Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Тема 2.Клонированные животные Тема 3

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 17.5.2024

                                                  

5 уровень Тема 2.Клонированные животные Тема 3. Клонирование клеток и генов

Тема 2.Клонированные животные

1.Методы получения клонированных животных.

Последние десятилетия XX века ознаменовались бурным развитием одной из главных ветвей биологической науки -- молекулярной генетики. Уже в начале 70-х годов ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных. Возникло новое направление генетики генетическая инженерия. На основе ее методологии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы (ГМО). Появилась возможность генной терапии некоторых заболеваний человека, а последнее десятилетие XX века ознаменовалось еще одним важным событием -- достигнут огромный прогресс в клонировании животных из соматических клеток.

Особенно большой резонанс у мировой общественности получили исследования шотландских ученых из Рослинского Университета, которым удалось из клетки молочной железы беременной овцы получить генетически точную ее копию. Клонированная овца по кличке Долли нормально развивалась и произвела на свет сначала одного , а затем еще трех нормальных ягнят. Вслед за этим появился ряд новых сообщений о воспроизведении генетических близнецов коров, мышей, коз, свиней из соматических клеток этих животных. У приматов, в частности, у обезьян пока не удалось получить клоны с использованием клеток взрослого организма, плода или даже эмбриональных стволовых клеток.

Тем не менее работы в этом направлении активно ведутся. В прошлом году появилось сообщение о клональном размножении потомства приматов путем деления зародыша. Американским исследователям удалось получить генетически идентичные эмбрионы обезьяны резус путем разделения бластомеров зародыша на стадии деления. Из эмбриона родилась вполне нормальная обезьянка Тетра.

Такой тип клонирования обеспечивает генетически идентичное потомство, и в результате можно получить двойню, тройню и более генетических близнецов. Это позволяет проводить теоретические исследования по эффективности новых методов терапии тех или иных заболеваний, появляется возможность повторять научные эксперименты на абсолютно генетически идентичном материале. Имплантируя зародыши последовательно одной и той же суррогатной самке, можно исследовать влияние ее организма на развитие плода [31].

Разработанные методы клонирования животных пока еще далеко не совершенны. В процессе экспериментов наблюдается высокая смертность плодов и новорожденных. Еще не ясны многие теоретические вопросы клонирования животных из отдельной соматической клетки.

Тем не менее успех, достигнутый в клонировании овцы и обезьян, показал теоретическую возможность создания генетических копий также человека из отдельной клетки, взятой из какого-либо его органа. Многие ученые с энтузиазмом восприняли идею клонирования человека.

2. Первые опыты получения клонов на амфибиях.

Возможность клонирования эмбрионов позвоночных впервые была показана в начале 50-х годов в опытах на амфибиях. Американские исследователи Бриггс и Кинг разработали микрохирургический метод пересадки ядер эмбриональных клеток с помощью тонкой стеклянной пипетки в лишенные ядра (энуклеированные) яйцеклетки. Они установили, что если брать ядра из клеток зародыша на ранней стадии его развития - бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. Эти результаты позже были подтверждены и в других работах. Большой вклад в эту область внес английский биолог Гердон. Он первым в опытах с южноафриканскими жабами Xenopus laevis (1962) в качестве донора ядер использовал не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника плавающего головастика . Ядра яйцеклеток реципиентов он не удалял хирургическим путем, а разрушал ультрафиолетовыми лучами. В большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. 6,5% из этих эмбрионов достигали стадии бластулы, 2,5% - стадии головастика и только 1% развился в половозрелых особей . Однако появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов. Позже Гердон модифицировал эксперимент . Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки (такая процедура называется "серийной пересадкой" в отличие от "первичной пересадки"). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер.Затем Гердон вместе с Ласки (1970) стали культивировать in vitro (вне организма в питательной среде) клетки почки, легкого и кожи взрослых животных и использовать уже эти клетки в качестве доноров ядер [4]. Примерно 25% первично реконструированных яйцеклеток развивались до стадии бластулы. При серийных пересадках они развивались до стадии плавающего головастика. Таким образом было показано, что клетки трех разных тканей взрослого позвоночного (X. laevis) содержат ядра, которые могут обеспечить развитие по крайней мере до стадии головастика.

В свою очередь Ди Берардино и Хофнер использовали для трансплантации ядра недслящихся и полносгью дифференцированных клеток крови - эритроцитов лягушки Rana pipiens. После серийной пересадки таких ядер 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Однако даже с помощью многократных серийных пересадок (более 100 клеточных циклов) реконструированные яйцеклетки дальше стадии головастика не развивались. Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития. Некоторые авторы называют подобные эксперименты клонированием амфибий, хотя правильнее называть их клонированием эмбрионов амфибий, так как в этом случае мы размножаем бесполым путем не взрослых животных, а зародышей.

Дифференцировка клеток в ходе развития позвоночных сопровождается инактивацией неработающих генов. Поэтому клетки теряют тотипотентность, дифференцировка становится необратимой. В конце концов у одних клеток происходит полное репрессирование генома, у других - в той или иной степени деградирует ДНК, а в некоторых случаях разрушается даже ядро. Однако наряду с дифференцированными кочетками культивируемые in vitro клеточные популяции содержат малодифференцированные стволовые клетки, которые и могут быть использованы как доноры ядер для клонирования млекопитающих. Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.

3. Эксперименты Яна Вильмута по клонированию овец – шотландское «чудо» и другие.

Уиладсин еще в 1986 году показал, что и у эмбрионов овец на 16-клеточной стадии развития ядра сохраняют тотипотентность. Реконструированные яйцеклетки, содержащие ядра бластомеров 16-клеточных зародышей, развивались нормально до стадии бластоцисты в перевязанном яйцеводе овцы (в агаровом цилиндре), а после освобождения от агара и пересадки в матку овцы - второго реципиента - еще 60 дней. В другом случае донорами служили ядра 8-клеточных зародышей и были получены 3 живых ягненка, фенотип которых соотнетстиовал породе овец - доноров.

В 1989 году Смит и Уилмут трансплантировали ядра клеток 16-клеточного эмбриона и ранней бластоцисты в лишенные ядра неоплодотворенные яйцеклетки овец . В первом случае было получено два живых ягненка, фенотип которых соответствовал породе овец - доноров ядер. Во втором случае один полностью сформировавшийся ягненок погиб во время родов. Его фенотип также соответствовал породе - донору. Авторы считали, что в ходе дифференцировки эмбриональных клеток происходит инактивация некоторых важных для развития генов, в результате которой ядра бластоцисты уже не могут репрограммироваться в цитоплазме яйцеклетки и обеспечить нормальное развитие реконструированного зародыша. Поэтому, по мнению авторов, в качестве доноров ядер лучше использовать 16-клеточные эмбрионы или культивируемые in vitro линии эмбриональных клеток, ядра которых обладают тотипотентностью. Позднее, в 1993-1995 годах, группа исследователей под руководством Уилмута получила клон овец - 5 идентичных животных, донорами ядер которых была культура эмбриональных клеток . Клеточную культуру получали следующим образом: выделяли микрохирургически эмбриональный диск из 9-дневного овечьего эмбриона (бластоцисты) и культивировали клетки in vitro в течение многих пассажей (по крайней мере до 25). Сначала клеточная культура напоминала культуру стволовых недифференцированных эмбриональных клеток, но вскоре, после 2-3-х пассажей, клетки становились уплотненными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4.

Чтобы донорское ядро и реципиентная цитоплазма находились на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определенной стадии (GO) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через 6 дней эмбрионы вымывали из яйцевода первого реципиента и исследовали под микроскопом. Отбирали те, которые достигли стадии морулы или бластоцисты и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось 5 ягнят (самок) из них 2 погибли вскоре после рождения, 3-й в возрасте 10 дней, а 2 оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ.

Эта работа, особенно в части культуры эмбриональных клеток, - значительное достижение в клонировании млекопитающих, хотя она и не вызвала столь шумного интереса, как статья того же Уилмута с соавторами, опубликованная в начале 1997 года, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли . Последняя работа методически во многом повторяет предыдущее исследование 1996 года, но в ней ученые использовали не только эмбриональные, но еще и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от шестилетней овцы породы финн дорcет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9-м пассажах культивирования, фибробластоподобные клетки плода - на 4-6-м пассажах и клетки молочной железы - на 3-6-м пассажах. Деление клеток всех трех типов останавливали на стадии GO и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые и in vitro в химически определенной среде. Коэффициент выхода морул или бластоцист при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе. (Поэтому, видимо, нет строки необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro. Однако для полной уверенности в этом нужны дополнительные данные.) Выход морул или бластоцист в серии опытов с культурой клеток молочной железы был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали культуру фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластоцист было также в два раза ниже. В серии опытов с клетками молочной железы из 277 реконструированных яйцеклеток был получен только один живой ягненок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трех сериях экспериментов живых детенышей показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки - четырех ягнят. Овца по кличке Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы финн дорсет и фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента . Анализ генетических маркеров подтвердил этот результат. Успех авторов этой работы прежде всего связан с использованием длительных клеточных культур, так как после многих пассажей в культуре клеток могли быть отобраны малодифференцированные стволовые клетки, которые, вероятно, и были использованы как доноры ядер. Большое значение также имел тот факт, что авторы, учитывая результаты своих предыдущих работ, синхронизировали стадии клеточного цикла яйцеклеток реципиентов и клеток доноров.

4. Клонированные млекопитающие.

1987 г. — первая мышь

1996 г. — овечка Долли.

1998 г. — первая корова

1999 г. — первый козёл

2001 г. — первая кошка

2002 г. — первый кролик

2003 г. — первый бык, мул, олень

2004 г. — первый опыт клонирования с коммерческими целями (кошки).

2005 г. — первая собака (афганская борзая по кличке Снуппи)

2006 г. — первый хорёк

2007 г. — вторая собака

2008 г. — третья собака (лабрадор по кличке Чейс). Клонирована по государственному заказу. Начало коммерческого клонирования собак

2009 г. — первое успешное клонирование верблюда. Также впервые на Ближнем Востоке (а именно в Иране) была успешно клонирована коза(предыдущие страны, которым это удалось: США, Великобритания, Канада, Китай).

2011 г. — восемь клонированных щенков койота

5. Клонирование кроликов и коров.

Американские исследонатели Стик и Робл, используя методику Мак Грата и Солтера, получили 6 живых кроликов, пересадив ядра 8клеточных эмбрионов одной породы в лишенные ядра яйцеклетки кроликов другой породы. Фенотип родившихся полностью соответствовал фенотипу донора.

Однако только 6 из 164 реконструированных яйцеклеток (3,7%) развились в нормальных животных. Это, конечно, очень низкий выход, практически не позволяющий рассчитывать на получение таким методом клона генетически идентичных животных. Ценность этой работы тем не менее в том. что она показала возможность клонирования эмбрионов кроликов.

Работа с реконструированными яйцеклетками крупных домашних животных, коров или овец, идет несколько по-другому. Их сначала культивируют не in vitro, a in vivo - в перевязанном яйцеводе овцы - промежуточного (первого) реципиента. Затем их оттуда вымывают и трансплантируют в матку окончательного (второго) реципиента - коровы или овцы соответственно, где их развитие происходит до рождения детеныша. Уиладсин предложил заключать реконструированные яйцеклетки в агаровый цилиндр, который он затем трансплантировал в перевязанный яйцевод овцы. По данным одних авторов реконструированные зародыши лучше развиваются в яйцеклетке, чем в культуральной среде, хотя некоторые исследователи получили неплохие результаты и при культивировании.

Американцы Робл и его сотрудники, используя щадящий метод извлечения ядра без прокалывания мембраны яйцеклетки, предложенный Мак Гратом и Солтером, пересаживали в зиготы так называемые кариопласты - мужской и женский пронуклеусы вместе с окружающей их цитоплазмой, а также ядра 2-, 4- или 8-клеточных эбрионов коровы. Сначала зиготы центрифугировали чтобы освободить пронуклеусы от окружающих их гранул желтка, после чего ядра были хорошо видны под микроскопом, что значительно облегчало их удаление. При помощи манипулятора и заостренной стеклянной микропипетки извлекали один из бластомеров вместе с ядром из ранних зародышей и переносили его в энуклеированную зиготу.

Реконструированные зародыши были заключены в агаровый цилиндр и пересажены в перевязанный яйцевод овцы. Через пять дней культивирования их вымывали, освобождали от агара и исследовали. Реконструктурированные зародыши в этой работе развивались только в тех случаях, когда в зиготы пересаживали пронуклеусы: 17% таких зародышей достигли стадии морулы или бластоцисты. Два зародыша были пересажены второму реципиенту - в матку коровы, и развитие их завершилось рождением живых телят. Если в качестве доноров использовали ядра 2-, 4- или 8-клеточных зародышей, то реконструированные яйцеклетки не развивались даже до стадии морулы.

Позже были и более успешные работы. Уиладсин, в частности. сообщил, что ему удалось получить четырех генетически идентичных бычков холстейнской породы в результате пересадки в реципиентные яйцеклетки ядер бластомеров одного 32-клеточного зародыша. Автор утверждал, что большинство ядер сохраняет тотипотентность на 32-клеточной стадии, а значительная их часть даже на 64-клеточной стадии, обеспечивая нормальное развитие реконструированных яйцеклеток до стадии ранней бластоцисты в яйцеводе овцы. После пересадки в матку коров - окончательных реципиентов, как полагает автор, они могут и дальше нормально развиваться.

Бондиоли и соавторы, используя в качестве доноров ядер 16-64-клеточные зародыши коров, трансплантировали 463 реконструированных зародыша в матку синхронизированных реципиентов, и было получено 92 живых теленка. Семь из них были генетически идентичны, представляя собой клон, полученный в результате пересадки ядер клеток одного донорского эмбриона.

Таким образом, клеточные ядра зародышей крупного рогатого скота достаточно долго сохраняют тотипотентность и могут обеспечить полное развитие реконструированных яйцеклеток. Иначе говоря, методические трудности клонирования зародышей крупного рогатого скота практически решены. Но остается основная задача - найти донорские ядра, обладающие тотипотентностью, для клонирования взрослых животных.

6 .Клонирование как метод восстановления исчезнувших видов животных.

С помощью ДНК, извлекаемой из найденных окаменелостей, ученые могут попытаться возродить почти любые вымершие виды животных

Многие вымершие виды, от странствующего голубя до мамонтов, сегодня можно классифицировать как «вымерших телесно, но не генетически». Эти виды вымерли, однако их ДНК хранятся в музейных экспонатах и окаменелостях, возраст которых достигает 200 000 лет.

Благодаря новейшим разработкам в области генетических технологий практически любая ДНК может послужить основой для возрождения животных к жизни. Исключение составляет ДНК животных, живущих в очень отдаленные исторические периоды. Это, например, ДНК динозавров, которых можно классифицировать как «вымерших телесно и генетически».

Так для чего же возвращать исчезнувшие виды к жизни? Это будет долгий и сложный процесс. Он займет десятилетия, а его успешность гарантировать трудно. Стоит ли пытаться?

Вероятно, это необходимо по тем же причинам, по каким мы прикладываем огромные усилия для защиты исчезающих видов: сохранение биоразнообразия, восстановление ослабленных экосистем, развитие науки, цель которой – предотвращение вымирания видов, и, безусловно, ликвидация ущерба, нанесенного человечеством природе.

Кроме того, появление перспективы возвращения к жизни исчезнувших видов – уже сама по себе прекрасная новость. Получается, что даже нечто столь необратимое и окончательное, как вымирание, может быть остановлено с помощью достижений современной человеческой цивилизации. И в этом вопросе фантазия уже не имеет границ. Одна только мысль о возрождении мамонтов и странствующих голубей вызывает трепет и удивление и одновременно поощряет нас хранить музейные экспонаты с особой тщательностью.

Появится новая наука. Внимательное изучение геномов вымерших видов может рассказать нам многое о том, что в первую очередь делало их уязвимыми. Была ли их слабым местом их малая генетическая изменчивость? Чем они отличаются от своих ближайших «родственников», которые их пережили? А жизнь возрожденных животных расскажет нам еще больше.

Методы, разрабатываемые для восстановления вымерших видов, будут также использоваться и в отношении видов, которые сегодня находятся на грани исчезновения. У малых популяций, например, можно восстановить их генетическое разнообразие. «Ахиллесовы пяты» многих видов можно полностью ликвидировать посредством такого рода клонирования.

Человечество истребило множество видов за последние 10 000 лет. Сейчас природе необходимо восстановиться. И, помогая природе возобновляться, человек может попытаться искупить свои прошлые ошибки.

Тема 3. Клонирование клеток и генов

1. Методы клонирование. Роль клонирования в медицине и животноводстве.

Клонирование предполагает встраивание (инсерцию) экзогенной ДНК в векторную молекулу ДНК. Векторные системы, обеспечивающие доставку чужеродного фрагмента ДНК в клетку хозяина, для прокариот и эукариот различны. Для клонирования в прокариотических клетках используют плазмиды, фаги и космиды. В зависимости от типа векторной системы, используемой для доставки клонируемого фрагмента ДНК, процесс переноса генов носит название: при использовании плазмиды — трансформации; при использовании фага - трансдукции. Перенос экзогенной ДНК в эукариотические клетки называют трансфертен. В качестве векторов для переноса ДНК в эукариотические клетки используют дрожжевые плазмиды (единственные плазмиды, найденные в эукариотических клетках) и различные эукариотические вирусы (чаще всего ретровирусы, аденовирусы или аденоассоциированные вирусы). В ряде случаев введение векторных конструкций в эукариотические клетки осуществляют путем ко-трансформацый — одновременного введения плазмиды и сегмента чужеродной ДН К. В клетках эукариот векторные конструкции сохраняются в виде эписом (суперскрученных кольцевых молекул) в течение нескольких дней, а иногда экзогенная ДНК интегрируется в хромосомную ДНК и устойчиво сохраняется в геноме клетки-хозяина. Конструирование клонирующих векторов подразумевает встраивание или удаление удобных для идентификации клонов генетических элементов (специфических сайтов рестрикции, инициации и регуляции транскрипции). Например, при создании плазмидных клонирующих векторов ослабляют систему контроля репликации и добавляют или вырезают гены антибиотикоустойчивости. При формировании фаговой векторной конструкции экзогенную ДНК встраивают в район локализации маркерного гена, позволяющего вести селекцию химерных фагов по экспрессии химерного белка (часть полипептидной цепи соответствует маркерному белку, а часть -информации, заключенной во встроенном фрагменте ДНК). Определение химерного белка возможно при использовании антител к фрагменту маркерного белка или участку, кодируемому чужеродной ДНК, а также путем выявления функционально активного белка после протеолитического расщепления химерного полипептида. При конструировании искусственных дрожжевых хромосом YAC (от англ. yeast artificial chromosomes) используют плазмидные векторы, содержащие в своем составе известные центромерные и теломерные последовательности хромосом дрожжей, необходимые для поддержания репликации векторов в клетках хозяина. Характеристики клонирующих векторов представлены в таблице. Некоторое время идентификация нужных геномных клонов проводилась очень трудоемкими методами - «прогулки» и «прыжков по хромосоме». Их этапы схематически представлены на рисунке. «Прогулка по хромосоме», или скользящее зондирование, заключается в последовательном отборе клонов, несущих перекрывающиеся в концевых участках фрагменты ДНК из определенной области генома. Выделив клоны, например, путем скрининга библиотеки с помощью маркерной ДНК, сцепленной с нужным геном, их используют в качестве ДНК-зондов для поиска других клонов с перекрывающимися последовательностями. Врезультате получают набор фрагментов, полностью перекрывающих область поиска гена, - контиги. С помощью методов физического картирования устанавливают размер перекрывающихся участков (в п.н.) и строят физическую карту данной области. Несмотря на то, что прогулку можно осуществлять в двух направлениях, при использовании рестрикциониой карты, эффективность этого метода мала. При использовании космидных библиотек каждый шаг зондирования в одном направлении равен 20 т.п.н. (0,02Мб), а из-за наличия в геноме повторяющихся и трудно клонируемых последовательностей можно пройти около 200-300 т.п.н. (0,2-0,3 Мб).

Потенциал для применения терапевтического клонирования в области медицины огромен. Стволовые клетки, полученные путем терапевтического клонирования, применяются для лечения многих заболеваний и в отличие от перепрограммированных клеток, клонированными клетки могут иметь больший потенциал к превращению в любые нужные ткани, а генетически они не отличимы от клеток самого пациента.

Лектор расскажет о технологии клонирования, а также об этических аспектах получения стволовых эмбриональных клеток и клонирования человека.

Клонирование сельскохозяйственных животных совершит прорыв в животноводстве, поскольку даст возможность получать точные копии особей с наилучшими качествами – самых молочных, самых мясистых, самых шерстистых и плодовитых. Однако эффективность клонирования млекопитающих пока остается низкой: оплодотворенные яйцеклетки и эмбрионы часто погибают.

2. Идентичность генома основной массы соматических клеток разных тканей одного организма геному зиготы.(Не нашел)!!!

3. Использование микротехники для трансплантации ядер в энуклеированные яйцеклетки и эмбриональные клетки.(Не нашел)!!!

3. Способы энуклеации яйцеклеток

Важность разработки эффективных способов энуклеации зародышей млекопитающих определяется тем, что энуклеация является одним из самых трудоемких этапов при реконструировании клеток. Энуклеация по существу представляет собой процесс искусственного деления клетки на два изолированных фрагмента - цитопласт и кариопласт. Основным условием успешной энуклеации клетки является целостность цитоплазматической мембраны, окружающей как цитопласт, так и кариопласт. Только со времени разработки нетравматического способа энуклеации яйцеклеток и зигот (Мс Grath, Solter, 1983) стало возможным развитие работ по клонированию млекопитающих.

Известен способ энуклеации и реконструирования эмбрионов. Сущность этого способа заключается в том, что из зиготы удаляют пронуклеусы без прокалывания плазматической мембраны, медленным всасыванием в микропипетку пронуклеусов с частью цитоплазмы, окруженной плазматической мембраной. Удаление ядерного материала из реципиентной клетки производится с помощью микропипетки со скошенным острым кончиком, имеющим внутренний диаметр 15-20 микрон (энуклеационная микропипетка). При данном способе энуклеации яйцеклеток необходимо, чтобы кончик энуклеационной микропипетки прогибал прозрачную оболочку на незначительную глубину и легко входил под оболочку не только острием, но и своей широкой скошенной частью. Однако очень часто прокалывание прозрачной оболочки происходит только острием кончика микропипетки, и расширенная его часть с трудом проходит внутрь образовавшегося прокола в прозрачной оболочке. Прозрачная оболочка при этом прогибается на значительную глубину, острие микроинструмента достигает противоположной стороны оболочки изнутри клетки, в результате чего происходит прокол плазматической мембраны острым кончиком энуклеационной микропипетки, что в свою очередь приводит к быстрой гибели клетки. Поэтому вскоре после разработки этого способа стали предприниматься попытки, направленные на его совершенствование.

4. Метод клонирования с помощью пересадки ядер.

Б.В. Конюховым и Е.С. Платоновым в 1985 г. был разработан метод менее травматического переноса ядер методом микроманипуляции. Он протекает в два этапа: сначала тонкой микропипеткой прокалывают зоны пеллюцида и плазматической мембраны и извлекают пронуклеусы, а затем другой пипеткой, большего диаметра (12 мкм) в то же отверстие вводят диплоидное ядро донора. В этом случае меньше травмируется цитоплазма зиготы и транспортируемое ядро донора.

Трансплантация ядер может осуществляться и другим способом, с использованием цитохалазинов (веществ, синтезируемых грибами).

Цитохалазин В разрушает структуру микрофиламентов и способствует уникальному расположению ядра. Ядро остается соединенным с клеткой тоненьким стебельком цитоплазмы. При центрифугировании этот мостик разрывается, образуются безъядерные клетки (цитопласты) и кариопласты, представляющие собой ядра, окруженные тонким слоем цитоплазмы и цитоплазматической мембраной. Цитопласты отделяют от интактных клеток в градиенте плотности. Они сохраняют способность прикрепляться к поверхности культурального сосуда и могут быть использованы для слияния с кариопластами других клеток с целью получения жизнеспособной клетки.

Методы выделения кариопластов несколько сложнее и включают в себя ряд операции по центрифугированию, разделению в градиенте плотности и т.д. В некоторых случаях к смеси клеток и кариопластов добавляют частицы тантала диаметром 1 – 3 мкм. Они проникают в клетки и никогда в кариопласт, поэтому более тяжелые клетки осаждаются быстрее кариопластов.

Цитопласты содержат все виды органелл, присущие нормальной клетке, сохраняют способность прикрепляться к субстрату, образовывать складчатую мембрану, передвигаться, осуществлять пиноцитоз.

Кариопласты окружены тонким слоем цитоплазмы (около 10% от всей клеточной цитоплазмы), содержат компактный эндоплазматический ретикулум, несколько митохондрий и рибосом. У некоторых клеточных линий 1/10 кариопластов способна восстановить весь утраченный объем цитоплазмы и восстановиться в жизнеспособные клетки.

Для реконструкции клеток суспензию кариопластов в солевом буфере добавляют к монослою культуры цитопластов из пропорции 100 кариопластов на 1 цитопласт. Цитопласты должны быть уже покрыты инактивированными вирусными частицами. Инкубируют при температуре 4оС 45 минут, а затем еще 45 минут при температуре 37оС. Отмывают раствором Эрла для удаления не слившихся кариопластов.

5. Вопросы биоэтики. Контроль исследований в области биотехнологии.

Биоэ́тика (от др.-греч. βιός — жизнь и ἠθική — этика, наука о нравственности) — учение о нравственной стороне деятельности человека в медицине и биологии. В узком смысле понятие биоэтика обозначает весь круг этических проблем во взаимодействии врача и пациента. Неоднозначные ситуации, постоянно возникающие в практической медицине как порождение прогресса биологической науки и медицинского знания, требуют постоянного обсуждения как в медицинском сообществе, так и в кругу широкой общественности.

В широком смысле термин биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включённых в экосистемы, окружающие человека. В этом смысле биоэтика имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине и биологии в целом.

Эвтаназия. Вопрос о приемлемости добровольного ухода из жизни становится всё более актуальным — по мере того, как растут технические возможности сохранения «жизни тела» — при вполне возможной «смерти мозга».

Гомотрансплантация и аллотрансплантация. Прижизненное изъятие органов прижизненное изъятие органов (в основном почки) допускается только от ближайших родственников, с обоюдного согласия участников.

Использование органов от умерших людей

Чем раньше будет пересажен орган погибшего от каких-либо причин донора, тем выше шансы на успех операции. Однако процедура фиксациисмерти и её критерии до сих пор остаётся предметом дискуссий. принята практика, при которой, если человек или его родственники не высказывались прямо против возможности использования органов после смерти, считается потенциальным донором.

Наиболее сложным вопросом остаётся доверие к службам, обеспечивающим изъятие органов (контроль за отсутствием злоупотреблений — потенциально опасными считаются прецеденты доведения больных доноров до смерти, неоказание должной помощи потенциальному донору, и даже изъятие органов у здоровых людей, под предлогом тех или иных искусственно навязанных врачом операций).

Ксенотрансплантация. Пересадка органов от животных может подвергаться негативной оценке со стороны отдельных религиозных конфессий или их представителей. В частности, по тем или иным соображениям, для мусульман или иудеев неприемлемыми могут быть ткани и органы свиньи, а для индуистов — коровы. Так же ксенотрансплантация подвергается критике со стороны защитников прав животных и людей, считающие подобную практику неэтичной по отношению к животным.

Аборт. Вопрос о возможности проведения медицинского аборта, о допустимости, решается законодательно, в разных странах по-разному, в зависимости от светского или религиозного характера государства. Православие, католицизм, буддизм, индуизм и ислам отрицают возможность аборта, даже по медицинским показаниям.

В большинстве светских государств считается, что телесная автономия женщины дает ей право распоряжаться своим организмом, а появление новой личности, обладающей правами, происходит в момент появления на свет. Поэтому во всех этих странах аборт разрешён.

Стволовые клетки

В отдельных случаях для получения стволовых клеток используют эмбриональные ткани (чаще всего используют либо СК самого пациента, либо недифференцированные клетки бластоцисты). В некоторых странах запрещено использование абортивного материала для этой цели, в других странах явно разрешено только использование тканей, выращенных in vitro.

Проведение клинических испытаний

Проведение клинических испытаний новых лекарственных средств и вакцин необходимо для совершенствования методов терапии, поиска наиболее эффективных препаратов.

Раньше проведение таких испытаний не было столь масштабным, как теперь, а у врачей — было меньше сомнений в отношении возможности проявления тех или иных побочных эффектов или осложнений.

Современная фармакология приобрела значительный опыт в направлении проведения доказательных и этичных клинических испытаний. На формирование этого опыта оказали влияние и судебные иски пациентов, волонтёров, других категорий испытуемых, которые были зафиксированы за последние 50 лет.

В настоящее время основным требованием для участия в испытаниях является получение т. н. «информированного согласия» пациента или волонтёра.




1. Расщепление по каждой паре признаков происходит независимо от других пар признаков
2. Економіка та підприємництво напряму підготовки 6
3. реферату- Тип членистоногі загальна характеристика видуРозділ- Біологія Тип членистоногі загальна характе
4. 1Конечность. Должен приводить к решению
5. на тему- Выполнил- Студент курса группы отд
6. Реферат студентки III курса группы ИМО2 Финченко Л
7. О бухгалтерском учете
8. Noted in the 10th century describes its position t the convenient spot for crossing the river ~ ldquo;the ford for oxen
9. иудаизм происходит от названия еврейского племени Иуды самого многочисленного среди 12 колен израилевых к
10. исследовательской общественной культурнотворческой и спортивной деятельности выплачивается повышенная
11. 27 декабря 2013 г. Бассейн 50 м 50 в-с женщины.html
12. К урокам иракского кризиса 2003 года
13. реферату- Доля рідної мови доля УкраїниРозділ- Мовознавство Доля рідної мови доля України Згорають очі
14. тема йога 17 Материалистическая система ньяя 1
15. Музей був відкритий за назвою Музей імені Івана Федорова в 1976 році в приміщеннях колишнього Онуфрієвськог
16. Обучить рациональному использованию материалов.
17. бакалавр Воронеж 2012 Автор- Дементьев И
18. машинные системы Жизненный цикл АИС начинается- с момента принятия решения на создание
19. Реферат- Проектирование автоматизированных систем на микроуровн
20. Горный щит Interntionl MilitryHistoricl ssocition Yekterinburg MilitryHistoricl Society Gorny Shchit 18.