, т.е. участвовать в покрытии переменной части графика электрической нагрузки. Из-за высокой стоимости АЭС должны работать с максимальной нагрузкой, но при их высокой доле в установленной мощности отдельных объединенных энергосистем и при больших неравномерностях графика суточной и недельной нагрузки возникает необходимость быстрых  нагружений  и  разгружений АЭС, которые для них крайне нежелательны.

Особенности работы АЭС. Сравнение ТЭС и АЭС.

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива. Ядерное горючее получают из природного урана, который добывают либо в шахтах (Франция, Нигер, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (США, Канада, Россия). Природный уран — это смесь в основном неделящегося изотопа урана 238U (более 99%) и делящегося изотопа 235U (0,71 %), который соответственно и представляет собой ядерное горючее. Для работы реакторов АЭС требуется обогащение урана. Для этого природный уран направляется на обогатительный завод, после переработки на котором 90 % природного обедненного урана направляется на хранение, а 10% приобретают обогащение до нескольких процентов (3,3—4,4 % для энергетических реакторов). Обогащенный уран (точнее — диоксид урана) направляется на завод, изготавливающие твэлы — тепловыделяющие элементы. Все дальнейшие процессы «горения» — расщепления ядер 235U с образованием осколков деления, радиоактивных газов, распуханием таблеток и т.д. происходят внутри трубки твэла, герметичность которой должна быть гарантирована. После постепенного расщепления 235U и уменьшения его концентрации до 1,26 %, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора, некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо сжигается полностью (по крайней мере, к этому стремятся), на АЭС добиться 100 % расщепления ядерного горючего невозможно. Отсюда — невозможность оценивать КПД АЭС с помощью удельного расхода условного топлива. Здесь же подчеркнем, что АЭС не использует воздух для окисления топлива, отсутствуют какие-либо выбросы золы, оксидов серы, азота, углерода и так далее, характерных для ТЭС. Мало того, даже радиоактивный фон вблизи АЭС меньше, чем у ТЭС (этот фон создается элементами, содержащимися в золе). Результатом деления ядер расщепляющихся элементов в ядерном реакторе является выделение огромного количества тепла, которое используется для получения пара.

Таким образом, ядерный реактор АЭС — это аналог парового котла в ПТУ ТЭС. Сама ПТУ АЭС принципиально не отличается от ПТУ ТЭС: она также содержит паровую турбину, конденсатор, систему регенерации, питательный насос, конденсатоочистку. Так же, как и ТЭС, АЭС потребляет громадное количество воды для охлаждения конденсаторов. Параметры энергоблоков АЭС существенно ниже, чем ТЭС: температура пара перед турбиной почти в 2 раза, а давление более чем в 3 раза меньше. Это означает, что работоспособность 1 кг пара, протекающего через турбину АЭС, оказывается примерно вдвое меньше, чем через турбину ТЭС. Вместе с тем, большие капитальные затраты требуют большой единичной мощности энергоблоков АЭС. Отсюда — огромные расходы пара через турбоагрегаты АЭС по сравнению с турбоагрегатами ТЭС и соответственно огромные расходы охлаждающей воды.

Полезным продуктом работы АЭС служит электроэнергия Э. Для оценки эффективности АЭС, точнее энергоблока АЭС, служит его КПД

η=Э/

где Э — выработанная за выбранный период электроэнергия; Qреак —тепло, выделившееся в реакторе за этот период.

Подсчитанный таким образом КПД АЭС составляет всего 30—32 %, но сравнивать его с КПД ТЭС, составляющим 37—40%, строго говоря, не вполне правомочно.

ТЭС имеет отходы в виде золы и других выбросов, АЭС также имеет отходы в виде отработавшего ядерного топлива и других радиоактивных остатков. Эти отходы утилизируют: сначала их выдерживают в специальных бассейнах для уменьшения  радиоактивности, а потом направляют на переработку на радиохимические заводы, где из них извлекают ценные компоненты, в т.ч. и несгоревшее в реакторе топливо.

ТЭС мощностью 1000 МВт потребляет в год 8 млн. т кислорода для окисления топлива, АЭС не потребляет кислорода вообще.

Главный недостаток АЭС — тяжелые последствия аварий в реакторном отделении с его разгерметизацией и выбросом радиоактивных веществ в атмосферу с заражением громадных пространств. Для исключения таких аварий АЭС оборудуется сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими даже в случае так называемой максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура в реакторном отделении) исключение расплавления активной зоны и ее расхолаживание.

Для обеспечения радиационной безопасности АЭС оборудуют специальной приточно-вытяжной системой вентиляции, сложность которой не идет ни в какое сравнение с вентиляционной системой ТЭС. Если для последней основной задачей является поддержание только санитарно-технических норм, то вентиляционная система АЭС, кроме решения данной задачи должна решать проблему радиационной безопасности. Для этого АЭС оборудуется системой определенного направленного движения воздуха из зон с малым радиоактивным загрязнением в так называемые необслуживаемые помещения с высоким уровнем радиации (вплоть до создания в таких помещениях разрежения). В конечном счете все вентиляционные потоки поступают к дезактивационным фильтрам и затем к вентиляционной трубе высотой не менее 100 м.

Серьезной проблемой для АЭС является их ликвидация после выработки ресурса, которая по оценкам может составлять до 20 % стоимости их строительства.

Главным преимуществом АЭС перед любыми другими электростанциями является их практическая независимость от источников топлива, т.е. удаленности от месторождений урана и радиохимических заводов. Энергетический эквивалент ядерного топлива в миллионы раз больше, чем органического топлива, и поэтому, в отличие, скажем, от угля, расходы на его перевозку ничтожны. Это особенно важно для европейской части России, где доставка угля из Кузбасса и Сибири слишком дорога.

Это преимущество трансформируется в другое: для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на газомазутных и тем более пылеугольных ТЭС. Достаточно сказать, что сейчас тарифы на закупку электроэнергии АЭС электрическими сетями на 40— 50 % ниже, чем для ГРЭС различного типа.




1.  Состав территория и официальные языки Европейского Союза
2. Теория общественного договора.html
3.  Эллинистическая философия последний период развития философии Древней Греции последовавший за Аристот
4. Исследование имущества предприятия1.html
5. . Чем характеризуется нормальное распределение2
6. Утверждаю Ректор университета А
7. тема индивидуального поведения человека направленная на сохранение и укрепление человека
8. Курсовая работа- Акцизы- проблемы и перспективы
9.  Связь системы управления персоналом с целями Организации
10. Трудовое право.html