Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Лекция 8. Элементы теории корреляции
Две (или несколько) случайных величин могут быть связаны либо функциональной, либо статистической зависимостью.
Строгая функциональная зависимость реализуется редко, так как случайные величины подвержены действию случайных факторов, причем среди них могут быть и общие для двух или нескольких величин. В этом случае возникает статистическая зависимость.
Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значение другой – в этом случае статистическая зависимость называется корреляционной.
Пример корреляционной зависимости: урожай зерна Y зависит от количества внесенных удобрений X. С одинаковых по площади участков при равных количествах внесенных удобрений снимают разные урожаи. Это связано с влиянием случайных факторов (осадки, температура воздуха и др.). Вместе с тем, средний урожай зависит от количества удобрений, т.е. Y связано с X корреляционной зависимостью.
При рассмотрении взаимосвязей, как правило, рассматривают одну из величин как независимую, а другую как зависимую. При этом изменение первой из них может служить причиной изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены – к снижению спроса; снижение процентной ставки увеличивает инвестиции и т.д. Подобная зависимость не является однозначной в том смысле, что каждому конкретному значению объясняющей переменой может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению X соответствует некоторое вероятностное распределение зависимой переменной. Поэтому анализируют, как объясняющая переменная (или переменные) влияет (или влияют) на зависимую переменную «в среднем». Зависимость такого типа, выражаемая соотношением:
называется функцией регрессии Y на X. При рассмотрении зависимости двух случайных величин говорят о парной регрессии.
Зависимость нескольких переменных, выражаемую функцией , называют множественной регрессией.
Под регрессией понимается функциональная зависимость между объясняющими переменными и условным математическим ожиданием (средним значением) зависимой переменной Y, которая строится с целью предсказания (прогнозирования) среднего значения Y при фиксированных значениях независимых переменных.
Так как реальные значения зависимой переменной не всегда совпадают с ее средним значением и могут быть различными при данном X (или ), зависимость должна быть дополнена некоторым слагаемым , которое, по существу, является случайной величиной. Получающиеся в результате соотношения:
или
называются регрессионными моделями (или уравнениями).
Решение задачи построения качественного уравнения регрессии, соответствующего эмпирическим данным и целям исследования, является достаточно сложным и многоступенчатым процессом. Его можно разбить на три этапа:
Выборочные уравнения регрессии
Для определения значений теоретических коэффициентов, входящих в уравнения регрессии, вообще говоря, необходимо знать и использовать все значения переменных генеральной совокупности, что практически невозможно. В связи с этим по выборке ограниченного объема строится так называемое выборочное (эмпирическое) уравнение регрессии. В силу несовпадения статистической базы для генеральной совокупности и выборки оценки коэффициентов, входящих в уравнение регрессии, практически всегда отличаются от истинных (теоретических) значений, что приводит к несовпадению эмпирической и теоретической линий регрессии. Различные выборки из одной и той же генеральной совокупности обычно приводят к отличающимся друг от друга оценкам. Задача состоит в том, чтобы по конкретной выборке найти оценки неизвестных параметров так, чтобы построенная линия регрессии являлась бы наилучшей, среди всех других линий.
Линейная регрессия
Если функция регрессии линейна, то говорят о линейной регрессии. Линейная регрессия (линейное уравнение) является наиболее распространенным (и простым) видом зависимости между экономическими переменными. Для этого простейшего случая имеем:
или
Последнее соотношение называется теоретической линейной регрессионной моделью; коэффициенты – теоретическими параметрами регрессии; – случайным отклонением.
По выборке ограниченного объема строится выборочное уравнение регрессии:
, (1)
где – оценки неизвестных параметров , называемые выборочными (эмпирическими) коэффициентами регрессии, – оценка условного математического ожидания . Для величин справедлива формула:
, (2)
где отклонение – оценка теоретического отклонения .
Построенная прямая выборочной регрессии должна наилучшим образом описывать эмпирические данные, т.е. коэффициенты должны быть такими, чтобы случайные отклонения были минимальны. Наиболее распространенным методом нахождения коэффициентов уравнения регрессии является метод наименьших квадратов (МНК).
Если по выборке требуется определить оценки выборочного уравнения регрессии (2), то вводится в рассмотрение и минимизируется функция:
.
Необходимым условием существования минимума данной функции двух переменных является равенство нулю ее частных производных по неизвестным параметрам :
.
Отсюда:
,
выразив из последних соотношений коэффициенты, получим окончательно:
, (3)
где введены обозначения:
.