Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

И Менделеева в науке уже были предприняты попытки классифицировать химические элементы по определенным пр

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

Билет 1 вопрос 1

    До открытия Д. И. Менделеева в науке уже были предприняты попытки классифицировать химические элементы по определенным признакам.
    Предшественники Д. И. Менделеева, отмечая сходство некоторых элементов, объединили их в отдельные группы или классы. Например, разделение элементов на два класса — металлы и неметаллы — оказалось неточным, потому что есть химические элементы с двойственными свойствами — как металлов, так и неметаллов.
    Важным этапом в работе по созданию классификации химических элементов было объединение сходных элементов в естественные семейства, например щелочные металлы, галогены.
    Однако все ученые, пытаясь классифицировать химические элементы, искали сходство между элементами одного семейства, но не могли себе представить, что все элементы тесно связаны друг с другом.
   Гениальное подтверждение того, что все химические элементы взаимосвязаны, сделал выдающийся русский химик Д. И. Менделеев, который сравнил их на основе двух свойств: атомной массы и валентности, т. е. способности образовывать известные формы соединений (оксиды, водородные соединения и др.).
    В 1869 г. он впервые сформулировал периодический закон:
    Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
    Это позже стало известно, что у атома есть ядро, которое имеет определенный заряд и массу. Причем чем больше заряд ядра, тем больше в нем содержится протонов и нейтронов. Это в конечном счете определяет взаимосвязь заряда атома и его массы. Чем больше заряд, тем, как правило, больше масса атома. Необходимо было обладать большой научной интуицией, чтобы, не зная состав атомного ядра, взять за основу систематизации элементов массу их атомов. Расположив известные элементы по мере увеличения массы их атомов, ученый обнаружил повторяемость свойств элементов, образующих одну большую последовательность.
    Данные о строении атома подтвердили и объяснили периодическое изменение свойств химических элементов и теперь периодический закон формулируют так: Свойства простых веществ, а также формы, и свойства их соединений находятся в периодиче ской зависимости от зарядов ядер атомов.
    Периодическое изменение свойств химических элементов с точки зрения строения атомов можно объяснить так. Возрастание положительного заряда атомных ядер приводит к возрастанию числа электронов в атоме. Число электронов равно заряду ядра атома. Электроны же располагаются в атоме не как угодно, а по электронным слоям. Каждый электронный слой имеет определенное число электронов. По мере заполнения одного слоя начинает заполняться следующий. А поскольку от числа электронов на внешнем слое в основном зависят свойства элементов, то и свойства периодически повторяются.
    В качестве примера можно рассмотреть накопление электронов на внешнем электронном слое атомов второго и третьего периодов. Каждый из периодов начинается с элементов, атомы которых на внешнем слое имеют один валентный электрон (Li, Na). Вследствие легкой отдачи этих электронов элементы проявляют сходные свойства и называются щелочными металлами.
    В конце этих периодов находятся галогены, имеющие семь электронов на внешнем слое атомов, и инертные газы, у которых внешний слой завершен и содержит восемь электронов.
    Таким образом, в каждом периоде с возрастанием заряда ядра металлические свойства элементов постепенно ослабевают, усиливаются неметаллические. Накопление восьми электронов на внешнем слое (инертные газы) и появление еще одного электрона у следующего атома приводит к резкому скачку в свойствах элементов и началу нового периода.
    На основе периодического закона были система тизированы элементы, или, говоря иначе, построена периодическая система химических элементов. Гра фическое изображение этого закона называется периодической таблицей.
   В таблице каждый химический элемент имеет атомный номер, который определяется числом протонов в ядре атома, т. е. атомный номер численно равен заряду ядра. Таким образом, основной признак, который определяет химический элемент, — это заряд его ядра. Массу атома в основном определяют протоны и нейтроны, составляющие ядро.
    Периодом называется ряд элементов, расположенных в порядке возрастания атомных масс, начинающийся со щелочного металла (за исключением первого периода; он начинается с водорода) и заканчивающийся инертным газом. В первый период входят только два элемента, во второй и третий — по восемь (эти периоды называются малыми). Четвертый период образован восемнадцатью элементами, а пятый и шестой — еще большим числом элементов.
    Чтобы определить, какая подгруппа — главная, а какая — побочная, важно помнить, что в состав главных подгрупп входят элементы как малых, так и больших периодов.
   Побочные подгруппы образованы только элементами больших периодов. Например, в состав главной подгруппы II группы входят элементы второго и третьего периодов — бериллий Be и магний Mg. Побочная подгруппа начинается с элемента четвертого (большого) периода — цинка Zn. И еще одно отличие: главная подгруппа, как правило, состоит из большего числа элементов, чем побочная (в VIII группе наоборот).
  В малых периодах, как было отмечено выше, по мере увеличения атомного номера элемента наблюдается закономерное увеличение числа электронов, находящихся на внешнем электронном слое атомов элементов. Как следствие этого от щелочного металла к галогену уменьшаются металлические свойства элементов и увеличиваются неметаллические свойства. Эта же закономерность проявляется и в свойствах веществ, образованных этими элементами. Так, например, оксид лития проявляет основные свойства, оксид бериллия — амфотерные. Высшие оксиды остальных элементов являются кислотными (кислородное соединение фтора является не оксидом, а фторидом).
   В главной подгруппе по мере увеличения атомного номера элемента наблюдается усиление металлических свойств элемента и уменьшение неметаллических.
  Это можно объяснить следующим образом. У элементов V группы на внешнем электронном слое по пять электронов. Однако внешние электроны у атома висмута находятся дальше от ядра и поэтому слабее удерживаются около него. Поэтому атомы висмута могут отдавать электроны, иначе говоря, проявлять металлические свойства, что не характерно для азота.
    Такая же закономерность в свойствах элементов и их соединений наблюдается в любой группе. Так, IV группа начинается с двух неметаллов — углерода С и кремния Si, далее следует германий Ge с промежуточными свойствами, и заканчивается группа очовом Sn и свинцом РЬ — металлами.
  Изменяются в группах и свойства соединений: оксид углерода (IV) — кислотный оксид, а оксид свинца обладает основными свойствами.
    Периодический закон позволил систематизировать свойства химических элементов и их соединений.
    При создании периодической системы Д. И. Менделеев предсказал существование многих еще не открытых элементов, оставив для них свободные ячейки, и описал их свойства.

 

Билет 2 вопрос 1

Простые вещества состоят из одного химического элемента. К ним относятся металлы и неметаллы.

Сложные вещества состоят из двух или более химических элементов. Сложные вещества, или соединения, подразделяют на классы:

  1.  оксиды
  2.  кислоты
  3.  основания
  4.  соли

Оксидами называют вещества, состоящие из двух элементов, один из которых кислород. Оксиды делят на оснóвные, кислотные, амфотерные, безразличные (несолеобразующие).

Оснóвным оксидам соответствуют основания. Это оксиды металлов, например натрия Na2O, кальция CaO. Основные оксиды реагируют с кислотами с образованием соли и воды.

Кислотным оксидам соответствуют кислоты. Это оксиды неметаллов, например,  серы SO2, фосфора P2O5,  или металлов в высшей степени окисления, например, оксид хрома (VI) CrO3. Кислотные оксиды реагируют со щелочами с образованием соли и воды

Амфотерные оксиды реагируют и с кислотами, и со щелочами. Примером могут служить оксиды цинка и алюминия.

Несолеобразующие оксиды не реагируют ни с кислотами, ни со щелочами. К ним относятся некоторые оксиды неметаллов, например, оксид азота (II) NO.

Кислоты — это сложные вещества, состоящие из одного или нескольких атомов водорода и кислотного остатка.

Кислоты могут быть бескислородными, как соляная HCl,  сероводородная H2S, или кислородсодержащими: азотная HNO3, серная H2SO4.

В зависимости от числа атомов водорода, кислоты делят на одноосно́вные, например, азотная HNO3, двухосно́вные — серная H2SO4, трехсно́вные — ортофосфорная (часто называют просто фосфорная) H3PO4.

С точки зрения теории электролитической диссоциации кислотами называются вещества, диссоциирующие в растворах с образованием ионов водорода:

HCl → H+ + Cl−

Основания — это сложные вещества, состоящие из металла и одной или нескольких гидроксогрупп (OH). Основания могут быть растворимыми в воде – щелочи: гидроксид натрия NaOH, гидроксид кальция Ca(OH)2, или нерастворимыми, как гидроксид меди (II) Cu(OH)2.

С точки зрения теории электролитической диссоциации основаниями являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов, т.е. оснóвные гидроксиды:

NaOH → Na+ + OH−

С точки зрения протонной теории к основаниям относятся вещества, способные присоединять ионы водорода, например аммиак:

NH3 + HOH = NH4+ + OH−

Соли — это сложные вещества, в составе которых имеется металл (или сложный положительный ион) и кислотный остаток. Соли бывают: 
•   средние — в составе нет ионов водорода и гидроксогрупп, например, хлорид натрия NaCl, карбонат натрия Na2CO3

•   кислые — содержат в своем составе ионы водорода, например, гидрокарбонат натрия NaHCO3, дигидрофосфат натрия NaH2PO4
•   оснóвные — содержат в своем составе гидроксогруппы, например, основный карбонат меди (II) (CuOH)2CO3

Билет 3 вопрос 1

Атом — наименьшая частица вещества, неделимая химическим путем. В XX веке было выяснено сложное строение атома. Атомы состоят из положительно заряженного ядра и оболочки, образованной отрицательно заряженными электронами. Общий заряд свободного атома* равен нулю, так как заряды ядра и электронной оболочки уравновешивают друг друга. При этом величина заряда ядра равна номеру элемента в периодической таблице (атомному номеру) и равна общему числу электронов (заряд электрона равен −1).

Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц — нейтронов, не имеющих заряда. Обобщенные характеристики элементарных частиц в составе атома можно представить в виде таблицы:

Название частицы

Обозначение

Заряд

Масса

протон

p

+1

1

нейтрон

n

0

1

электрон

e

−1

принимается равной 0

Число протонов равно заряду ядра, следовательно, равно атомному номеру. Чтобы найти число нейтронов в атоме, нужно от атомной массы (складывающейся из масс протонов и нейтронов) отнять заряд ядра (число протонов).

Например, в атоме натрия 23Na  число протонов p = 11, а число нейтронов n = 23 — 11 = 12

Число нейтронов в атомах одного и того же элемента может быть различным. Такие атомы называютизотопами.

Электронная оболочка атома также имеет сложное строение. Электроны располагаются на энергетических уровнях (электронных слоях).

Номер уровня характеризует энергию электрона. Связано это с тем, что элементарные частицы могут передавать и принимать энергию не сколь угодно малыми величинами, а определенными порциями — квáнтами. Чем выше уровень, тем большей энергией обладает электрон. Поскольку чем ниже энергия системы, тем она устойчивее (сравните низкую устойчивость камня на вершине горы, обладающего большой потенциальной энергией, и устойчивое положение того же камня внизу на равнине, когда его энергия значительно ниже), вначале заполняются уровни с низкой энергией электрона и только затем — высокие.

Максимальное число электронов, которое может вместить уровень, можно рассчитать по формуле: 
N = 2n2, где N — максимальное число электронов на уровне,
n — номер уровня.

Тогда для первого уровня N = 2 · 12 = 2,

для второго N = 2 · 22 = 8 и т.д.

Число электронов на внешнем уровне для элементов главных (А) подгрупп равно номеру группы.

В большинстве современных периодических таблиц расположение электронов по уровням указано в клеточке с элементом. Очень важно понимать, что уровни читаются снизу вверх, что соответствует их энергии. Поэтому столбик цифр в клеточке с натрием : 


2

следует читать так:

на 1-м уровне — 2 электрона,

на 2-м уровне — 8 электронов,

на 3-м уровне — 1 электрон 
Будьте внимательны, очень распространенная ошибка!

Распределение электронов по уровням можно представить в виде схемы:

11Na ) ) ) 
             2  8  1

Если в периодической таблице не указано распределение электронов по уровням, можно руководствоваться:

  1.  максимальным количеством электронов: на 1-м уровне не больше 2 e
    на 2-м — 8 e
    на внешнем уровне — 8 e;
  2.  числом электронов на внешнем уровне (для первых 20 элементов совпадает с номером группы)

Тогда для натрия ход рассуждений будет следующий:

  1.  Общее число электронов равно 11, следовательно,  первый уровень заполнен и содержит 2 e;
  2.  Третий, наружный уровень содержит 1 e (I группа)
  3.  Второй уровень содержит остальные электроны: 11 − (2 + 1) = 8 (заполнен полностью)

Билет 4 вопрос 1

Ковалентной связью называется химическая связь между двумя атомами за счет образования общей электронной пары. Ковалентная связь может быть неполярной — между двумя атомами с одинаковой электроотрицательностью, т.е. в простых веществах, и полярной — между атомами, электроотрицательность которых различается, т.е. в сложных веществах.

Рассмотреть образование ковалентной неполярной связи удобно на примере молекулы водорода, образующейся при соединении двух атомов водорода, каждый из которых имеет по одному неспаренному электрону:

H• + •H → H : H

При этом внешняя электронная оболочка получает недостающий электрон, становится завершенной.

Такое состояние характеризуется меньшей энергией, более устойчиво. Вот почему для разрыва ковалентной связи требуется затратить энергию (такое же количество энергии выделяется при ее образовании).

В структурных формулах ковалентная связь изображается черточкой, тогда молекула водорода будет выглядеть так:    H–H

Еще раз обращаем Ваше внимание, что ковалентной называется двухэлектронная двухцентроваясвязь, когда два электрона находятся на общей орбитали двух атомов. Поэтому к ней, строго говоря, не относятся случаи, когда электроны находятся на орбиталях трех или более атомов или когда общая связь образована более чем двумя электронами (в 10–11 классах будет изучаться бензол, в молекуле которого 6 электронов образуют одну общую связь).

Ковалентная полярная связь образуется в молекуле хлороводорода:

         ..            ..
H· + ·Cl: → H  :Cl: 
         ··            ··

Хлор как более электроотрицательный элемент смещает к себе общую электронную пару, в результате на нем образуется частичный отрицательный заряд, а на водороде — частичный положительный:

Hδ+–Clδ−

Ковалентная связь может возникать не только при объединении двух орбиталей, содержащих по одному неспаренному электрону. Один атом может предоставить электронную пару, а второй — свободную орбиталь. Такая ковалентная связь называется донорно-акцепторной.

Например, в ионе аммония протон присоединяется к молекуле аммиака за счет образования донорно-акцепторной связи. Азот выступает донором, а протон (водород) — акцептором электронной пары:

H+ :NH3 → NH4+

Хотя по способу образования донорно-акцепторная связь отличается от остальных, но по свойствам, в том числе по длине связи, все четыре связи одинаковы.

Чтобы подчеркнуть способ образования, донорно-акцепторную связь могут обозначать в структурных формулах стрелкой:
       H
        l
[H — N → H ]+
        l
       H
Стрелку используют и чтобы изобразить смещение общей электронной пары в полярной связи (H→Cl), поэтому эти два случая не следует путать.

Ионную связь можно рассматривать как крайний случай ковалентной полярной связи, когда электроны практически полностью переходят от одних атомов к другим с образованием ионов.

Таким образом, ионная связь образуется за счет сил электростатического притяжения между ионами (притягиваются противоположные заряды).

Примером ионной связи будет хлорид натрия:

          ..
Na+ [:Cl:] −
         ··

Ионная связь характерна для соединений элементов, электроотрицательности которых различаются очень сильно, например щелочных металлов с галогенами.

Сходство с ковалентной связью заключается в том, что сложно провести резкую грань между ковалентной полярной и ионной связью, мнения разных авторов на этот счет могут различаться.

Различие ионной и ковалентной связи в том, что ионная сильнее поляризована, вплоть до полного перехода электронной пары к более электроотрицательному элементу.

Типы кристаллических решеток:

1.  Ионная — в узлах кристаллической решетки расположены положительные и отрицательные ионы. Характерна для веществ с ионной связью: соединений галогенов с щелочными металлами (NaCl), щелочей (NaOH) и солей кислородсодержащих кислот (Na2SO4).

2.  Атомная — в узлах кристаллической решетки атомы, связанные ковалентными связями: алмаз, кремний.

Вещества с ионными и атомными кристаллическими решетками обладают высокими твердостью и температурой плавления.

3.  Молекулярная кристаллическая решетка образована молекулами, связанными слабыми межмолекулярными взаимодействиями, поэтому такие вещества непрочные, легкоплавкие (лёд, сера), зачастую возгоняются, т.е. при нагревании испаряются, минуя жидкую фазу, как сухой лёд CO2, йод I2

4.  Металлическая кристаллическая решетка характерна для металлов, например, Fe

2. Опыт. Получение и собирание аммиака.

Для получения и собирания аммиака в лаборатории насыпаем в пробирку хлорид или сульфат аммония, смешанный с известью Ca(OH)2, затыкаем пробкой с газоотводной трубкой. Трубку вставляем в колбу, перевернутую вверх дном, — аммиак легче воздуха. Отверстие колбы закрываем куском ваты.

Осторожно нагреваем пробирку на спиртовке. Уравнение реакции:

2NH4Cl + Ca(OH)2 = CaCl2 + 2H2O + 2NH3

Аммиак обнаруживаем по характерному резкому запаху (нюхать осторожно!) или поднеся к трубке бумажку, смоченную раствором фенолфталеина (ф-ф). Бумажка розовеет вследствие образования гидроксид-ионов:

NH3 + HOH  NH4+ + OH 

Билет 5 вопрос 1

Между классами неорганических соединений возможны взаимные превращения. Осно́вные оксиды (щелочных и щелочноземельных металлов) реагируют с водой, при этом получаются основания. Например, оксид кальция (негашеная, или жжёная известь) реагирует с водой с образованием гидроксида кальция (гашеной извести):

CaO + H2O = Ca(OH)2

Нерастворимые основания не могут быть получены таким путем, но они разлагаются при нагревании с образованием основных оксидов. Например, при нагревании гидроксида меди (II) образуются оксид меди (II)  и вода:

Cu(OH)2 = CuO + H2O

Большинство кислотных оксидов реагируют с водой с образованием кислот. Так, оксид серы (VI), или серный ангидрид, присоединяет воду с образованием серной кислоты:

SO3 + H2O = H2SO4

Слабые кислоты разлагаются при нагревании с выделением оксидов. Серни́стая кислота разлагается
на оксид серы (IV), или серни́стый газ, и воду:

H2SO3 = H2O + SO2

Соли могут быть получены как при взаимодействии оснований с кислотами (реакция нейтрализации):

2NaOH + H2SO4 = Na2SO4 + 2H2O (образовался сульфат натрия),

так и при взаимодействии щелочей с кислотными оксидами:

Ca(OH)2 + CO2 = CaCO3↓ + H2O (образовался карбонат кальция)

или основных оксидов с кислотами:

CuO + H2SO4 = CuSO4 + H2O

Нерастворимые основания могут быть получены из растворов солей в результате реакции обмена:

CuSO4 + 2NaOH = Na2SO4 + Cu(OH)2

Кислоты можно получать из солей, вытесняя их более сильными (менее летучими) кислотами:

Na2SiO3 + 2HCl = 2NaCl + H2SiO3↓ (при избытке HCl в осадок выпадает нерастворимая кремниевая кислота)

NaNO3 + H2SO4 = NaHSO4 + HNO3↑ (при нагревании нитратов с серной кислотой, азотную кислоту как более летучую получают, охлаждая на выходе из сосуда)

Наконец, прокаливанием известняка получают оксид кальция (жженую известь) и углекислый газ:

CaCO3 = CaO + CO2

Генетическая связь между классами неорганических соединений может быть проиллюстрирована следующей схемой:

основные оксиды  ↔  основания

↑↓        ↑↓ 
   с о л и 
↑↓        ↑↓

кислотные оксиды ↔ кислоты

Генетический ряд металлов:

1) металлы которым соответствуют щёлочи:
Металл –> Основный оксид –> Щёлочь –> Соль

2) металлы которым соответствуют нерастворимые основания:
Металл –> Основный оксид –> Соль –> Основание –> Основный оксид –> Металл

Генетический ряд неметаллов:

1) неметаллы которым соответствуют растворимые кислоты:
Неметалл –> Кислотный оксид –> Кислота –> Соль

2) неметаллы которым соответствуют нерастворимые кислоты:
Неметалл –> Кислотный оксид –> Соль –> Кислота –> Кислотный оксид –> Неметалл

Билет 6 вопрос 1

Металлы составляют большую часть химических элементов. Каждый период периодической системы (кроме 1-го) химических элементов начинается с металлов, причем с увеличением номера периода их становится все больше. Если во 2-м периоде металлов всего 2 (литий и бериллий), в 3-м — 3 (натрий, магний, алюминий), то уже в 4-м — 13, а в 7-м — 29.
    Атомы металлов имеют сходство в строении внешнего электронного слоя, который образован небольшим числом электронов (в основном не больше трех).
    Это утверждение можно проиллюстрировать на примерах Na, алюминия А1 и цинка Zn. Составляя схемы строения атомов, по желанию можно составлять электронные формулы и приводить примеры строения элементов больших периодов, например цинка.
    
     
    
     В связи с тем что электроны внешнего слоя атомов металлов слабо связаны с ядром, они могут быть «отданы» другим частицам, что и происходит при химических реакциях:
    
     
    
   Свойство атомов металлов отдавать электроны явтяется их характерным химическим свойством и свидетельствует о том, что металлы проявляют восстановительные свойства.
   При характеристике физических свойств металлов следует отметить их общие свойства: электрическую проводимость, теплопроводность, металлический блеск, пластичность, которые обусловлены единым видом химической связи — металлической, и металлической кристаллической решетки. Их особенностью является наличие свободноперемещаю-щихся обобществленных электронов между ион-атомами, находящимися в узлах кристаллической решетки.
    При характеристике химических свойств важно подтвердить вывод о том, что во всех реакциях металлы проявляют свойства восстановителей, и проиллюстрировать это записью уравнений реакции. Особое внимание следует обратить на взаимодействие металлов с кислотами и растворами солей, при этом необходимо обратиться к ряду напряжений металлов (ряд стандартных электродных потенциалов).
    
     Примеры взаимодействия металлов с простыми веществами (неметаллами):
    
     
    
     
    
     с солями (Zn в ряду напряжений стоит левее Сu): Zn + СuС12 = ZnCl2 + Сu!
    
     Таким образом, несмотря на большое многообразие металлов, все они обладают общими физическими и химическими свойствами, что объясняется сходством в строении атомов и строении простых веществ.

Билет 7 вопрос 1

Окислительно-восстановительные реакции протекают с изменением степени окисления. Широко распространенными реакциями этого типа являются реакции горения. Также сюда относятся реакции медленного окисления (коррозия металлов, гниение органических веществ).

Степень окисления элемента показывает число смещенных (притянутых или отданных) электронов. В простых веществах она равна нулю. В бинарных соединениях (состоящих из 2-х элементов) равна валентности, перед которой ставится знак (поэтому иногда ее называют «условным зарядом»).

В веществах, состоящих из 3-х и более элементов, степень окисления можно рассчитать с помощью уравнения, взяв неизвестную степень окисления за «икс», а общую сумму приравняв к нулю. Например, в азотной кислоте HNO3 степень окисления водорода +1, кислорода −2, получаем уравнение: +1 + x −2 • 3 = 0

x = +5

Элемент, присоединяющий электроны, называется окислителем. Элемент, являющийся донором электронов (отдающий электроны), называется восстановителем.

 _2 e−_ 
l         ↓ 
Fe0 + S0 = Fe+2S−2

При нагревании порошков железа и серы образуется сульфид железа. Железо является восстановителем (окисляется), сера — окислителем (восстанавливается).

S0 + O20 = S+4O2−2

В этой реакции сера является восстановителем, кислород окислителем. Образуется оксид серы (IV)

Можно привести пример с участием сложного вещества:

Zn0 + 2H+1Cl = Zn+2Cl2 + H20↑

цинк — восстановитель, водород соляной кислоты — окислитель.

Можно привести пример с участием сложного вещества и составить электронный баланс:

Cu0 + 4HN+5O3 = Cu+2(NO3)2 + 2H2O + 2N+4O2↑

конец.

  Cu0 − 2e− → Cu+2

       2

1

— восстановитель   

  N+5 + 1e− → N+4

2

— окислитель

Билет 8 вопрос 1

Реакции обмена в растворах электролитов получили название реакций ионного обмена. Эти реакции протекают до конца в 3-х случаях:

1.      Если в результате реакции выпадает осадок (образуется нерастворимое или малорастворимое вещество, что можно определить по таблице растворимости):
CuSO4 + BaCl2 = BaSO4↓ + CuCl2

2.      Если выделяется газ (образуется часто при разложении слабых кислот):
Na2CO3 + 2HCl = 2NaCl + H2O + CO2↑

3.      Если образуется малодиссоциирующее вещество. Например, вода, уксусная кислота:
HCl + NaOH = NaCl + H2O

Это связано со смещением химического равновесия вправо, что вызвано удалением одного из продуктов из зоны реакции.

Реакции ионного обмена не сопровождаются переходом электронов и изменением степени окисления элементов в отличие от окислительно-восстановительных реакций.

Если попросят написать уравнение в ионном виде, можно проверять правильность написания ионов по таблице растворимости. Не забывайте менять индексы на коэффициенты. Нерастворимые вещества, выделяющиеся газы, воду (и другие оксиды) на ионы не раскладываем.

Cu2+ + SO42− + Ba2+ + 2Cl− = BaSO4↓ + Cu2+ + 2Cl−
Вычеркиваем не изменившиеся ионы:

SO42− + Ba2+ = BaSO4↓

2.  Задача. Вычисление массовой доли (%) химического элемента в веществе, формула которого приведена.

Формулу для вычисления массовой доли в общем виде можно записать так:

ω = масса компонента / масса целого,

где ω — массовая доля

Для расчета массовой доли элемента в сложном веществе формула будет иметь следующий вид:

ω = Ar • n / Mr ,

где Ar — относительная атомная масса,
n — число атомов в молекуле,

Mr — относительная молекулярная масса (численно равна M — молярной массе)

Билет 9 вопрос 1

Билет 10 вопрос 1

Алюминий — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).
Простое вещество алюминий — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.
Получение. Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.
Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт•ч электроэнергии постоянного тока.
Физические свойства. Алюминий – твердый металл серебристо-белого цвета. Алюминий хорошо раскатывается и вытягивается в проволку, хороший проводник тепла и электричества. Температура его плавления равна 660,5°С, плотность 2698кг/м3, число изотопов – 11(22->31).
Химические свойства. При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.
Легко реагирует с простыми веществами:
• с кислородом, образуя оксид алюминия: 
4Al + 3O2 = 2Al2O3
• с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия: 
2Al + 3Hal2 = 2AlHal3 (Hal = Cl, Br, I)
• с другими неметаллами реагирует при нагревании: 
– с фтором, образуя фторид алюминия: 
2Al + 3F2 = 2AlF3
– с серой, образуя сульфид алюминия: 
2Al + 3S = Al2S3
– с азотом, образуя нитрид алюминия: 
2Al + N2 = 2AlN
– с углеродом, образуя карбид алюминия: 
4Al + 3С = Al4С3
Сульфид и карбид алюминия полностью гидролизуются:
Al2S3 + 6H2O = 2Al(OH)3 + 3H2S
Al4C3 + 12H2O = 4Al(OH)3+ 3CH4
Со сложными веществами:
• с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи): 
2Al + 6H2O = 2Al(OH)3 + 3H2
• со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов): 
2Al + 2NaOH + 6H2O = 2Na[Al(OH)[sub]4[/sub]] + 3H2
2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2
• Легко растворяется в соляной и разбавленной серной кислотах: 
2Al + 6HCl = 2AlCl3 + 3H2
2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2
• При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия: 
2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O
Al + 6HNO3(конц) = Al(NO3)3 + 3NO2 + 3H2O
• восстанавливает металлы из их оксидов (алюминотермия): 
8Al + 3Fe3O4 = 4Al2O3 + 9Fe
2Al + Cr2O3 = Al2O3 + 2Cr
2. Строение крахмала. Распространение в природе и их применение.
Строение крахмала. Крахмал (С6H10O5)n – природный полимер. Образуется в результате фотосинтетической деятельности растений при поглощении энергии солнечного излучения. Сначала из углекислого газа и воды в результате ряда процессов синтезируется глюкоза, что в общем виде может быть выражено уравнением: 
6СO2 + 6Н2О = С6Н12O6 + 6O2. 
Глюкоза далее превращается в крахмал:
nС6Н12O6 = (С6H10O5)n + nН2О. 
Макромолекулы крахмала неодинаковы по размерам: а) в них входит разное число звеньев С6H10O5 – от нескольких сотен до нескольких тысяч, при этом неодинакова и их молекулярная масса; б) различаются они и по строению: наряду с линейными молекулами с молекулярной массой в несколько сотен тысяч имеются молекулы разветвленного строения, молекулярная масса которых достигает нескольких миллионов.
Физические свойства и нахождение в природе. Крахмал представляет собой белый порошок, не растворимый в воде. В горячей воде он набухает и образует коллоидный раствор – клейстер. Являясь продуктом усвоения оксида углерода (IV) зелеными (содержащими хлорофилл) клетками растений, крахмал распространен в растительном мире. Клубни картофеля содержат около 20 % крахмала, зерна пшеницы и кукурузы – около 70 %, риса – около 80 %. Крахмал – одно из важнейших питательных веществ для человека.

Билет 11 вопрос 1

Положение в периодической системе: кальций находится в 4 периоде, II группе, главной (А) подгруппе.

Атомный номер кальция 20, следовательно, заряд атома равен + 20, число электронов 20. Четыре электронных уровня, на внешнем уровне 2 электрона.

Схема расположения электронов по уровням:
20Ca ) ) ) )
          2 8 8 2

Ядро атома кальция 40Ca содержит 20 протонов (равно заряду ядра) и 20 нейтронов (атомная масса минус число протонов: 40 − 20 = 20).

Простое вещество кальций — белый металл, легкий,  более твердый по сравнению со щелочными металлами (всё же режется ножом).

Кальций относится к щелочноземельным металлам, отличающимся химической активностью. Кальций хранят под слоем керосина, т.к. на воздухе он быстро покрывается слоем оксида. При нагревании горит:

2Ca + O2 = 2CaO

Кальций вытесняет из воды водород. Если поместить кусочек кальция в воду, он тонет, но вскоре всплывает из-за образовавшихся на нём пузырьков водорода:

Ca + 2HOH = Ca(OH)2↓ + H2↑

(раствор мутнеет из-за выпадающего осадка гидроксида кальция)

Кальций реагирует с кислотами, например, с соляной кислотой с образованием хлорида кальция:

Ca + 2HCl = CaCl2 + H2↑

Кальций широко распространен в земной коре. Карбонаты кальция (мел, гипс, известняк), сульфат кальция (гипс, алебастр), гидроксид кальция (гашеная известь) широко применяются в строительстве. Фосфаты кальция (фосфориты) используются в качестве фосфорных удобрений.

Карбонат и фосфат кальция входят в состав костей человека, придавая им твердость.

Билет 12 вопрос 1

Положение в периодической системе: натрий находится в 3 периоде, I группе, главной (А) подгруппе.

Атомный номер натрия 11, следовательно, заряд атома натрия равен + 11, число электронов 11. Три электронных уровня (равно периоду),на внешнем уровне 1 электрон (равно номеру группы для главных подгрупп).

Схема расположения электронов по уровням:
11Na ) ) )
         2 8 1

Ядро атома натрия 23Na содержит 11 протонов (равно заряду ядра) и 12 нейтронов (атомная масса минус число протонов: 23 − 11 = 12).

Простое вещество натрий — металл серебристо-белого цвета, легкий (плотность 0,97 г/см3 — легче воды), мягкий (легко режется ножом), легкоплавкий (температура плавления 98°C).

Натрий, как и все щелочные металлы, —  сильный восстановитель. Он энергично реагирует с неметаллами:

  1. При нагревании до 180°С в умеренном количестве кислорода образуется оксид натрия:
    4Na + O2 = 2Na2O
  2. Натрий горит на воздухе с образованием пероксида натрия:
    2Na + O2 = Na2O2
    Натрий хранят под слоем керосина.
  3. Расплавленный натрий в хлоре сгорает с ослепительной вспышкой (можно говорить проще — реагирует с хлором при нагревании),на стенках сосуда образуется белый налет хлорида натрия:
    2Na + Cl2 = 2NaCl

Натрий может взрываться при растирании с порошком серы (образуется сульфид натрия):
2Na + S = Na2S

Натрий при нагревании восстанавливает водород, образуется гидрид натрия:
2Na + H2 = 2NaH

Если небольшой кусочек натрия поместить в воду, он бурно реагирует с водой. Металл плавится от выделяющейся теплоты и «бегает» по поверхности воды. Образуется раствор гидроксида натрия:
2Na + 2HOH = 2NaOH + H2↑

Натрий в природе содержится в различных минералах, в виде соли в морской воде. В человеческом организме соли натрия входят в состав плазмы крови, лимфу.

Применяется в атомной энергетике (в качестве теплоносителя) и в виде соединений (поваренной соли NaCl, соды Na2CO3 и др.)

Билет 13 вопрос 1

Положение в периодической системе: железо находится в 4 периоде, побочной (Б) подгруппе VIII группы. Атомный номер железа 26.

Заряд атома равен + 26, число электронов 26. Четыре электронных уровня, на внешнем уровне 2 электрона.

Схема расположения электронов по уровням:
26Fe ) ) ) )
       2 8 14 2

Чистое железо — мягкий металл. Железо способно намагничиваться в магнитном поле.

Железо в химических реакциях окисляется до степени окисления +2 или +3. Со слабыми окислителями, такими как сера, разбавленные кислоты, растворы солей, — железо окисляется до +2 (валентность II).

Если нагреть железные опилки с порошком серы, начинается экзотермическая реакция (с выделением теплоты), которая продолжается без дальнейшего нагревания. Образуется сульфид железа (II):

Fe + S = FeS

Железо находится в электрохимическом ряду напряжений левее водорода, поэтому вытесняет водород из кислот. При взаимодействии с соляной (хлороводородной) кислотой образуется хлорид железа (II):

Fe + 2HCl = FeCl2 + H2↑

Железо вытесняет менее активные металлы (которые расположены правее в ряду напряжений) из растворов их солей. Если поместить железные опилки (или кнопку) в раствор хлорида меди (II), железо покрывается красным слоем меди, а голубой раствор приобретает зеленоватый цвет:

Fe + CuCl2 = FeCl2 + Cu↓

Оксиды и гидроксиды железа нерастворимы в воде. Получены оксиды и гидроксиды с различной степенью окисления железа:

  1.  Оксид железа (II) FeO, гидроксид железа (II) Fe(OH)2. Проявляют оснóвные свойства. Оксид железа (II) черного цвета. Гидроксид железа (II) выпадает в виде осадка зеленоватого цвета при добавлении щелочей в раствор соли железа (II).
  2.  Железо горит в кислороде: 
    3Fe + 2O2 = Fe3O4 
    с образованием железной окалины (представляет из себя смешанный оксид Fe+2O•Fe2+3O3). Темно-серого цвета.
  3.  Гидратированный оксид железа (III) Fe2O3• nH2O является основной составной частью ржавчины. Бурого цвета. Проявляет слабые амфотерные свойства. Гидроксид железа (III) получают воздействием щелочей на соли железа трехвалентного.

Сильные окислители, например, хлор при нагревании, окисляют железо до степени окисления +3:

2Fe + 3Cl2 = 2FeCl3

Железо пассивируется концентрированной серной кислотой, поэтому ее перевозят в стальных цистернах.

Железо широко применяется в промышленности в виде сплавов: чугуна и стали. Сплавы отличаются более высокой твердостью. С помощью специальных легирующих добавок получают сталь, устойчивую к коррозии, высоким температурам и пр.

В организме человека элемент железо входит в состав гемоглобина крови, осуществляющего транспорт кислорода из легких в ткани.




1. аренда квартир в Новосибирске Ipd 3 москва купить Место для ввода ответа.html
2. Исполнение наказания в виде ограничения свободы
3. Петр III
4. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата історичних наук.1
5. а Документ с изменениями внесенными- постановлением Прави
6. Боротьба зі шкідниками сільськогосподарських культур
7. Платонов. Потомки солнца
8. Реферат- Статистические методы контроля качества
9. Вариант 1 Дана последовательность натуральных чисел {j} длина последовательности заранее не известна испо
10. Вариант 1 Задача- Фирмазаказчик объявила конкурс на проведение работ по текущему ремонту
11. ТЕМА 1. Содержание и роль государственных финансов в социальноэкономическом развитии России
12. тема работы Выполнила студентка курс группа Фамилия
13. Контрольная работа По предмету Деньги кредит и банки Вариант 18- Активные операции коммерческих
14.  Предыстория Такие народы Древнего Востока как египтяне вавилоняне иудеи финикияне обладали сравнит
15. Ценностные аспекты коперниканской революции
16. 303 Бородина О
17. ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА Принцип действия и основные характеристики усилителя
18. Методи виховання
19. Эмоции и чувства
20. Аппендицит Этиология Классификация Клиника