У вас вопросы?
У нас ответы:) SamZan.net

пояснительная часть [1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Федеральное агентство по образованию

Пермский национально-исследовательский политехнический университет

Кафедра ИТАС

КУРСОВАЯ РАБОТА

По курсу «Системный анализ и исследование операций»

Вариант № 25.1

Выполнил  студент гр. АСУ-10-2зу

Cубботин С.А.

Проверил:

Рустамханова Г.И.

Пермь 2013

Содержание

[0.0.1] Таблица 1 – Исходные данные

[1]
Расчетно – пояснительная часть

[1.1] Описание модели

[1.1.1] Часть 1.1

[1.1.2] Часть 1.2

[1.1.3]
Часть 2.1

[1.1.4] Часть 2.2

[2]
Решение в Lindo

[2.0.1] Часть 1.1

[2.0.2] Часть 1.2

[2.0.3] Часть 2.1

[2.0.4] Часть 2.2

[2.0.5] Решение (Часть 1.1):

[2.0.6] Решение (Часть 1.2):

[2.0.7] Решение (Часть 2.1):

[2.0.8] Решение (Часть 2.2):

[3] Заключение


Задание на курсовую работу

Предприятие формирует годовой план выпуска трёх видов продукции с учётом ограничений по рабочей силе и ёмкости склада. Известны:

ai – ёмкость склада, необходимая для хранения единицы i-го продукта;

bi – удельная трудоёмкость производства i-го продукта, в человеко-часах;

git – затраты на хранение единицы i-го продукта в течение t-го квартала;

cit – стоимость одного человеко-часа при производстве i-го продукта в t-м квартале;

Rt – фонд рабочей силы в t-м квартале, человеко-час;

Qt – ёмкость склада в t-м квартале;

dit – прогнозируемый равномерный спрос на i-й продукт в t-м квартале.

Часть 1. Необходимо составить оптимальный план производства по двум критериям (отдельно), один из которых должен обеспечивать выравнивание затрат по кварталам года. Исходные данные приведены в таблице 1.

Часть 2. Показать, как изменится решение, если спрос в 3 и 4 квартале окажется случайным, распределённым по нормальному закону с математическим ожиданием dit и среднеквадратической ошибкой 0,08 dit, при удовлетворении спроса с вероятностью 0,9.

Таблица 1 – Исходные данные

Параметры

Продукты

1

2

3

ai

4.2

3

1.5

bi

12

7

5

gi1

1.5

1.2

0.6

gi2

1.6

1.3

0.8

gi3

1.6

1.3

0.9

gi4

1.7

1.4

0.9

ci1

18

12

13

ci2

18

13

15

ci3

19

14

15

ci4

19

14

16

di1

90

65

80

di2

45

84

37

di3

30

50

60

di4

30

62

45

Параметры

1-ый квартал

2-ый квартал

3-ый квартал

4-ый квартал

Rt

2200

1550

1200

1150

Qt

730

520

430

450


Расчетно – пояснительная часть

Описание модели

Часть 1.1 

В качестве переменных yij выбираем количество производимых деталей, где i – квартал, j – номер(вид) детали. В качестве переменных xij выбираем количество деталей, хранящихся на складе, где i – квартал, j – номер(вид) детали. В качестве критерия выбираем общие затраты по всем кварталам (на производство и хранение) и минимизируем его – L=1.5x11+1.2x12+0.6x13+1.6x21+1.3x22+0.8x23+1.6x31+1.3x32+0.9x33+1.7x41+1.4x42+0.9x43+18y11+12y12+13y13+18y21+13y22+15y23+19y31+14y32+15y33+19y41+14y42+16y43min

Количество производимых и хранящихся деталей необходимо ограничить фондами рабочей силы и ёмкостями склада по кварталам.

Ограничение производимых деталей:

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

Ограничение хранящихся деталей:

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

Необходимо ввести в модель условия, которые задают спрос и описывают связь между количеством хранимых деталей на складе от одного квартала к следующему.

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=30

y32+x22-x32=50

y33+x23-x33=60

y41+x31-x41=30

y42+x32-x42=62

y43+x33-x43=45

Часть 1.2 

В этой части работы необходимо составить критерий, который выравнивал бы затраты по кварталам. В качестве критерия выбираем некое число «с», которое выше всех затрат по кварталам отдельно и минимизируем его – L=cmin

Модель необходимо дополнить следующими условиями, которые описывают число «c»:

1.5x11+1.2x12+0.6x13+18y11+12y12+13y13-c<0 – описывает затраты в 1-м квартале

1.6x21+1.3x22+0.8x23+18y21+13y22+15y23-c<0 – описывает затраты в 2-м квартале

1.6x31+1.3x32+0.9x33+19y31+14y32+15y33-c<0 – описывает затраты в 3-м квартале

1.7x41+1.4x42+0.9x43+19y41+14y42+16y43-c<0 – описывает затраты в 4-м квартале.


Часть 2.1 

Для того чтобы удовлетворить спрос с вероятностью 0,9 воспользуемся следующей формулой z=(x-)/, где – математическое ожидание (спрос в 3 и 4 кварталах), - среднеквадратическая ошибка, x – искомая величина (т.е. такой спрос, при котором будет удовлетворяться 90% спроса), z – аргумент функции Лапласа, значение которого находим из таблицы (берём значение z=1,28,т.к. ему соответствует вероятность 0,8997). Рассчитываем значения спроса на продукцию в 3 и 4 кварталах и подставляем их в модель.

L=1.5x11+1.2x12+0.6x13+1.6x21+1.3x22+0.8x23+1.6x31+1.3x32+0.9x33+1.7x41+1.4x42+0.9x43+18y11+12y12+13y13+18y21+13y22+15y23+19y31+14y32+15y33+19y41+14y42+16y43min

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=33

y32+x22-x32=55

y33+x23-x33=66

y41+x31-x41=33

y42+x32-x42=68

y43+x33-x43=49

Часть 2.2 

Дополняем модель, описывая число «c», которое как бы «прижимает» высокие затраты по кварталам и минимизируем его.

L=cmin

1.5x11+1.2x12+0.6x13+18y11+12y12+13y13-c<0

1.6x21+1.3x22+0.8x23+18y21+13y22+15y23-c<0

1.6x31+1.3x32+0.9x33+19y31+14y32+15y33-c<0

1.7x41+1.4x42+0.9x43+19y41+14y42+16y43-c<0

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=33

y32+x22-x32=55

y33+x23-x33=66

y41+x31-x41=33

y42+x32-x42=68

y43+x33-x43=49


Решение в Lindo

Часть 1.1

Так как необходимо получить целые значения – переменные yij и xij делаем типа GIN.

min

1.5x11+1.2x12+0.6x13+

1.6x21+1.3x22+0.8x23+

1.6x31+1.3x32+0.9x33+

1.7x41+1.4x42+0.9x43+

18y11+12y12+13y13+

18y21+13y22+15y23+

19y31+14y32+15y33+

19y41+14y42+16y43

subject to

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=30

y32+x22-x32=50

y33+x23-x33=60

y41+x31-x41=30

y42+x32-x42=62

y43+x33-x43=45

end

gin x11

gin x12

gin x13

gin x21

gin x22

gin x23

gin x31

gin x32

gin x33

gin x41

gin x42

gin x43

gin y11

gin y12

gin y13

gin y21

gin y22

gin y23

gin y31

gin y32

gin y33

gin y41

gin y42

gin y43

Часть 1.2

min

c

subject to

1.5x11+1.2x12+0.6x13+18y11+12y12+13y13-c<0

1.6x21+1.3x22+0.8x23+18y21+13y22+15y23-c<0

1.6x31+1.3x32+0.9x33+19y31+14y32+15y33-c<0

1.7x41+1.4x42+0.9x43+19y41+14y42+16y43-c<0

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=30

y32+x22-x32=50

y33+x23-x33=60

y41+x31-x41=30

y42+x32-x42=62

y43+x33-x43=45

end

gin x11

gin x12

gin x13

gin x21

gin x22

gin x23

gin x31

gin x32

gin x33

gin x41

gin x42

gin x43

gin y11

gin y12

gin y13

gin y21

gin y22

gin y23

gin y31

gin y32

gin y33

gin y41

gin y42

gin y43

Часть 2.1

min

1.5x11+1.2x12+0.6x13+

1.6x21+1.3x22+0.8x23+

1.6x31+1.3x32+0.9x33+

1.7x41+1.4x42+0.9x43+

18y11+12y12+13y13+

18y21+13y22+15y23+

19y31+14y32+15y33+

19y41+14y42+16y43

subject to

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=33

y32+x22-x32=55

y33+x23-x33=66

y41+x31-x41=33

y42+x32-x42=68

y43+x33-x43=49

end

gin x11

gin x12

gin x13

gin x21

gin x22

gin x23

gin x31

gin x32

gin x33

gin x41

gin x42

gin x43

gin y11

gin y12

gin y13

gin y21

gin y22

gin y23

gin y31

gin y32

gin y33

gin y41

gin y42

gin y43

Часть 2.2

min

c

subject to

1.5x11+1.2x12+0.6x13+18y11+12y12+13y13-c<0

1.6x21+1.3x22+0.8x23+18y21+13y22+15y23-c<0

1.6x31+1.3x32+0.9x33+19y31+14y32+15y33-c<0

1.7x41+1.4x42+0.9x43+19y41+14y42+16y43-c<0

4.2x11+3x12+1.5x13<=730

4.2x21+3x22+1.5x23<=520

4.2x31+3x32+1.5x33<=430

4.2x41+3x42+1.5x43<=450

12y11+7y12+5y13<=2200

12y21+7y22+5y23<=1550

12y31+7y32+5y33<=1200

12y41+7y42+5y43<=1150

y11-x11=90

y12-x12=65

y13-x13=80

y21+x11-x21=45

y22+x12-x22=84

y23+x13-x23=37

y31+x21-x31=33

y32+x22-x32=55

y33+x23-x33=66

y41+x31-x41=33

y42+x32-x42=68

y43+x33-x43=49

end

gin x11

gin x12

gin x13

gin x21

gin x22

gin x23

gin x31

gin x32

gin x33

gin x41

gin x42

gin x43

gin y11

gin y12

gin y13

gin y21

gin y22

gin y23

gin y31

gin y32

gin y33

gin y41

gin y42

gin y43

Решение (Часть 1.1):

L= 10159.1       

X11=0        Y11=90            Затраты за 1 квартал:4160.799805

X12=0        Y12=65            Затраты за 2 квартал:1914.800049

X13=53       Y13=133                       Затраты за 3 квартал:2645.500000

X21=0        Y21=45            Затраты за 4 квартал:1438.000000

X22=0        Y22=84

X23=16                 Y23=0

X31=0        Y31=30

X32=0        Y32=50

X33=45       Y33=89

X41=0        Y41=30

X42=0        Y42=62

X43=0                  Y43=0

Решение (Часть 1.2):

L= 3440

X11=0        Y11=90            Затраты за 1 квартал: 3440

X12=0        Y12=65            Затраты за 2 квартал: 2852.699951

X13=0         Y13=80            Затраты за 3 квартал: 2719.300049

X21=18       Y21=63            Затраты за 4 квартал: 1370.099976

X22=3        Y22=87            Общие затраты: 10382.099609

X23=0                  Y23=37

X31=0        Y31=12

X32=61       Y32=108

X33=0        Y33=60

X41=0        Y41=30

X42=1        Y42=2

X43=3                       Y43=48

Решение (Часть 2.1):

L= 10582.3

X11=0        Y11=90            Затраты за 1 квартал: 4160.799805

X12=0        Y12=65            Затраты за 2 квартал: 1914.800049

X13=53        Y13=133            Затраты за 3 квартал: 2671.699951

X21=0        Y21=45            Затраты за 4 квартал: 1835

X22=0        Y22=84            

X23=16                Y23=0

X31=0        Y31=33

X32=0        Y32=55

X33=33        Y33=83

X41=0        Y41=33

X42=0        Y42=68

X43=0                  Y43=16

Решение (Часть 2.2):

L= 3440

X11=0        Y11=90            Затраты за 1 квартал: 3440

X12=0        Y12=65            Затраты за 2 квартал: 2852.699951

X13=0         Y13=80            Затраты за 3 квартал: 2003

X21=18       Y21=63            Затраты за 4 квартал: 2404.39990

X22=3        Y22=87            Общие затраты: 10700.099609

X23=0                  Y23=37

X31=0        Y31=15

X32=0               Y32=52

X33=0        Y33=66

X41=2        Y41=35

X42=0        Y42=68

X43=0                  Y43=49

Заключение

В результате проделанных вычислений видно, что решения отличаются. Так как меняли цель оптимизации (критерий): в одном случае минимизировали затраты, а в другом случае выравнивали их по кварталам. В ходе выполнения курсовой работы была составлена модель и получено решение поставленной задачи. Составленная модель относится к классу задач линейного программирования, так как критерий и все ограничения линейны. Для решения таких задач разработано несколько методик. В данном случае из-за большой размерности задача решалась на ЭВМ в пакете LINDO.

. 




1. Философия ~ совокупность учений о предельных основаниях бытия о наиболее общих свойствах
2. Тема- Экономическое обоснование выбора рекламораспространителя на примере печатных СМИ г
3. ботанэ которое в переводе обозначает зелень трава растение
4. практикумом ЕКЗАМЕНАЦІЙНИЙ БІЛЕТ 13 Обстоятельство
5. особые языковые способности ошибочно
6. Гитлер и фашизм
7. О воинской обязанности и воинской службе от 28
8. Литература- Ковалева А
9. Терапия СИМПТОМАТИЧЕСКИЕ ГИПЕРТОНИИ.html
10. . Я чувствую подавленность 2
11. Предмет общей теории права
12. на тему ldquo;Успех и высшее образованиеrdquo;
13. Каждый человек с самого раннего возраста должен стремиться к тому чтобы стать умным любознательным сооб
14. водстве невозможно без знания и выполнения работниками всех требований НПАОП которые касаются их работы пр
15.  КОНЦЕПЦИЯ УПРАВЛЕНИЯ ПЕРСОНАЛОМ ОРГАНИЗАЦИИ В УСЛОВИЯХ РЫНОЧНЫХ ОТНОШЕНИЙ
16. Современная налоговая система Республики Казахстан
17.  Именно это привело к возникновению такого вида искусства как живопись
18. Архитектура Древнего Египта
19. психічний процес який полягає в закріпленні збереженні та наступному відтворенні минулого досвіду що дає
20. Тема 1 Внутренняя геополитика России и регулирование геополитических конфликтов2 часа План занятия