Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Строительные материалы непосредственно влияют на восприятие архитектурного образа объекта, на его качество и экономические требования. Архитектор должен понимать, что строительные материалы выполняют комплекс функций, связанных с технологией строительных работ, эксплуатацией и композиционным строением здания, а также его стоимостью, включая цены и затраты на применение и эксплуатацию. Работа с материалами предполагает учёт действующих архитектурно-строительных норм и правил, а также природных и социальных факторов.
Строительное материаловедение наука о строительных материалах, их составе, свойствах, внутреннем строении, технологии их изготовления и областях применения, а также о долговечности, надежности и конструкции зданий и сооружений. Строительное материаловедение является фундаментальной наукой прикладного характера и состоит из трёх компонентов: из практики, из теории и из мировоззренческих основ.
Практика приоритетная часть строительного материаловедения. Она включает в себя знания о производстве строительных материалов и изделий из них и многообразного сырья. Она включает знания о технологии производства материалов, их основных свойствах, методах испытания, целесообразности применения тех или иных материалов или изделий в строительстве, а также знания о правилах эксплуатации.
Теория составляет сумму знаний обо всех материалах в их сложной совокупности и посвящена вскрытию и описанию общих закономерностей связи свойств материала с особенностью его строения и со свойствами тех веществ, из которых данный материал состоит. Также она посвящена описанию научных принципов и законов, лежащих в основе производства и при переработке строительного материала в изделие. Теория раскрывает сущность явлений и процессов, связанных с возникновением новообразований микро и макроструктурных элементов, их взаимосвязей при переработке и формировании единой структуры монолитно-строительных материалов. В ней содержится классификация материалов, методы оптимизации состава и структуры материала и методы проектирования этого состава с заданными свойствами.
Мировоззренческие основы науки способствуют обоснованному прогнозированию развития практики. Представляются прогрессивные и передовые технологии строительных материалов на уровне мировых достижений, в том числе безотходное производство с учётом долговечности, экологичности и защиты окружающей среды. Учитываются современные технологии.
3 Этапа развития материаловедения:
1 Появляются основные понятия о материалах и их свойствах. Для этого этапа характерно небольшое количество разновидностей и опытных данных по качественным характеристикам материалов. С древних времён до начала второй половины 19 века. Знания получали философы, изучая материю. Большой вклад внесли такие учёные как Ломоносов и Менделеев.
2 Со второй половины 19 века и закончился в первой половине 20 века. Закончился массовым производством строительных материалов и изделий, созданием новых материалов и их выпуском. Это связано с общим прогрессом промышленности и с массовым строительством гражданских и промышленных сооружений. Характерным является конкретное изучение составов и качества изучаемых материалов. Прогрессирует не только использование, но и переработка сырья, в связи с проблемой загрязнения окружающей среды и невозможности восстановления некоторых ресурсов. Происходит изучение различных методик испытания материалов.
3 С начала 20 века и по нынешний период. Рост объёма производства традиционный, появление новых строительных материалов. Углубление специализированных наук об этих материалах. Интеграция научных знаний о строительных материалах и их свойствах.
К основным критериям выбора современного материала с эксплуатационно-технической и экономической точек зрения относятся: наличие заводского (лицензированного) производства, сравнительно меньшая средняя плотность при сохранении требуемой прочности и других эксплуатационно-технических характеристик, многофункциональность, возможность снизить расход энергетических ресурсов при эксплуатации зданий и сооружений.
Преимуществом заводского выпуска материалов считается мобильность производства (возможность его перестройки), возможность заказа архитектором, дизайнером, реставратором материалов с требуемыми характеристиками, безопасность, благоприятные условия труда.
Роль архитектора: формирование и выбор строительных материалов. Требования: умение правильно формировать необходимые требования к материалам, знание конструкции и основ фундаментальных наук, в том числе истории, связь с производственным материаловедением (посещение специальных выставок, чтение журналов, посещение конференций), помнить о назначении архитектора как социального работника (приоритет человек и природа, цель экономия, польза и красота).
Металлы и металлические изделия. В водохозяйственном строительстве широко применяют различные материалы в виде металлопроката и металлических изделий. Металлопрокат используют при строительстве насосных станций, производственных зданий, изготовлении металлических затворов различного типа. Металлы, применяемые в строительстве, делят на две группы: чёрные (железо и сплавы) и цветные. В зависимости от содержания углерода чёрные металлы подразделяют на чугун и сталь. Чугун железоуглеродистый сплав с содержанием углерода от 2 % до 6,67 %. В зависимости от характера металлической основы он делится на четыре группы: серый, белый, высокопрочный и ковкий. Серый чугун содержит 2,4-3,8 % углерода. Он хорошо поддаётся обработке, имеет повышенную хрупкость. Его используют для литья изделий, не подвергающихся ударным воздействиям. Белый чугун содержит 2,8-3,6 % углерода, обладает высокой твёрдостью, однако он хрупок, не поддаётся обработке, имеет ограниченное применение. Высокопрочный чугун получают присадкой в жидкий чугун магния 0,03-0,04 % он имеет тот же химический состав что и серый чугун. Он имеет наиболее высокие прочностные свойства. Его применяют для отливки корпусов насосов, вентилей. Ковкий чугун получают длительным нагревом при высоких температурах отливок из белого чугуна. Он содержит 2,5-3,0 % углерода. Его применяют для изготовления тонкостенных деталей (гайки, скобы…). В водохозяйственном строительстве применяют чугунные плиты для облицовки поверхностей гидротехнических сооружений, подвергающихся истиранию наносами, чугунные водопроводные задвижки, трубы. Стали получают в результате переработки белого чугуна в мартеновских печах. С увеличением в сталях содержания углерода повышается их твёрдость и хрупкость, в то же время понижается пластичность и ударная вязкость. Механические и физические свойства сталей значительно улучшаются при добавлении в них легирующих элементов (никеля, хрома, вольфрама). В зависимости от содержания легирующих компонентов стали делятся на четыре группы: углеродистые (легирующие элементы отсутствуют), низколегированные (до 2,5 % легирующих компонентов), среднелегированные (2,5-10 % легирующих компонентов), высоколегированные (более 10 % легирующих компонентов). Углеродистые стали в зависимости от содержания углерода подразделяют на низкоуглеродистую (углероды до 0,15 %), среднеуглеродистую (0,25-0,6 %) и высокоуглеродистую (0,6-2,0 %). К цветным металлам и сплавам относят алюминий, медь и их сплавы (с цинком, оловом, свинцом, магнием), цинк, свинец. В строительстве используют лёгкие сплавы на основе алюминия или магния, и тяжёлые сплавы на основе меди, олова, цинка, свинца. Стальные строительные материалы и изделия
Горячекатаные стали выпускают в виде равнополочного уголка (с полками шириной 20-250 мм); неравнополочного уголка; двутавровой балки; двутавровой широкополочной балки; швеллера. Для изготовления металлических строительных конструкций и сооружений используют прокатные стальные профили: равнополочный и неравнополочный уголки, швеллер, двутавр, и тавр. В качестве крепёжных изделий из стали применяют заклёпки, болты, гайки, винты и гвозди. При выполнении строительно-монтажных работ применяют различные способы обработки металлов: механическую, термическую, сварку. К основным способам производства металлических работ относится механическая горячая и холодная обработка металлов. При горячей обработке металлы нагревают до определённых температур, после чего им придают соответствующие формы и размеры в процессе проката, под воздействием ударов молота или давлении пресса. Холодную обработку металлов подразделяют на слесарную и обработку металлов резанием. Слесарная и обработка состоит из следующих технологических операций: разметки, рубки, резки, отливки, сверления, нарезки. Обработку металлов, резание осуществляют путём снятия металлической стружки режущим инструментом (точение, строгание, фрезерование). Её производят на металлорежущих станках. Для улучшения строительных качеств стальных изделий их подвергают термической обработке закалке, отпуску, отжигу, нормализации и цементации. Закалка заключается в нагреве стальных изделий до температуры, несколько выше критической, некоторой выдержке их при этой температуре и в последующем быстром охлаждении их в воде, масле, масляной эмульсии. Температура нагрева при закалке зависит от содержания в стали углерода. При закалке увеличивается прочность и твёрдость стали.
Отпуск заключается в нагреве закалённых изделий до 150670 °C (температура отпуска), выделке их при этой температуре (в зависимости от марки стали) и последующем медленном или быстром охлаждении в спокойном воздухе, воде или в масле. В процессе отпуска повышается вязкость стали, уменьшается внутреннее напряжение в ней и её хрупкость, улучшается её обрабатываемость.
Отжиг заключается в нагреве стальных изделий до определённой температуры (750960 °C), выдержке их при этой температуре и последующем медленном охлаждении в печи. При отжиге стальных изделий понижается твёрдость стали, также улучшается её обрабатываемость. Нормализация заключается в нагреве стальных изделий до температуры несколько более высокой, чем температура отжига, выдержке их при этой температуре и последующем охлаждении в спокойном воздухе. После нормализации получается сталь с более высокой твёрдостью и мелкозернистой структурой. Цементация это процесс поверхностного науглероживания стали с целью получения у изделий высокой поверхностной твёрдости, износостойкости и повышенной прочности; при этом внутренняя часть стали сохраняет значительную вязкость.
Цветные металлы и сплавы
К ним относятся: алюминий и его сплавы это лёгкий, технологичный, коррозионностойкий материал. В чистом виде его используют для изготовления фольги, отливки деталей. Для изготовления алюминиевых изделий используют алюминиевые сплавы алюминиево-марганцевый, алюминиево-магниевый… Применяемые в строительстве алюминиевые сплавы при незначительной плотности (2,7-2,9 г/см³), имеют прочностные характеристики, которые близки к прочностным характеристикам строительных сталей. Изделия из алюминиевых сплавов характеризуются простотой технологии изготовления, хорошим внешним видом, огне- и сейсмостойкостью, антимагнитностью, долговечностью. Такое сочетание строительно-технологических свойств у алюминиевых сплавов позволяет им конкурировать со сталью. Использование алюминиевых сплавов в ограждающих конструкциях позволяет уменьшить вес стен и кровли в 10-80 раз, сократить трудоёмкость монтажа. Медь и её сплавы. Медь это тяжёлый цветной металл (плотностью 8,9 г/см³), мягкий и пластичный с высокой тепло- и электропроводностью. В чистом виде медь используют в электрических проводах. В основном медь применяют в сплавах различных видов. Сплав меди с оловом, алюминием, марганцем или никелем называют бронзой. Бронза это коррозионностойкий металл, обладающий высокими механическими свойствами. Применяют её для изготовления санитарно-технической арматуры. Сплав меди с цинком (до 40 %) называют латунью. Она обладает высокими механическими свойствами и коррозионной стойкостью, хорошо поддаётся горячей и холодной обработке. Её применяют в виде изделий, листов, проволоки, труб. Цинк это коррозионностойкий металл, применяемый в качестве антикоррозионного покрытия при оцинковывании стальных изделий в виде кровельной стали, болтов. Свинец это тяжёлый, легкообрабатываемый, коррозионностойкий металл, применяемый для зачеканивания швов раструбных труб, герметизации деформационных швов, изготовления специальных труб.
В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-строителя требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.
Строительные материалы и изделия, в соответствии с теорией ИСК, делятся на:[1]
Природные (естественные) без изменения состава и внутреннего строения:
неорганические (каменные материалы и изделия); органические (древесные материалы, солома, костра, камыш, лузга, шерсть, коллаген).
Искусственные:
Безобжиговые (твердение при нормальных условиях) и автоклавные (твердение при температуре 175200 °C и давлении водяного пара 0,9-1,6 МПа):
неорганические (клинкерные и клинкеросодержащие цементы, гипсовые, магнезиальные и др.);
органические (битумные и дектевые вяжущие вещества, эмульсии, пасты);
полимерные (термопластичные и термореактивные);
комплексные:
смешанные (смешения нескольких видов минеральных веществ);
компаундированные (смеси и сплавы органических материалов);
комбинированные (объединение минерального с органическим или полимерным).
Обжиговые твердение из огненных расплавов:
шлаковые (по химической основности шлака);
керамические (по характеру и разновидности глины и др. компонентов);
стекломассовых (по показателю щелочности шихты);
каменное литье (по виду горной породы);
комплексное (по виду соединяемых компонентов, например: шлакокерамические, стеклошлаковые).
По применению классифицируются на две основные категории. К первой категории относят конструкционные: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории специального назначения: гидроизоляционные, теплоизоляционные, акустические, отделочные и др.
Основные виды строительных материалов и изделий
каменные природные строительные материалы и изделия из них
вяжущие материалы неорганические и органические
лесные материалы и изделия из них металлические изделия
В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорог (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.
Получение гипса.
Способ 1
1). Добыча сырья.
2). Измельчение.
3). Тепловая обработка.
Способ 2
1). Добыча сырья
2). Тепловая обработка.
3). Измельчение.
Способ 3
1). Добыча и тепловая обработка.
2). Измельчение.
Тепловую подготовку проводят в гипсоварочных котлах при температуре T= 180 градусов, процесс варки длится в течение 3-4 часов
При варке двуводный гипс разлагается на полуводный и водяной гипс. При твердении повышается температура на 20-22*С, и гипс увеличивается в объёме на 1%. При твердении гипса происходит химическая реакция при которой строительный гипс соединяется с водой и образует 2-х водный гипс
CaSO4
Свойства гипса по срокам схватывания.А быстросхватывающийся начало схватывания 2 минуты конец схватывания 15 минут.
Б нормальносхватывающийся 6 минут 30 минут.
В медленносхватывающийся 20 мин ---.
В процессе производства строительных работ - штукатурка и шпаклёвка стен, возникает необходимость применения замедлителей схватывания, ими являются:
-- известковое тесто или известковое молоко.
-- Клей КМС для обоев.
-- Клей ПВА
-- Столярный клей.
-- Хвойный настой.
-- Аммиак.
-- Спирт.
Ускорителями схватывания гипса являются:
-- Поваренная соль.
-- Сульфат натрия или сульфат калия.
Прочность гипса определяют при сжатии образца 4-4-16 сантиметров в 2-х часовом возрасте твердения гипсового образца.
Строительный Гипс применяется в:
-- Штукатурных растворах. Сухие строительные смеси гипсовая штукатурка, известково-гипсовая штукатурка, шпаклёвка для внутренних ремонтно-строительных работ. Штукатурка и шпаклёвка из гипса отличается высокой эластичностью и степенью обрабатываемости.
-- при изготовлении сухой штукатурки. . Гипсокартон строительный материал для отделки стен и потолков. Устройства перегородок. Гипсокартон для потолочных подвесных комплексов применяется в основном внутри помещений с нормальным температурным и влажностным режимом, кроме, специального, влагостойкого.
Листы штукатурки изготавливаются на основе гипса с минеральными или органическими добавками. Гипсокартон для отделки необходимо применять чистый, без следов масляных пятен, ровный. Сердечник гипсового листа находится между двух слоёв картона, кромки листа также облицовываются картоном.
Перевозки гипсокартона осуществляются в специальных контейнерах, хранят в сухих помещениях
-- гипсобетонные панели для внутренних, межкомнатных перегородок отапливаемых и вентилируемых помещений.
-- лепнина для декоративной отделки и реставрации интерьеров холлы, залы, жилых помещений
-- теплоизоляционная обмазка магистральных трубопроводных систем теплоцентралей, паропроводов тепловой парозапорной арматуры вентили задвижки, котельное оборудование.
-- в формовке моделирование и конструирование в металлообработке, архитектуре.
5. Эксплуатационно-технические свойства и оценка качества строительных материалов
Эксплуатационные свойства строительных материалов
Изготовленное изделие, деталь или конструкция должны удовлетворять требованиям эксплуатации, то есть обладать надежностью.
Показатели надежности и долговечности характеризуют степень выполнения изделием своих функций в течение заданного срока службы или до наступления предельного состояния.
Строительные изделия подразделяют на восстанавливаемые (можно отремонтировать или заменить) и невосстанавливаемые (закладные детали, связи стеновых панелей).
Важные технические состояния исправность, неисправность и работоспособность. Исправные объекты объекты полностью соответствуют всем требованиям научной и технической документации, работоспособные объекты соответствуют только тем, которые обеспечивают нормальное выполнение основных функций. Исправность объекта обязательно включает в себя работоспособность.
Предельное состояние дальнейшее применение объекта недопустимо вследствие физического износа или нецелесообразно из-за морального износа.
Переход изделий из исправного состояния в неисправное происходит в результате дефектов, под которым понимают отдельное несоответствие продукции установленным требованиям.
Явные дефекты (трещины, отбитости, неровности, непараллельности), для выявления которых в нормативной документации предусмотрены соответствующие правила, методы и средства обнаружения и контроля. Скрытые дефекты (инородные включения, раковины, непровары) чаще выявляются после того, как изделие попадает к потребителю. Критический дефект, когда применять продукцию невозможно или недопустимо. Значительный дефект, который существенно влияет на надежность и долговечность продукции, но не является критическим. Малозначительный дефект, когда отклонение признака или параметра существенно не влияет на использование продукции по назначению и на ее долговечность.
Разделение дефектов производится для правильного выбора вида контроля качества продукции (сплошного или выборочного).
Неустранимый дефект, ликвидация которого технически невозможна или экономически нецелесообразна. По мере усовершенствования технологии и снижения затрат на исправление брака неустранимые дефекты могут перейти в устранимые дефекты.
Повреждение событие, состоящее в нарушении исправного состояния объекта. Работоспособное состояние при этом сохраняется.
Надежность сложное свойство объекта сохранять во времени в установленных пределах значения его параметров. Надежность складывается из частных свойств: безотказность, долговечность, ремонтопригодность и сохраняемость.
Безотказность свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени (для материалов и изделий) или некоторой наработки (для оборудования):
наработка до отказа, соответствует времени от начала эксплуатации до первого отказа. Данное понятие применительно только для единичного изделия;
средняя наработка до отказа математическое ожидание (среднее значение) наработки до первого отказа;
вероятность безотказной работы означает, что в пределах заданной наработки отказа объекта не возникнет;
интенсивность отказов вероятность безотказной работы в конкретный момент времени;
отказ событие, заключающееся в нарушении работоспособного состояния.
Внезапный отказ отказ, произошедший в результате резкого скачкообразного изменения параметров (поломка, отслаивание).
Постепенный отказ отказ, произошедший вследствие медленного изменения параметров (износ, деформации материалов).
Долговечность (работоспособное состояние, работоспособность) состояние объекта, при котором его параметры находятся в установленных допусках. Долговечность заключается в способности объекта не достигать предельного состояния в течение некоторого времени или наработки при установленной системе технического обслуживания и ремонта.
Показатели долговечности:
технический ресурс, отражающий наработку единичного объекта от начала эксплуатации до перехода в критическое состояние (применение невозможно);
средний ресурс математическое ожидание технического ресурса;
cрок эксплуатации срок до перехода изделия в предельное состояние (применение недопустимо);
средний срок службы математическое ожидание срока эксплуатации.
Факторы, способные вызвать ослабление и разрушение структуры материала, называются агрессивными, а развивающиеся под их действием процессы процессами коррозии. Агрессивные факторы (физические, химические, биологические) позволяют материалу проявлять или изменять свои физические, химические и биологические свойства.
Воздухостойкость способность материалов сохранять свою прочность при циклическом увлажнении и высушивании при положительных температурах.
Водостойкость способность материалов сохранять свою прочность при нахождении в воде. Оценивается по коэффициенту размягчения αразм.
αразм = (Rсж вл/Rсж сух) ≥ 0,85, (68)
где Rсж вл и Rсж сух предел прочности материала, соответственно в водонасыщенном и сухом состоянии.
Если материал при нахождении в воде снизил прочность более, чем на 15 %, то он не водостоек и его не рекомендуется применять во влажных условиях.
Морозостойкость способность материалов сохранять свою прочность при циклическом замораживании и оттаивании в водонасыщенном состоянии. Определяются коэффициентом морозостойкости αмрз ≥ 0,95, т.е. допускается потеря прочности при этом не более 5 %. Морозостойкость оценивается в циклах.
Биостойкость способность материалов сохранять свою прочность при контакте с живыми организмами, т.е. не являться для них питательной средой.
Химстойкость способность материалов к химическим превращениям под влияние веществ, с которыми данный материал находится в соприкосновении. Различают полезные превращения (химическая активность вяжущих веществ) и вредные превращения (потеря активности вяжущих веществ при длительном нахождении в условиях влажного воздуха за счет хемосорбции). Вид превращений зависит от химического и минерального составов, а для приближенной оценки химической стойкости пользуются модулем основности Мо
Модуль основности некоторых материалов
Материал
Мо
Отношение к действию кислот и щелочей
Кварцевый песок,
SiO2 = 95…98 %
Очень мал
Стоек к кислотам, кроме плавиковой кислоты. Взаимодействует с основными оксидами
Жидкое стекло
0,25…0,50
Вместе с кварцевым песком образует кислотоупорную, но не стойкую к щелочам массу
Цементный камень,
CaO = 60…70 %
1,5
Кислоты разрушают, а щелочи не действуют
Известняк, мрамор, доломит
Очень
высок
Легко разрушаются кислотами, стойкие к щелочам
Ремонтопригодность свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния в результате предупреждения, выявления и устранения отказов. Только для восстанавливаемых изделий:
среднее время восстановления работоспособного состояния;
вероятность восстановления, т.е. вероятность того, что время восстановления работоспособности не превышает заданного.
Сохраняемость свойство объекта сохранять работоспособность (безотказность, долговечность и ремонтопригодность) при хранении и транспортировании или в перерывах между использования по назначению:
время хранения до возникновения неисправности (время сохранения гидрофобности для гидрофобного цемента);
время транспортировки до возникновения неисправности (время сохранения удобоукладываемости для бетонной смеси).
войства, выражающие способность материала к восприятию определенных технологических операций с целью изменения формы, размеров, характера поверхности, плотности, называют технологическими.
Из бетонной или растворной смеси нетрудно отформовать изделие заданной формы и требуемых размеров.
Во время изготовления изделие можно уплотнить вибрированием, трамбованием или другими технологическими приемами, оштукатурить и загладить его поверхность.
Классическим примером технологичного материала является древесина ее нетрудно тесать, строгать, сверлить, распиливать, долбить, перепиливать, раскалывать, склеивать, шлифовать, полировать, окрашивать, лакировать, соединять на гвоздях, шурупах, винтах, нагелях и врубках.
Весьма технологичны металлы. их обрабатывают в холодном, нагретом и расплавленном состоянии.
Из глины можно отформовать изделия любой формы, а после сушки и обжига получить неразмокающий в воде керамический каменный материал, весьма прочный и долговечный.
Удобоукладываемость важнейшее технологическое свойство строительного раствора легко укладываться тонким и плотным слоем на пористое основание и не расслаиваться при транспортировании, перекачивании насосами и хранении.
В свою очередь, удобоукладываемость зависит от подвижности (растекаемости) и водоудерживающей способности растворной смеси.
К технологическим свойствам готовых к употреблению лакокрасочных материалов относят степень перетертости красок (чем тоньше растерта краска, тем легче ее наносить на поверхность), время и степень высыхания материала, условная вязкость, розлив, адгезия покрытия с поверхностью, способность покрытий шлифоваться и полироваться.
Строительной воздушной известью называется продукт, получаемый из известковых и известково-магнезиальных карбонатных пород обжигом их при температуре 900-1250°С до возможно полного удаления углекислоты и состоящий преимущественно из оксида кальция и магния.
CaCO3 = CaO+CO2 MgCO3 = MgO+CO2
Содержание примесей глины, кварцевого песка и т. п. (Аl2О3, SiO2, Fe2O3) в карбонатных породах не должно превышать 6-8%. При большем количестве этих примесей в результате обжига получают гидравлическую известь. При температуре 1200 0С эти окислы взаимодействуют с оксидами кальция и магния и образуют 2СаОSiO2,СаО Аl2О3 и 2СаО Fe2O3, которые при гидратации с водой образуют нерастворимые соли.
Различают следующие виды воздушной извести:
1) Известь негашёная комовая;
2) Известь негашёная молотая;
3) Известь гидратная (пушонка);
4) Известковое тесто.
Известь негашёная комовая представляет собой продукт обжига в виде кусков различной величины. По химическому составу она почти полностью состоит из свободных оксидов кальция и магния с преимущественным содержанием СаО. В небольшом количестве в ней могут присутствовать неразложившиеся карбонат кальция, а также силикаты, алюминаты и ферриты кальция и магния, образовавшиеся во время обжига при взаимодействии глины и кварцевого песка с оксидами кальция и магния.
Известь негашёная молотая - порошковидный продукт тонкого измельчения комовой извести. По химическому составу она подобна комовой извести.
Гидратная известь - это продукт в виде высокодисперсного сухого порошка, получаемый гашением комовой или молотой негашёной извести соответствующим количеством жидкой или парообразной воды, обеспечивающим переход оксидов кальция и магния в их гидраты Влажность гидратной извести не должна быть более 5%. Гидратная известь состоит преимущественно из гидроксида кальция Са(ОН)2 и небольшого количества примесей (как правило, карбоната кальция).
СаО+Н2О=Са(ОН)2
MgО+Н2О=Mg(ОН)2
Известковое тесто - продукт, получаемый гашением комовой или молотой негашёной извести водой в количестве, обеспечивающем переход оксидов кальция и магния в их гидраты Са(ОН)2 и Mg(ОН)2 и образование пластичной тестообразной массы издержанное тесто содержит обычно 50-55% гидроксидов кальция и магния и 50-45% механически адсорбционно-cвязанной воды:
В зависимости от содержания оксида магния различают слeдующие виды воздушной извести:
1) Кальциевую: MgO не более 5%;
2) Магнезиальную: MgO от 5 до 20%;
3) Доломитовую: MgO от 20 до 40%.
Качество воздушной извести оценивается по разным показателям, основным из которых является содержание в ней свободных оксидов кальция и магния (активность извести). Чем выше их содержание, тем выше качество извести.
По ГОСТ 9179-77 в зависимости от суммарного количества оксидов кальция и магния известь делят на три сорта. В негашёной кальциевой извести 1-го сорта активных оксицов кальция и магния должно быть не менее 90%, 2-го сорта не менее 80%, 3-го сорта не менее 70%. В магнезиальной и доломитовой извести количество свободных оксидов кальция и магния должно быть в 1-м сорте не менее 85%, во 2-м сорте не менее 75% и в 3-м сорте не менее 65%.
Известь для автоклавного твердения не должна содержать более 5% MgО. Одним из важнейших свойств воздушной строительной извести является Выход теста - это количество известкового теста (в л), получаемого при гидратации 1кг комовой или молотой негашёной извести. Если обжиг производится при температуре 9000С, то известь называется мягкообжиговая. Чем выше выход теста, тем оно пластичнее и тем больше его пескоёмкость, т. е. тем больше песка оно может принять при изготовлении удобообрабатываемых пластичных растворов. Высококачественные сорта извести при правильном гашении характеризуются выходом теста в 2,5-3,5л и больше. Такие извести называются Жирными. Известь с меньшим выходом теста считают тощей.
Кроме того, в соответствии с ГОСТ 9179-77 извести различают по скорости гашения:
1) Быстрогасящаяся - со скоростью гашения не более 8 мин.;
2) Среднегасяшаяся - со скоростью гашения не более 25мин.;
3)Медленногасящаяся - со скоростью гашения более 25 мин.
За скорость гашения принимается время от момента смешивания порошка извести с водой до момента достижения максимальной температуры в начале её снижения.
К молотой негашёной извести предъявляют требования не только по суммарному содержанию свободных оксидов кальция и магния, но и по тонкости измельчения.
Основным показателем гидратной извести (пушонки), а также известкового теста является содержание в них активных оксидов кальция и магния. По этому признаку эти виды извести делят на два сорта, минимально допустимое содержание активных СаО и MgO в высушенном продукте 1-го сорта - 67%; 2-го сорта - 60%.
В молотую негашёную известна также в гидратную известь допускается вводить тонко измельчённые добавки (доменные и топливные шлаки, золы, вулканические породы, кварцевые пески, трепел и т. п.) в таком количестве, чтобы содержание CaCО+MgO и кальциевой негашёной извести 1-го сорта было не менее 65%, а 2-го сорта-55%. При введении тех же добавок в гидратную известь активность должна быть не менее 50%(1сорт) и 40% (2сорт).
Исходными материалами для производства воздушной извести являются:
1)Мелкозернистый кристаллический известняк-мрамор, из-за высоких декоративных свойств почти не применяется для производства извести;
2) Плотные известняки, преимущественно составляют до 90% СаСОз и небольшого количества MgСOз, примесей глины, чернозема, гипса и др.
3)Известковый туф - это рыхлое ноздреватое вещество, которое применяется при производстве воздушной строительной извести. Также можно получить воздушную строительную известь из известняка - ракушечника;
4)Доломитизированный известняк, состоящий из: СаСОз+СаСОз-MgCОз
5)Чистые известняки имеют объёмн. вес:2400-2800кг/м, влажность 15-25%.
Свойства воздушной извести.
Истинная плотность негашёной извести колеблется в пределах 3,1-3,3г/см и зависит, главным образом, от температуры обжига, наличия примесей, зёрен недожога и пережога Истинная плотность гидроксида кальция зависит от степени её кристаллизации и равна для Са(ОН)2, кристаллизованной в форме гексагональных пластинок, 2,23 и аморфной 2,08г/см.
Средняя плотность комовой негашёной извести в куске зависит в большей мере от температуры обжига и возрастает с 1,6 (известь, обожжённая при t=800''C) до 2,9г/см3 (длительный обжиг при t= 13000C).
Насыпная плотность для извести других типов следующая:
Для Молотой негашёной В рыхлом состоянии- 900-1100кг/м?
В уплотнённом состоянии - 100-800кг/м^;
Для гидратной извести (пушонки) в рыхло насыпном состоянии - 400-500кг/м5;
В уплотнённом состоянии - 600-700кг/м3;
Для известкового теста - 1300-1400кг/м3.
Пластичность, обуславливающая способность вяжущего придавать растворам и бетонам удобообрабатываемость важнейшее свойство извести. Пластичность извести связана с её высокой водоудерживающей способностью. Тонкодисперсные частички гидроксида кальция, адсорбционно удерживая на своей поверхности значительное количество воды, создают своеобразную маску для зёрен заполнителей в растворной или бетонной смеси, уменьшая трение между ними. Вследствие этого известковые растворы обладают высокой удобообрабатываемостью, легко и равномерно распределяются тонким слоем на поверхности кирпича или бетона, хорошо сцепляются с ними, отличаются водоудерживающей способностью даже при нанесении на кирпичные или другие пористые основания.
Чем активнее известь и полнее она гасится, тем больше выход известкового теста из 1кг комовой извести; чем выше дисперсность частичек извести, тем больше её пластичность.
Водопотребность и водоудерживающая способность строительной извести высоки и зависят от вида извести и дисперсности её частиц. Повышенной водопотребностью и водоудерживающей способностью обладает гашёная известь в виде порошка или теста, пониженной - молотая негашёная.
Сроки схватывания. Растворы из гашеной извести схватываются очень медленно. Процесс схватывания несколько ускоряется при сушке образцов. Растворы из молотой негашёной извести схватываются через 15-60 мин. После затворения. Скорость их схватывания зависит от скорости гидратации оксида кальция и условий твердения.
Объёмные изменения. При твердении растворов и бетонов, изготовленных на строительной воздушной извести, возможны объемные изменения, в основном трех видов:
1. Неравномерное изменение объёма, обусловленное замедленной гидратацией частичек пережога;
2. Усадка и набухание;
З. Температурные коэффициенты.
Неравномерное изменение объёмов весьма опасно для сохранности растворов и бетонов или изделий из них, так как пережжённые частицы СаО и MgО гидратируются с увеличением объёма в уже затвердевшем известковом камне. Возникающие при этом напряжения достигают критических значений и вызывают растрескивание изделий, деформацию кладки и т. п. ГОСТ 9179-77 ограничивает содержание в извести негасящихся зёрен, среди которых присутствуют и частицы пережога. При значительном содержании в извести негасящихся зерен её целесообразно перед употреблением тонко измельчить.
При испарении воды уплотняется известковый раствор, что даёт усадку. Чем выше содержание вяжущего и воды в растворах и бетонах, тем больше их усадка при высыхании во время твердения в воздушной среде. При длительном действии воды, растворы и бетоны из извести теряют прочность.
Температурные деформации в начальный период схватывания и твердения наиболее характерны для бетонов и растворов на молотой негашеной извести. При её взаимодействии с водой происходит интесивное тепловыделение, в результате которого в ряде случаев изделия разогреваются до 60-70 °С и более. Так как при этом условия для рассеивания теплоты на наружных поверхностях почти всегда лучше, чем внутри, то в изделии неизбежно возникают перепады температуры, а следовательно, и неравномерные температурные деформации. В результате более холодные поверхостнью слои изделия оказываются в растянутом состоянии, что сопровождается зачастую появлением трещин.
Интенсивность тепловыделения и температурных деформаций возрастает с увеличением тонкости помола извести, снижением водо-известкового отношения и наоборот, уменьшается при введении в смесь добавок, замедляющих скорость гидратации оксида кальция.
При твердении извести зимой желательно интенсивное тепловыделение. Высокая экзотермичность молотой негашёной извести предотвращает быстрое замерзание растворов и бетонов и ускоряет их высыхание.
Прочность растворов и бетонов на строительной воздушной извести прежде всего зависит от условий её твердения. Медленно твердеют при обычных температурах (10-20 °С) и через месяц приобретают небольшую прочность (0,5-1,5МПа) растворы на гашёной извести. Гидратное твердение растворов на молотой негашёной извести даёт возможность через 28 суток воздушного твердения достичь прочности при сжатии до 2-ЗМпа. При автоклавном твердении можно легко изготовлять плотные известково-песчаные бетоны с прочностью при сжатии до 30-40Мпа и более. Прочность растворов и бетонов на строительной извести возрастает также с увеличением её активности и уменьшением до некоторого предела водо-известкового отношения.
Долговечность известковых растворов и бетонов зависит от вида извести и условий её твердения.
Известковые растворы и бетоны - вполне воздухостойкие материалы. В воздушно-сухих условиях создаются наиболее благоприятные условия для их упрочнения вследствие карбонизации гидроксида кальция углекислотой воздуха Чем активнее в растворах и бетонах прошли процессы карбонизации извести, тем они водостойки и морозостойки (так же и для изделий автоклавного твердения). Изделия, отвердевшие в обычных температурных условиях теряют прочность во влажных условиях, особенно быстро при попеременном замораживании и оттаивании.
Область применения.
Из строительной воздушной извести изготавливают растворы, предназначенные для наземной кладки частей здания и штукатурок, работающих в воздушно-сухих условиях: бетоны низких марок для конструкций, эксплуатируемых в воздушно-сухих условиях, плотные ячеистые и силикатные (автоклавные) изделия, в том числе крупные блоки и панели, легкобетонные камни, теплоизоляционные и другие материалы автоклавного твердения, смешанные и гидравлические вяжущие (известково-шлаковые и известково-пуццолановые цементы), известковые красочно составы
За счет пониженной водопотребности и водоудерживающей способности из молотой негашенной извести делают растворы и бетоны с пониженым водосодержанием, более высокой плотностью, и следовательно прочностью.
В результате взаимодействия металла с окружающей средой может происходить его разрушение, т. е. коррозия. Различают коррозию химическую и электрохимическую.
• Химическая коррозия возникает при действии на металл сухих газов и растворов масел, бензина, керосина и др. Примером химической коррозии металла служит окисление его при высоких температурах; окалина, образующаяся на поверхности металла, является продуктом коррозии.
• Электрохимическая коррозия возникает при действии на металл растворов кислот и щелочей. При этом металл отдает свои ионы электролиту, а сам постепенно разрушается.
Коррозия может возникать также при контакте двух разнородных металлов или в результате химической неоднородности. Каждый металл имеет определенные электрические свойства, характеризуемые рядом напряжений. При контакте двух металлов разрушается тот, который стоит ниже в ряду напряжений. Например, железо в ряду напряжений стоит выше хрома и цинка, но ниже меди и серебра. Следовательно, при контакте железа с хромом или цинком будет разрушаться хром или цинк, а при контакте железа с медью или серебром железо. Степень разрушения при этом будет зависеть от температуры, вида и концентрации электролита. На сталь вредно действуют кислоты и щелочи, растворяя ее.
Содержащийся в воздухе углекислый или сернистый газ усиливает коррозию, так как при увлажнении на поверхности металла образуются кислоты, вступающие во взаимодействие с металлом.
18+Труба профильная, 15x15x1.5
Высокое качество, отличные цены. На складе. Краски по металлу
Компания КрасКо эмали Нержамет, Полимерон, Нержапласт, Цикроль. Hot Stream Теплоноситель
Всегда низкие цены, убедитесь сами! Гарантия: производителя. Сетка кладочная, 50x50x2
Не переплачивайте напрасно! На складе.
Коррозия может быть местная, когда разрушение металла происходит на некоторых участках, равномерная, когда металл одинаково разрушается по всей поверхности и межкристаллит-ная, когда разрушение происходит по границам зерен металла. • Защита от коррозии осуществляется несколькими способами, простейшим из которых является покрытие металла различными красками, лаками, эмалями. Образующаяся при этом пленка изолирует металл от действия внешней среды (газов, влаги). Кроме вышеуказанных существуют более совершенные и эффективные способы защиты от коррозии: легирование сплавление металла с легирующими веществами, повышающими его коррозионную стойкость; воронение получение на поверхности изделия защитного слоя, состоящего из оксидов данного металла; металлическое покрытие металла пленкой из другого металла, менее подверженного коррозии в данных условиях (цинком, оловом). Металлические покрытия производят осаЖлением на поверхности изделия металла из раствора (гальванические покрытия), обрызгиванием или погружением в ванну с другим расплавленным металлом.
Минеральными вяжущими называются такие минеральные порошкообразные материалы, которые при смешивании с водой образуют пластичное тесто, постепенно необратимо превращающееся в камень. Необратимое превращение в камень заключается в том, что такой камень не размокает в воде опять в тесто и не рассыпается в порошок при высыхании.
Минеральные вяжущие наиболее распространенный в строительстве материал, так как он используется для кладки стен, фундаментов; для возведения бетонных и железобетонных сооружений; для штукатурки стен и потолков; для устройства полов и т. д.
Минеральные вяжущие вещества делят на две группы: воздушные и гидравлические вяжущие.
Воздушные вяжущие вещества твердеют и длительно сохраняют или повышают прочность только на воздухе. К ним относятся: воздушная известь, магнезиальные вяжущие и растворимое стекло. Гипс также относят к воздушным вяжущим, хотя он твердеет только от присоединения воды и как в воздушной, так и в водной среде. Но вследствие значительной пористости прочность гипсовых изделий при высыхании возрастает, а при увлажнении опять падает до первоначальной, что объясняется влиянием поверхностного натяжения воды, как во всяком пористом теле (в том числе и в древесине).
Гидравлические вяжущие вещества твердеют только от присоединения к ним воды как в воздушной среде, так и в воде. К ним относятся: гидравлическая известь и цементы. Прочность изделий из них значительно выше, чем изделий из воздушных вяжущих, поэтому они находят в строительстве более широкое применение.
Из цветных металлов наибольшее применение в строительстве получили сплавы алюминия, применяемые в качестве конструкционного материала. Сплавы меди и титана употребляются главным образом для запорно-регулировочной арматуры, водопроводно-отопительных и электротехнических систем зданий и сооружений.
Алюминий и его сплавы. Алюминий металл серебристо-белого цвета плотностью 2 700 кг/м3, с температурой плавления 658 “С.
Цветные металлы и сплавы в строительстве
Чистый алюминий вследствие малой прочности в строительных конструкциях применяется редко. Применение находят его сплавы.
Сплавы алюминия характеризуются прочностью при растяжении Rp = 100…700 МПа и относительным удлинением б = 6…22 %. Модуль упругости алюминиевых сплавов почти в 3 раза ниже, чем у стали (0,7- 105 МПа). Марки алюминиевых сплавов состоят из букв и цифр, характеризующих состав сплава. Алюминиевые сплавы подразделяются на литейные и деформируемые (обрабатываемые давлением).
Литейные сплавы вследствие их низкой пластичности применяются в строительстве только для опорных частей конструкций.
Деформируемые сплавы применяются для производства листов, прессованных профилей, труб и прутков, а также для изготовления деталей ковкой и штамповкой. Их механические свойства повышают легированием (элементами Mg, Mn, Си, Si, Al, Zn), пластическим деформированием (нагартовкой) и закалкой с последующим старением при комнатной или повышенной температуре.
Деформируемые сплавы подразделяются на термически упрочняемые и неупрочняемые. К термически упрочняемым относятся:
1) авиаль (Al-Mg-Si) (АД31, АДЗЗ, АД35, АВ);
2) дюралюмин (Al Си Mg) (Д1, Д16);
3) высокопрочные сплавы на основе Al Zn Mg (Си) (В92, В95);
4) ковочные жаропрочные сплавы (Al Mg Si Си) (АК6, АК8).
К термически неупрочняемым относятся:
1) технический алюминий (сплав с содержанием примесей не более 1 %), обозначаемый буквой А с цифрой (например, А1);
2) алюминиево-марганцевый сплав (АМц);
3) алюминиево-магниевые сплавы (магналии) (АМг).
Вид обработки сплава обозначают буквами, добавленными через черточку к основной марке: М отожженный (мягкий); Н нагартованный; Н2 полунагартованный; Т закаленный и естественно состаренный; Т1 закаленный и искусственно состаренный (при температуре 160… 180 °С); Т4 неполностью закаленный и искусственно состаренный; А без обработки давлением; плак. плакированный; Б без плакирования.
Плакировкой называется покрытие листов из алюминиевых сплавов при прокатке тонким слоем (5 % от толщины листа с каждой стороны) чистого алюминия, предохраняющим основной металл от коррозии. Нагартовка и полунагартовка применяются для термически неупрочняемых сплавов, закалка и старение для термически упрочняемых сплавов.
Особые группы сплавов составляют спеченные алюминиевые порошки (САП) и сплавы (САС), а также пенистый алюминий, получаемый при замешивании порошка гидрида титана в жидком алюминии. Пеноалюминий имеет плотность 300… 500 кг/м3, поэтому его можно применять как тепло- и звукоизоляционный материал.
Медь и ее сплавы. Медь в чистом виде имеет небольшую прочность и высокую пластичность. Температура ее плавления составляет 1 083 °С. Она плохо обрабатывается резанием, но хорошо деформируется в холодном и горячем состояниях. В строительстве медь применяется для водопроводных труб и кровельной черепицы.
Сплавы меди (латуни и бронзы) в строительстве применяются для декоративных целей (поручни, накладки, арматура для дверей и окон) и в сантехнике.
Латунь сплав меди с цинком. Марки латуней обозначают буквой Л и цифрами, означающими содержание меди в процентах. Прочность латуней при растяжении Rp = 250…600 МПа. Для улучшения свойств латуни подвергают холодному и горячему деформированию, рекристаллизационному отжигу при температуре 500…700°С и легированию добавками Sn, Si, Mn, Al, Fe, Pb, повышающими прочность, коррозионную стойкость и антифрикционные свойства. Специальные латуни маркируют следующим образом: ЛА77-2 (латунь, содержащая 77 % Си, 2 % А1 и 21 % Zn); ЛАЖ60-1-1 (латунь, содержащая 60% Си, 1 % Al, 1 % Fe и 38 % Zn). Они представляют собой однородные твердые растворы и поэтому очень пластичны.
Оловянистая бронза представляет собой твердый раствор 4 5%-го олова в меди. При большем содержании олова пластичность и литейные свойства бронзы резко снижаются. Перед обработкой давлением бронзу подвергают рекристаллизационному отжигу при температуре 600…650°С. Для улучшения литейных свойств и повышения прочности в бронзу вводят до 1 % фосфора. Бронзы, обрабатываемые давлением, имеют прочность Rp 350…400 МПа, пластичность 5 = 40…70% (после отжига) и 8 = 4… 12% (после холодной деформации).
Алюминиевые и кремнистые бронзы (сплавы меди с алюминием и кремнием) имеют механические свойства, аналогичные оловянистым бронзам, но более стойки в агрессивных средах.
Беримиевые бронзы (сплавы меди с бериллием) содержат 2,0… 2,5 % Be и обладают наилучшими свойствами из всех бронз. После закалки при 760…780°С и старения при 300…350°С механические свойства бериллиевой бронзы составляют: Rp = 1 300… 1 350 МПа, 8 = 1,5%.
Свинцовые бронзы (сплавы меди со свинцом) содержат до 30 % свинца. Их компоненты не образуют твердых растворов. Они имеют невысокую прочность (Яр = 60 МПа) и пластичность (8 = 4 %).
Маркируют все бронзы аналогично латуням. Например: БрОЦСНЗ-7-5-1 оловянистая бронза, содержащая 3% Sn, 7% Zn, 5% Pb, 1 % Ni и 84% Си; БрАЖН 10-4-4 алюминиевая бронза, содержащая 10% А1, 4% Fe, 4% Ni и 82% Си.
Титан и его сплавы. Титан металл серебристо-белого цвета, плавящийся при температуре 1 665 °С. Существуют две модификации титана: при температуре ниже 882 °С а-титан с гексагональной решеткой плотностью 4 505 кг/м3; при температуре 900 °С и выше р-титан с объемоцентрированной кубической решеткой плотностью 4 320 кг/м3. Технический титан марок ВТ1-00, ВТ1-0 и ВТ1-1 (Rp = 300…350 МПа, 8 = 20…30%) хорошо обрабатывается давлением и сваривается. Для улучшения свойств титан легируют добавками Al, Mo, V, Mn, Cr, Sn, Fe, Zn, Si.
Различают а-сплавы и (а + Р)-сплавы титана. Первые представляют собой твердые растворы с алюминием и легирующими элементами (Sn, Zn и Mo, Fe, Cr) в а-титане. Они не упрочняются термообработкой и подвергаются только рекристаллизационному отжигу при температуре 780… 850 °С. Вторые состоят из а и р твердых растворов и содержат кроме алюминия Cr, Mo, Fe. Они упрочняются закалкой и старением. Наиболее распространенные а-сплавы (ВТ5, ВТ5-1, ОТ4) имеют следующие показатели: Rp = = 700…950 МПа; 8 = 12…25%; (а + р)-сплавы (ВТ6, ВТ8, ВТ14) имеют следующие показатели: Rp = 950… 1 400 МПа; 8 = 8… 15 %. Титановые сплавы коррозионностойки, хорошо деформируются в горячем и холодном состояниях, поддаются сварке.
Изделия из цветных металлов.
Цветные металлы дороже стали и чугуна, поэтому применяются в случаях, когда необходимы их специфические свойства: стойкость к коррозии, высокая теплопроводность, электропроводность, декоративные свойства, характерная для алюминия и его сплавов малая масса.
В качестве кровельных материалов применяются медь, алюминий и цинк-титановый сплав (/)-цинк). Для устройства медной кровли по фальцевой технологии используют медную ленту, которая выпускается в рулонах. Алюминий применяется как для изготовления металлочерепицы, так и для устройства фальцевых кровель.
В Европе достаточно распространены кровли из D-цинка цинка, легированного титаном и медью.
Алюминиевые сплавы применяют для изготовления гнутых и прессованных профилей, штамповок, гофрированных листов различной формы. Из таких элементов выполняются различные сбор- но-разборочные и листовые конструкции, несущие конструкции навесных фасадов, трехслойные панели (типа «сандвич») наружных стен и покрытий, подвесные потолки, сайдинг, декоративные накладки, дверные и оконные переплеты.
Сплавы меди используют для производства водопроводных труб, фитингов, дверной и оконной фурнитуры, декоративных деталей интерьера и фасадов.
Сырьевые материалы влияют на свойства и качество стекла, поэтому следует кратко остановиться на них.
Кремнезем Si02 в природе встречается в виде кварца, скопления которого образуют кварцевые пески; высококачественные стекольные белые пески содержат незначительное количество примесей, в частности окиси железа, которая придает стеклу зеленоватую окраску. Небольшое содержание окислов натрия, калия, кальция и алюминия не ухудшает качества стекла. Чистый кварц плавится при температуре около 1700° С, образуется кварцевоа стекло, которое характеризуется высокой температурой размягчения, большой стойкостью к воздействию химикатов и резкой смене температур. Оно пригодно для изготовления колб ртутно-кварцевых ламп, так как хорошо пропускает ультрафиолетовые лучи. Для обычного стекла не требуется такая высокая температура размягчения, поэтому в стекольную шихту вводят материалы (сода, поташ и др.), которые ускоряют процесс стеклообразования и понижают температуру варки стекла.
Сода Na2C03 основной материал для введения в стекло окиси натрия; она должна содержать не менее 95% углекислого натрия. Температура плавления соды 850° С. При нагреве смеси чистого песка и соды образуется прозрачная стеклообразная масса, которая растворяется в воде и называется «растворимое стекло»: Si02 + 2 NaOH -> Na2Si03 + H20.
Используя вместо соды поташ К2СО3, получают калиевое стекло, которое применяют для изготовления хрустальных изделий, а также оптических и цветных стекол.
Известняк СаС03. Благодаря окиси кальция СаО стекло, полученное из смеси песка и соды, становится нерастворимым в воде. Для введения в стекломассу СаО используют известняк или доломит CaC03-MgC03.
Глинозем А1203 повышает механическую прочность, а также термическую и химическую стойкость стекла.
Борный ангидрид В203. При замене части двуокиси кремния борным ангидридом повышается скорость стекловарения, улучшается осветление и уменьшается склонность ее к кристаллизации.
Окись свинца РЬО, введенная в стекло, повышает его показатель преломления; ее применяют, главным образом, при изготовлении оптического стекла и хрусталя.
Окись цинка ZnO понижает температурный коэффициент линейного расширения стекла, вследствие чего повышается его термическая стойкость.
Вспомогательные сырьевые материалы для окраски стекла здесь не рассматриваются.
Поро́ки древеси́ны это особенности и недостатки древесины, как всего ствола дерева, так и отдельных его участков, ухудшающие её свойства и ограничивающие возможности её использования.
Естественные пороки (в отличие от дефектов обработки) образуются в процессе роста дерева, из-за неблагоприятных климатических условий и места произрастания, случайных механических повреждений, естественного старения, деятельности микроорганизмов, насекомых-вредителей и птиц. Влияние порока на качество древесины определяется его видом, размерами, расположением и назначением пиломатериала. Поэтому пороки, нежелательные в одних видах лесоматериалов, могут не приниматься во внимание в других и быть желательными в третьих. Только пороки, значительно снижающие прочность древесины, как, например, гнили, считаются безусловными. Многие пороки древесины используются в декоративных целях, в изготовлении мебели и других изделий.
Дефе́ктами обрабо́тки называют пороки древесины механического происхождения, возникающие при обработке древесины человеком: заготовке, транспортировке, пилении и т. д. Это самая многочисленная группа пороков.
Самой многочисленной группой естественных пороков древесины, кроме сучков, представляющих собой видоизменения одного порока, являются пороки строения древесины. Всего в ГОСТ 2140-81 занесена 181 разновидность пороков и дефектов древесины.
Для выявления и измерения пороков древесины были разработаны методы гамма-дефектоскопии, а также фотоэлектрические, люминисцентные, магнитные, рентгеноскопические, акустические методы. Несмотря на существующие способы автоматической дефектоскопии древесины, основным методом определения качества древесины остаётся визуальный, а самым надёжным инструментом Долговечность строительных конструкций из древесины зависит от условий хранения и сушки, условий эксплуатации древесных материалов.
Сушка древесины. Сушка уменьшает возможность гниения древесины и повышает прочность. Различают естественную и искусственную сушку.
Естественная сушка производится на открытом воздухе, под навесами (для защиты от дождя и солнечных лучей) или в закрытых помещениях, с тем чтобы материал принял воздушно-сухое состояние (15... 20%). Такая сушка длится недели и даже месяцы, она не исключает поражения древесины грибами. Ее достоинством является отсутствие расхода тепловой энергии (топлива).
Искусственная сушка осуществляется в короткие сроки, например в течение нескольких дней или часов. Она полностью исключает возможность заражения грибами и обеспечивает высокое качество древесины. Имеется несколько разновидностей искусственной сушки.
Камерная сушка производится в сушилках периодического и непрерывного действия в течение нескольких суток. Теплоносителем служат нагретый воздух, пар или дымовые газы с температурой 70 ... 80°С. Также производится сушка древесины в электрическом поле высокой частоты. Древесина быстро и равномерно прогревается между электродами и высушивается в 10... 20 раз быстрее, чем при камерной сушке. Но этот вид сушки очень дорог и требует большого расхода электроэнергии.
Более дешевым является способ сушки в жидких средах, в частности в ваннах с петролатумом (отходом при депарафинизации нефтяных масел) при температуре 130... 140 С. За несколько часов влага в древесине вскипает, превращается в пар с давлением выше атмосферного и удаляется; при этом материал не растрескивается и не коробится. Сушка в петролатуме не дороже камерной сушки, продолжительность ее 8 ... 12 ч.
Защита древесины от загнивания и поражения насекомыми. Существует ряд конструктивных мер для предотвращения загнивания древесины изоляция ее от грунта, каменной кладки, бетона, устройство проветривания деревянных конструкций, защита от атмосферных осадков лакокрасочными покрытиями или гидроизоляционными материалами. Но эти меры не всегда могут полностью предохранить древесину от увлажнения и возникает необходимость в антисептировании деревянных материалов и изделий.
Антисептики это химические вещества, которые убивают грибы, вызывающие гнили, или создают среду, в которой их жизнедеятельность прекращается. Антисептики должны обладать токсичностью только по отношению к грибам и быть безвредными для людей и животных, не ухудшать качества древесины, по возможности не вызывать коррозию металлических креплений.
Антисептики подразделяют на водорастворимые, применяемые только в сухих условиях, главным образом внутри помещений, и нерастворимые в воде, маслянистые, применяемые для антисептирования шпал, столбов, свай; также применяют иногда препараты, растворимые в зеленом масле, мазуте, керосине и сольвент-нафте.
К водорастворимым антисептикам относятся: фтористый натрий NaF порошок без запаха, белого цвета, применяемый в растворах 3... 4%-ной концентрации. При соприкосновении с известковыми, цементными и гипсовыми материалами фтористый натрий теряет свои токсические свойства. Кремнефтористый натрий белый или серый порошок, применяется совместно с фтористым натрием или кальцинированной содой, а также в силикатных пастах. Кремнефтсристый аммоний белый порошок более высокой токсичности, чем фтористый натрий; повышает огнестойкость древесины, но вызывает слабую коррозию металла. Препарат ББК-3смесь борной кислоты и буры, хорошо растворяется в воде, для людей практически безвреден. Препараты ХХЦ (смесь хлористого цинка и хромпика) и МХХЦ (смесь хлористого цинка, хромпика и медного купороса) трудно вымываются водой, но окрашивают древесину в желто-зеленый цвет и вызывают коррозию металлов. Препарат ГР-48 антисептик на основе пентахлорфенола, применяют в растворе 1 ... 1,5%-ной концентрации для поверхностной защиты пиломатериалов, например от синевы и плесени.
К маслянистым антисептикам относятся: антраценовое, креозотовое и сланцевое масла. Это темно-коричневые жидкости с резким запахом и сильными токсическими свойствами. Они не растворяются в воде, не вызывают коррозию металла, но скрашивают древесину в бурый цвет. Применяются для пропитки шпал, деталей мостов, свай, деревянных подводных конструкций и др. Нельзя применять в жилых помещениях.
К органикорастворимым антисептикам относятся препараты типа ПЛ (растворы пентахлорфенола) и НМЛ (растворы нафтената меди в легких нефтепродуктах); они окрашивают древесину в зеленый цвет, затрудняют ее склеивание, являются высокотоксичными антисептиками.
Применяют также антисептические пасты, приготовляемые из фтористого натрия, связующего вещества (битума, глины, жидкого стекла и др.) и наполнителя (например, торфяного порошка); пастами защищают элементы древесины с повышенной влажностью (выше 40%), а также концы балок в каменных стенах, столбы и др. Элементы открытых сооружений, обработанных пастой, защищают гидроизоляционным покрытием.
Пропитку антисептиками производят поверхностной обработкой, в горяче-холодных ваннах и под давлением в автоклавах.
Поверхностную обработку делают кистями или краскопультом в 2... 3 раза, иногда погружают изделия в ванну с антисептиком.
Более глубокая пропитка получается при последовательном погружении изделия сначала в горячую (t = 90 ... 95С), а затем в холодную (t = 20... 30С) ванну с антисептиком: в горячем антисептике из пор древесины уходит излишек воздуха, а при погружении в холодную ванну в порах образуется вакуум и антисептик пропитывает древесину на большую глубину. Наиболее глубокая пропитка антисептиком получается в специальных автоклавах под давлением: сначала в автоклаве создается вакуум, из пор древесины удаляется воздух, а затем автоклав наполняют горячим антисептиком с давлением до 0,6...1,5 МПа. Получается почти сплошная пропитка древесины.
Для борьбы с дереворазрушающими насекомыми используют главным образом химические средства, ядовитые вещества, убивающие насекомых и их личинки. Древесину обрабатывают опрыскиванием, обмазкой, пропиткой, опылением порошками или окуриванием газами. Можно использовать маслянистые и органикорастворимые антисептики, а также специальные инсектициды хлорофос (диметилтрихлорксиэтилфосфонат), порошок и пасту ДДТ, дуст, а также некоторые газы (хлорпикрин).
Защита древесины от возгорания. Древесина относится к легковозгораемым материалам. Ее возгорание происходит при температуре 260... 290С, а при нагревании выше 350°С она может воспламенится из-за выделяющихся газов, поэтому деревянные конструкции удаляют от источников нагревания; деревянные элементы покрывают штукатуркой или облицовывают несгораемыми материалами (например, асбестоцементными); окрашивают огнезащитными красками или пропитывают специальными веществами антипиренами.
Огнезащитное действие антипиренов основано на том, что при нагревании древесины одни из них образуют оплавленную пленку на поверхности древесины, а другие выделяют негорючие газы, оттесняющие воздух и выделяемые деревом при нагревании горючие газы от поверхности древесины. В качестве антипиренов применяют буру, хлористый аммоний, фосфорнокислый натрий и аммоний, сернокислый аммоний. Обработка антипиренами производится теми же способами, что и антисептирование.
Эстетические характеристики материалов
К рассматриваемым характеристикам относятся форма, цвет, фактура, рисунок (природный текстура)
Форма материалов, лицевая поверхность которых воспринимается визуально в процессе эксплуатации, непосредственно влияет на своеобразие фасада или интерьера здания. В современной архитектуре форма облицовочных материалов, как правило, лаконична квадрат, прямоугольник.
Цвет материалов - зрительное ощущение, возникающее в результате воздействия на сетчатку глаза человека электромагнитных колебаний, отражённых от лицевой поверхности в результате действия света.
Все цвета материалов можно разделить на две группы ахроматические ( белые, чёрные и серые всех оттенков) и хроматические ( красные, оранжевые, жёлтые, зелёные голубые, синие, фиолетовые со всеми промежуточными оттенками).
Объективная оценка цвета базируется на установленном положении о том, что любой цвет можно получить при смешении трёх определённых монохроматических колебаний. При количественной оценке цвета его выражают в выбранной системе измерения обычно через красный, синий и зелёный цвета, взятые в соответствующих пропорциях.
Основные характеристики цвета цветовая тональность, светлота и насыщенность .
Цветовая тональность показывает, к какому участку видимого спектра относится цвет материала.
Светлота характеризуется относительной яркостью поверхности материала.
Насыщенность цвета - степень отличия хроматического цвета от ахроматического той же светлоты.
При определении насыщенности цвета рационально применять визуальные методы определения цвета, т.е. его качественную оценку. При этом учитывается комплекс факторов: характер источника света (его спектральный состав), цвет и яркость фона, размеры образцов и расстояние между ними. Применяя визуальные методы оценки цвета, используют атласы цвета, картотеку цветовых эталонов, образцы материалов-эталонов.
Фактура видимое строение поверхности материала, характеризуемое степенью рельефа и блеска. По степени рельефа выделяют гладкие, шероховатые (высота рельефа до 0,5 см) и рельефные (высота рельефа более 0,5 см) фактуры.
По степени блеска различают блестящие и матовые фактуры.
Фактуру определяют инструментальным или визуальным методами. При инструментальном методе используют измерительные инструменты: металлические линейки, рулетки, угломеры, толщинометры.
Визуальная или качественная оценка фактуры связана с расстоянием, с которого она рассматривается. При выборе фактуры учитывается комплекс факторов, в том числе цвет материала. Фактура более отчётливо воспринимается на светлой поверхности.
При рельефной бугристой фактуре объём помещения воспринимается меньшим, чем при фактуре гладкой, горизонтальные рельефы способствует зрительному сохранению высоты и удлинению помещения.
Рисунок различные по форме, размерам, расположению, сочетанию, цвету линии, полосы, пятна и другие элементы на лицевой поверхности материала. Если упомянутые элементы создала природа, рисунок называюттекстурой (например, текстура древесины, природного камня).
Важно представлять, что все эстетические характеристики воспринимаются вместе и, например, определённые виды фактуры могут заметно менять цветовые параметры насыщенность, светлоту.
Дерево как строительный материал, прочный, легкий по массе и в обработке, гигиеничный и относительно дешевый, всегда находило и находит широкое применение. Из него издавна строили жилища, общественные и производственные здания. В России до XVIII в. строительство в городах и сельской местности велось главным образом из дерева, и не случайно постройки из него были так усовершенствованы в художественно-эстетическом и конструктивном отношениях, что породили своеобразный стиль архитектуры, известный под названием русского деревянного зодчества. После петровских строительных реформ в городах стали возводить каменные дома, а в сельских местностях дерево остается основным строительным материалом и до настоящего времени.
История оставила нам многочисленные примеры использования дерева в архитектуре прошлого, и мы сегодня восхищаемся великолепными памятниками деревянного зодчества: церквами Кижского погоста, крепостными башнями Якутского острога, многочисленными крестьянскими избами.
После Великой Октябрьской социалистической революции социальные преобразования в корне изменили сельский быт, но материалом для строительства в сельских районах и частично в городах по-прежнему оставалось дерево. В первые годы Советской власти оно использовалось в строительстве жилых домов и небольших общественных зданий: деревянными были жилой поселок «Сокол» в Москве, павильоны ВСХВ-23 (архит. И. В. Жолтовский). Позднее дерево получило еще большее распространение при возведении жилых, общественных и промышленных зданий например, жилой поселок «Железнодорожный», временные трибуны Московского ипподрома (архит. И. В. Жолтовский), жилые дома (архит. Г. П. Гольц), склады калийной соли в Солигорске и многие другие объекты.
В последующие десятилетия значительное улучшение свойств древесины благодаря антисептированию, пропитке антипиренами, прессованию сделало ее негниющим и трудносгораемым материалом с повышенной прочностью и расширило возможности широкого применения древесины в архитектуре. Появление особо прочного клея для соединения отдельных элементов позволило создать такие деревянные конструкции, которые успешно конкурируют с несущими конструкциями из высокопрочных материалов.
В связи с этим можно смело утверждать, что проблема комплексного использования дерева одна из актуальных проблем современной архитектурно-строительной практики. Строительство из древесных материалов приобретает вес более широкий размах, и дерево мором е успехом заменяет такие материалы, как железобетон и кирпич.
Современная строительная древесина, бесспорно, обладает рядом преимуществ, которые помогают созданию новых архнтсктурных форм и определяют индустриальность и массовость строительства.
Трудно назвать отрасль народного хозяйства, которая обходилась бы без дерева. Например, широкое применение оно получило в целлюлозно-бумажной промышленности, производстве высококачественных музыкальных инструментов, мебели и т. п. Основной же объем древесины используется в строительстве и архитектуре, которые остаются главными ее потребителями.
Каталоги деревянных строительных изделий включают сотни наименований, а с дальнейшим улучшением строительных свойств древесины их перечень пополнится новыми видами изделий. Сегодня лесоматериалы это, главным образом, продукция автоматизированных предприятий, применяемая в сборном индустриальном строительстве. И если в недалеком прошлом лесоматериалы использовались в строительстве только в естественном виде (бревна, брусья, доски, рейки и пр.), то теперь на постройку поступает продукция в виде готовых к применению укрупненных конструктивных элементов, деталей облицовок и декора, монтируемых на конвейере. Эту продукцию следовало бы назвать изделиями из нового вида строительного материала «обновленной» модифицированной древесины, которая при техническом совершенствовании средств и технологии обработки открывает широкие возможности ее эффективного применения в строительстве. В «Основных направлениях экономического и социального развития СССР на 1981 1-985 годы и на период до 1990 года» сказано: «Повысить уровень индустриализации строительного производства и степень заводской готовности конструкций и деталей».
Современная строительная древесина появилась в результате научно-исследовательских и практических работ технологов, строителей и архитекторов, осуществивших синтез достижений древесиноведения и химии, которые избавили древесину от ее естественных пороков (гниения, горючести и др.), сохранив и умножив ее положительные качества. Это изменило традиционную форму использования дерева в архитектуре, принесло ей всеобщее признание как перспективного строительного материала, оказывающего бесспорное влияние на развитие современной архитектуры.
В нашей стране создается мощная материально-техническая база по переработке древесины, которая будет располагать крупными механизированными и автоматизированными предприятиями по выпуску широкой номенклатуры изделий из древесины. Благодаря использованию эффективных средств обработки древесины на наших заводах начато производство клееных деревянных конструкций, сборных жилых домов, отдельных конструктивных элементов и различных изделий из древесины.
Но время реорганизации нашей строительной индустрии в начале 50-х годов деревянное домостроение осталось в стороне от общего развития индустриализации возведения зданий. Существовало мнение, что в отличие от сборных железобетонных и металлических конструкций деревянные конструкции не отвечают требованиям комплексно-механизированного поточного производства.
Развитие науки и техники доказало обратное. В частности, опыт изготовления и использования в широком масштабе деревянных кле-еных конструкций всевозможных форм подтвердил экономическую мрфективность их применения в индустриальном строительстве.
К основным технологическим преобразованиям, необходимым тля достижения высокой эффективности заводского производства 1еревянных конструкций, следует отнести применение вместо традиционных соединений элементов деревянных конструкций на гвоздях п болтах новых способов соединения с помощью высокопрочных синтетических клеев.
Основой для такой перестройки технологии послужили достижения химии полимерных материалов. Применение стойкого синтетического клея решило сложную задачу не только обеспечения жестких монолитных соединений, но и использования малоразмерных пиломатериалов в клееных конструкциях. Клееные соединения позволили получать монолитные элементы конструкций значительной длины и любых конфигураций. Благодаря внедрению новой технологии на основе комплексной механизации и автоматизации поточного производства созданы все условия для повышения эффективности труда.
Поэтому, определяя перспективы деревянного строительства, можно с уверенностью сказать, что переход к массовому производству клееных деревянных конструкций в нашей стране, обладающей богатыми лесными ресурсами, крайне необходим, а в основу их изготовления должны быть положены современные индустриальные методы.
Область применения клееных деревянных конструкций в основном общественные и промышленные здания. Эффективны конструкции покрытий не только средних, но и значительных по своим размерам пролетов (от 20 до 100 м), которые при высокой несущей способности и незначительной массе, а также при хорошей влагостойкости долговечны в эксплуатации. В большепролетных купольных, арочных и сводчатых конструкциях зданий клееная древесина успешно заменяет такие традиционные материалы, как железобетон и металл. В определенных условиях применение клееных деревянных конструкций целесообразно и при возведении других типов зданий и сооружений, а также малых архитектурных форм.
Улучшение архитектуры деревянных сооружений может быть достигнуто только при выявлении эстетических особенностей древесины. Для современной деревянной . архитектуры определились свои, присущие только лому материалу, формы. Клееные деревянные конструкции и прессованная древесина позволяют создать богатыепо своей пластике не только геометрически правильные, но и сложные криволинейные формы оболочек, сводов, куполов и покрытий типа гиперболических параболоидов. Поверхности дерена могут быть лаконичны и одновременно выразительны, нейтральны или, напротив, с ярко выраженной структурой.
Над проблемами эстетики деревянных строений задумывались зодчие с древнейших времен, из древесины построено немало прекрасных произведений архитектуры. Однако в теоретических трудах исследователи деревянной архитектуры не всегда уделяли достаточно внимания ЕО.:росам художественной выразительности этих сооружений, их усилия были направлены в основном на изучение свойств древесины, аналитический разбор конструкций или описания отдельных построек.
Сейчас накопилось достаточно материала о применении дерева в современной, архитектуре в постройках небольшого масштаба, в крупных большепролетных сооружениях и зданиях сложных конфигураций. Эстетические качества таких сооружений характеризуются ясной композицией целого, масштабностью, пропорциональностью, строгостью декора, активным использованием ' фактуры и цвета элементов деревянных конструкций и изделий из древесины.
Освоение и внедрение новых материалов, изделий и конструкций из древесины становится наглядным примером реализации достижений науки и техники в создании разнообразных архитектурных форм.
Древесина это единственный материал в природе, запасы которого постоянно и довольно быстро восполняются. Если разумно обращаться с лесными богатствами, то не на десятилетия, а на века человечество будет обеспечено этим превосходным строительным материалом.
Лес один из основных типов растительного мира нашей планеты, представленный многочисленными формами растений, среди которых главное место принадлежит деревьям. Велико экологическое значение леса. Являясь важнейшей составной частью природного комплекса, он выполняет стабилизирующие функции в регулировании естественных процессов, происходящих в биосфере планеты и в составе ее атмосферы, оказывает благотворное влияние на климат и гидрологический режим. Но не менее важную роль играет лес как сырьевая база.
Искусственные каменные материалы и изделия можно классифицировать на керамические и материалы и изделия на основе минеральных вяжущих веществ.
Керамическими называют материалы и изделия, получаемые спеканием при высоких температурах природных глин и их смесей с минеральными добавками. Строительная, декоративно-художественная и бытовая керамика это материалы и изделия, получаемые из глиняных масс путем формования, сушки и обжига. К строительным керамическим изделиям относятся различные виды кирпичей и керамических камней, облицовочные и изразцовые плитки, канализационные трубы и пр. Декоративно-художественная керамика сопутствует жизни человека десятки тысячелетий. С керамической посудой мы имеем дело ежедневно.
По способу производства и особенностям сырьевых материалов керамику подразделяют на терракоту, майолику, фаянс, фарфор и каменную массу.
Терракота (от итальянского terra земля, cotta обожженная) неглазурованная однотонная естественно окрашенная керамика с характерным цветным (от светло-кремового до красно-коричневого и почти черного) пористым черепком. Изделия из терракоты имеют утилитарное и художественное применение в виде скульптур, изразцов, облицовочных плиток, ваз, архитектурных деталей и пр.
Майолика керамика из цветной обожженной глины с крупнопористым черепком, покрытая глазурью, самая древняя после терракоты. Область применения та же, что и терракоты.
Фаянс твердый мелкопористый керамический материал, обычно белого цвета, покрытый тонким слоем глазури. Фаянс применяют в производстве посуды, облицовочных плиток, санитарно-технических изделий.
Фарфор самый ценный керамический материал. Он производится из смеси глины, каолина, кварца и полевого шпата путем обжига при высокой температуре. Фарфор водонепроницаем и не нуждается в защитном водостойком покрытии. Применяется для
производства посуды, декоративно-художественных и санитарно-технических изделий и в других областях производственно-технической деятельности человека.
Каменная, или строительная, керамика это близкий к фарфору плотный материал, отличающийся от фарфора цветом (преимущественно серый или коричневый) и непрозрачностью. Строительная керамика охватывает номенклатуру изделий, применяемых для возведения стен зданий и промышленных устройств (стеновые камни и кирпичи), облицовки стен и устройства полов (плитки), покрытия крыш (черепицы), водоотводных устройств (дренажные трубы) и пр.
Для кладки стен жилых зданий применяются полнотелые и пустотелые кирпичи и пустотелые (только) камни. Пустотелые кирпичи улучшают тепло- и звукоизоляционные свойства стен за счет воздуха, остающегося в пустотах после укладки кирпича в стену. Количество, расположение и форма пустот весьма разнообразны. Кирпичи имеют размеры 250x120x65 мм или 250x120x88 мм (утолщенный). Размеры строительных камней более разнообразны и отличаются от размеров кирпичей в большую сторону, в основном по высоте и ширине.
Для укладки с внешней стороны стен выпускаются облицовочные кирпичи, две грани которых одна торцовая и одна боковая покрыты глазурью. Диапазон эксплуатационных и эстетических свойств керамики достаточно широк и основывается, главным образом, на степени пористости получаемого керамического материала, которая влияет на его плотность, прочность и в л аго проницаем ость. Крупнопористая грубая керамика (строительная, крупнозернистая терракота), например, обладает способностью насыщаться водой в количестве от 5 до 15% от своего объема. Тонкая пористая керамика, покрытая глазурью (фаянс, майолика), и тонкая плотная (фарфор) практически непроницаемы для воды, неэлектропроводны, устойчивы к разрушающему действию кислот, щелочей, воды и перепадам температур. Самым существенным недостатком
керамических изделий является хрупкость.
Метод выдува (литья).
В данном случае в качестве сырья используется полиэтилен и полипропилен. Полипропилен обладает специфическими свойствами (усадка, малый интервал температуры пластификации и т.д.), поэтому при использовании его для формовки машина должна иметь специфические настройки и дополнительные устройства: систему двойного нагрева, более точное регулирование температуры, устройство предварительного нагрева, изменения в дизайне пресс-форм и пуасонов. Полипропилен требует также в 2-3 раза более длительного нагрева, чтобы достичь температуры пластификации, и в 2-3 раза дольше происходит его усадка в пресс-форме. Методом выдува, в основном, производятся пластиковые бутылки.
Метод термоформовки.
Этот метод используется при производстве стаканчиков для молочных продуктов, одноразовых стаканчиков под напитки, флаконов.
Формовка изделия осуществляется в три этапа на трех рабочих позициях.
На первом рабочем этапе технологического процесса точно определенная доза приготовленной в шнековом агрегате пластмассы выдавливается в полузакрытую форму. Затем производится прессование расплавленного материала за счет полного закрытия пресс-формы.
На втором этапе пресс-форма открывается, и несущий спутник вместе с заготовкой переносится в формующую станцию, состоящую из матрицы и пуансона. После закрытия формующей станции заготовка копирует форму матрицы. Для стабилизации полученной формы матрица охлаждается водой. Во время этого этапа на первой позиции карусели подготавливается следующая заготовка.
На третьем этапе производится открытие двух половин несущего элемента, при этом готовое изделие освобождается и выбрасывается через отверстие в боковой крышке автомата.
С помощью одной пресс-формы возможно изготовление одного вида продукции. Большинство представленного на рынке оборудования позволяет быстро переналадить производство путем замены пресс-формы, которая изготавливается дополнительно.
Инжекционные узлы литьевой машины классифицируются:
В машинах без предварительной пластикации стадия пластикации совместима по времени со стадией инжекции. В машинах с предварительной пластикацией полимер пластицируется, после чего впрыскивается в форму при перемещении поршня (шнека), т.е. пластикация и впрыскивание разделены.
В поршневых конструкциях полимер пластицируется за счет тепла от внешних нагревателей при продвижении от бункера к соплу.
В шнековых конструкциях полимер дополнительно пластицируется за счет выделяющейся внутренней теплоты трения при вращении шнека.
Одноцилиндровые конструкции поршневого типа применяются главным образом для литья небольших по массе изделий (не более 8-10 грамм), а также для литья композиций на основе полимеров с хрупкими анизотропными наполнителями.
Двухцилиндровые конструкции поршневого типа позволяют получить двухцветные или другие специальные изделия.
Одноцилиндровые конструкции одношнекового типа применяются для толстостенных изделий (обычно на многопозиционных машинах).
Двухцилиндровые конструкции одношнекового типа - для двухцветных толстостенных изделий, а также при необходимости увеличения производительности машины.
Литьевые машины поршневого типа характеризуются: большими потерями давления при впрыске полимера, трудностью регулирования технологических параметров формования и сложностью подбора технологического режима переработки.
Наиболее компактными, технологичными и обеспечивающими возможность регулирования основных параметров литья в широких интервалах являются одноцилиндровые конструкции шнекового типа.
Организация технологического процесса изготовления пластиковой тары строится на максимальной загруженности оборудования. Производственный процесс осуществляется круглосуточно, что позволяет рационально использовать производственное оборудование.
В зависимости от рабочего объема пресс-формы и ее геометрических размеров, от размеров и технических характеристик выпускаемых изделий для каждого конкретного случая и выбирается соответствующая литьевая машина и способ получения изделия. Очень часто для изготовления одного законченного изделия приходится использовать как разные полимеры, так и различные прес-формы и, соответственно, различные виды оборудования. Именно в силу выше перечисленных причин в нашем распоряжении и находится большой парк оборудования:
Полиэтилен
В зависимости от условий полимеризации различают три вида полиэтилена:
В промышленности полиэтилен разных марок выпускается в виде блоков, листов и гранул. Перерабатываются они в изделия главным образом методом литья под давлением, экструзии (выдавливанием размягченного полимера через сопло шприц-машины) и выдувания.
Несмотря на то, что различные виды полиэтилена получают из одного и того же мономера, они представляют собой совершенно различные материалы, отличаясь друг от друга не меньше, чем от других полимеров. Это объясняется различными геометрическими формами молекул и разной способностью к кристаллизации.
Основные виды природных каменных материалов и изделий
Природные каменные материалы подразделяют на сырьевые и готовые материалы и изделия.
К сырьевым материалам относят щебень, гравий и песок, применяемые в качестве заполнителей для бетонов и растворов; известняк, мел, гипс, доломит, магнезит, глина, мергели и другие горные породы - для изготовления строительной извести, гипсовых вяжущих, магнезиальных вяжущих, портландцементов.
Готовые каменные материалы и изделия подразделяют на материалы и изделия для дорожного строительства, стен и фундаментов, облицовки зданий и сооружений. К каменным материалам для дорожного строительства относят булыжный, колотый, брусчатый и бортовые камни, щебень, гравий, песок. Их получают из изверженных и прочных осадочных горных пород.
Булыжный камень представляет собой зерна горной породы с овальными поверхностями размером до 300 мм.
Колотый камень должен иметь форму, близкую к многогранной призме или усеченной пирамиде с площадью лицевой поверхности не менее 100 см2 для камней высотой до 160 мм, не менее 200 см2 - при высоте до 200 мм и не менее 400 см2 - при высоте до 300 мм. Верхняя и нижняя плоскости камня должны быть параллельными.
Булыжный и колотый камни применяют для устройства оснований и покрытий автомобильных дорог, крепления откосов насыпей, каналов.
Камень брусчатый для дорожных покрытий имеет форму прямоугольного параллелепипеда. По размерам подразделяют на высокий (БВ), длиной 250, шириной 125 и высотой 160 мм, средний (БС) с размерами соответственно 250, 125, 130 мм и низкий (БН) с размерами 250,100 и 100 мм. Верхняя и нижняя плоскости камня параллельны, боковые грани для БВ и БС сужены на 10 мм, для БН - на 5 мм. Изготавливают его из гранита, базальта, диабаза и других горных пород с пределом прочности при сжатии 200-400 МПа. Применяют для мощения площадей, улиц.
Камни бортовые из горных пород применяют для отделения проезжей части дорог от разделительных полос тротуаров, пешеходных дорожек и тротуаров от газонов и т. п. По способу изготовления подразделяют на пиленые и колотые. По форме бывают прямоугольные и криволинейные. Имеют высоту от 200 до 600, ширину - от 80 до 200 и длину - от 700 до 2000 мм.
Бутовый камень - куски камня неправильной формы размером не более 50 см по наибольшему измерению. Бутовый камень может быть рваный (неправильной формы), и постелистый.
Щебень представляет собой рыхлый материал, полученный дроблением скальных горных пород с прочностью 80-120 МПа. При размере зерен от 5 до 40 мм его применяют для черного щебня и асфальтобетона при строительстве автомобильных дорог, щебень с зернами от 5 до 60 мм служит для устройства балластного слоя железнодорожного пути.
Гравий - рыхлый материал, образовавшийся при естественном разрушении горных пород. Имеет скатанную форму. Для изготовления черного гравия применяют гравий с размером зерен от 5 до 40 мм, а для асфальтобетона его дробят обычно на щебень.
Песок - рыхлый материал с размерами зерен от 0,16 до 5 мм, образовавшийся в результате естественного разрушения или полученный искусственным дроблением горных пород. Применяют его для подстилающих слоев дорожных одежд, приготовления асфальтовых и цементных бетонов и растворов.
Портландцемент - гидравлическое вяжущее вещество, твердеющее в воде и на воздухе, получаемое путем совместного тонкого измельчения клинкера и необходимого количества гипса. Клинкер получается результате обжига до спекания сырьевой смеси надлежащего состава, обеспечивающего преобладание в клинкере силикатов кальция. Гипс при помоле клинкера должен добавляться в таком количестве, чтобы содержание SО в портландцементе было не менее 1,5% и не более 3,5%. Каждый процент гипса (СаSО • 2Н О) вносит в цемент 0.47% SO .
Основными сырьевыми материалами для производства портландцемента являются широко распространенные в природе осадочные известняковые горные породы с высоким содержанием углекислого кальция (СаСО ) и глинистые породы с высоким содержанием кремнезёма (SiO ), глинозема (Al O )и окиси железа (Fe O ).
К известняковым породам, применяемым в цементной промышленности России, относятся известняки, мел, известковый туф, известняк-ракушечник и др. Все эти материалы представляют собой первый, так называемый известковый компонент сырьевой смеси.
К глинистым породам относится глина, глинистые сланцы, лёсс и др.; они составляют второй компонент сырьевой смеси глинистый.
Решение вопроса о пригодности сырьевых материалов для изготовления портландцемента и о выборе способа производства принимается на основе всестороннего изучения химического и минералогического составов сырья и исследования его физико-механических свойств.
Наличие в известковом компоненте большого количества включений кварца или кремниевых прослоек осложняет и удорожает подготовку сырьевой смеси, а так же неблагоприятно отражается на процессе обжига и качества цемента. Известняки с крупными кремниевыми включениями требуют предварительного обогащения.
Сырьевые материалы с высоким содержанием гипса или пирита для производства портландцемента не применяются, так как серного ангидрида в сырьевой смеси должно быть не больше 2%, с тем чтобы его содержание в клинкере не превышало 3%. Превышение этого предела может привести к получению цемента с неравномерным изменением объема в процессе его твердения.
До последнего времени известняки с высоким содержанием окиси магния для производства портландцемента не применялись. Согласно ГОСТ 10178-62 содержание MgO в клинкере не должно превышать 5%. Чтобы обеспечить это условие, суммарное содержание MgO в смеси должно быть не более 3-3.5%. Такое ограничение вызвано тем, что окись магния, находящаяся в клинкере в виде минерала периклаза, в процессе твердения цемента гидратируется медленно, с увеличением в объёме, что с течением времени при большом содержании MgO в цементе может привести к разрушению раствора и бетона.
В 1958г. Был введен в эксплуатацию Ангарский цементный завод, который в качестве известкового компонента использовал в первые годы его работы магнезиальный мраморовидный кристаллический известняк, в качестве глинистого компонента золу газогенераторной станции химического завода и глинистые отходы, скопившиеся в террикониках при добыче черемховского угля. Из этого сырья получался клинкер с содержанием MgO, весьма жесткие автоклавные испытания цемента на равномерность изменения объема дали положительные результаты. Это первый завод в Советском Союзе, который выпускал в течение ряда лет портландцемент с повышенным содержанием MgO.
До последнего времени считалось, что содержание в клинкере фосфорного ангидрида PO не должно превышать одного процента, так как предполагалось, что он отрицательно влияет на прочностные характеристики цемента. Однако исследованиями русских ученых Н. А. Торопова, А.И. Борисенко, английского ученого Р.У. Нерса и других установлено, что при правильном подборе минералогического состава клинкера содержание P O в нем может достигать без ухудшения свойств цемента 2-2.5%, а при особенно благоприятных условиях - и более. Минералогический состав клинкера должен быть рассчитан таким образом, чтобы весь P O вошел в состав твердого раствора с C S. Необходимо добиться отсутствия в клинкере Р О в виде растворимых в воде фосфатов, сильно замедляющих процесс твердения цемента и снижающих его механическую прочность.
Источником щелочей в клинкере являются обычно глинистые материалы, содержащие остатки полевого шпата, слюды, иллиты, и др. Применение глинистых материалов с высоким содержанием щелочей не желательно, так как использование для изготовление бетона цемента с повышенном количеством щелочей (Na O и K O) в сочетании с заполнителями, имеющими аморфные видоизменения кремнезёма, может привести через известный период времени к разрушению бетонных сооружений.
К наиболее реакционноспособным горным породам и минералам относятся опал, халцедон, андезит, риолит, тридимит, а так же кристобалит, кварцевое стекло и некоторые филлиты. При использовании подобных заполнителей суммарное содержание щелочей в цементе ( в пересчете на Na O) не должно превышать 0.6%.
Повышенное содержание щелочей в сырье нарушает нормальное ведение технологического процесса, в особенности при сухом способе производства, о чем подробно говорится ниже.
Кроме перечисленных выше природных сырьевых материалов, для изготовления портландцемента могут быть использованы отходы других отраслей промышленности: черной и цветной металлургии, газосланцевой промышленности, производства синтетического каучука и др. Так как эти отходы уже подвергались термической обработке, то применение их значительно улучшает технико-экономические показатели работы завода по сравнению с обычными сырьевыми материалами.
Крупными научными исследованиями, проведенными институтами БАМИ, Гипроцемент, Гипрохим и др., установлены возможность и условия использования следующих отходов:
нефелинового или белитового шлама отхода, получаемого при производстве глинозема из нефелитовых концентратов;
кислого гранулированного доменного шлака, отхода черной металлургии;
сланцевого кокса отхода газосланцевых заводов, перерабатывающих горючие сланцы на газ;
газогенераторной золы отхода газогенераторной станции, перерабатывающей горючие сланцы на жидкие продукты перегонки;
газогенераторной золы отхода газогенераторной станции, перерабатывающих твердое топливо на ряд химических продуктов.
Сырьевая смесь надлежащего химического состава может быть получена из двух компонентов известкового и глинистого лишь при особо благоприятном их составе и высокой однородности.
Последнее время в связи с повышением требований к качеству цемента и с увеличением удельного веса высокомарочных цементов заводы всё чаще работают с применением трехкомпанентной и даже четырехкомпанентной смеси. В этом случае сырьевую смесь для получения клинкера заданного минералогического состава вводят в так называемые корректирующие добавки.
Для повышения содержания в сырьевой смеси окислов железа в неё вводят различные железосодержащие добавки: пиритные огарки (отходы сернокислого производства), колошниковую пыль (отход металлургического производства), железную руду и т. п. При получении клинкеров из отходов алюминиевой промышленности для повышения содержания окиси алюминия вводят бокситы.
Активность минеральных добавок чаще всего оценивается по их способности поглощать известь из водного известкового раствора и набухать при этом. В качестве активных добавок могут быть использованы основные и кислые доменные шлаки коксовой плавки литейного, передельных. В последние годы установлена возможность применения для этой цели так же доменных шлаков специальных марганцевых чугунов.
Пригодность доменного шлака для использования в качестве активной добавки определяется его химическим и минералогическим составом, структурой и гидравлическими свойствами. Обычно используют гранулированные доменные шлаки, то есть шлаки, полученные путем искусственного быстрого охлаждения шлакового расплава, выходящего из доменной печи. Быстрое охлаждение придает шлаку гидравлические свойства. В состав доменных шлаков обычно входят окислы KО, SiO , Al O , MgO и Fe O сернистые соединения CaS, MnS и FeS.
Керамическими называют искусственные каменные материалы и изделия, получаемые из глиняного сырья в результате обжига при высоких температурах. Керамические материалы относятся к самым древним строительным изделиям. История их применения ориентировочно начинается с 300 года до н.э. в Египте, когда в массовом строительстве начали использовать кирпич-сырец размером 14х38х11 см и крупные блоки размером 85х52х32 см, которые до сих пор хранят в Каирском музее. По объему такой блок крупнее современного кирпича в 74 раза. Затем технология получения кирпича была усовершенствована в Месопотамии, где к началу третьего тысячелетия до н.э. дома, царские дворцы, храмы богов строили из кирпича солнечной сушки и обожженного кирпича, который экономно применяли только для наружной облицовки стен. К этому же времени относится и первое упоминание об использовании в качестве отделочного материала эмалированных керамических плиток. До ХХ века кирпич был основным строительным стеновым материалом в таких развитых странах, как Россия, Франция, Германия, Нидерланды.
В Белоруссии кирпич в виде плинфы (плитняковый кирпич) использовали при строительстве Софийского собора Спасо-Евфросиньевского монастыря (г. Полоцк, Х11 в.), в Борисоглебской церкви (Х11 в.), где фасонный кирпич и майоликовые керамические плиты применяли в качестве архитектурных деталей. В настоящее время керамический кирпич продолжает оставаться одним из основных стеновых материалов в индивидуальном, коттеджном строительстве. Обилие глиняного сырья обусловило производство и других обжиговых материалов различного назначения: облицовочных кровельных, огнеупорных, теплоизоляционных, кислотостойких, санитарно-технических.
СВОЙСТВА ПОРТЛАНДЦЕМЕНТА
К основным свойствам портландцемента относятся:
а) средняя плотность;
б) истинная плотность;
в) тонкость помола;
г) водопотребность;
д) сроки схватывания;
е) тепловыделение;
ж) равномерность изменения объема;
з) прочность.
Средняя плотность портландцемента в рыхлом состоянии равна 1000-1100 кг/м3, в уплотненном - 1400-1700 кг/м3.
Истинная плотность составляет 3050-3150 кг/м3.
Тонкость помола определяется остатком на сите № 008 (размер ячейки в свету - 0,08 мм) не более 15% от общей навески или удельной поверхностью - площадью поверхности зерен (в квадратных сантиметрах) в 3 г цемента. Удельная поверхность портландцемента должна быть 2500-3000 см2/г. С увеличением тонкости помола цемента до 4000-4500 см2/г возрастает скорость твердения и повышается прочность цементного камня.
Водопотребность определяется количеством воды (в %), которое необходимо для получения цементного теста нормальной густоты, т.е. заданной стандартной пластичности. Нормальной густотой цементного теста считается его консистенция, при которой пестик стандартного прибора Вика не доходит до пластинки на 5-7 мм, что составляет 22-28% воды от массы цемента. Повышение водопотребности плохо сказывается на свойствах цемента:
уменьшаются прочность и морозостойкость, увеличиваются усадочные деформации и т.д. Снижают водопотребность цемента добавки-пластификаторы.
Сроки схватывания цементного теста нормальной густоты определяют на приборе Вика по глубине проникания иглы. Начало схватывания должно наступить не ранее чем через 45 мин, заканчивается оно не позднее чем через 10 ч от начала затворения. Эти показатели определяют при температуре (20 ± 2) °С. Схватывание портламендцемента обычно наступает через 1-2 ч, а заканчивается через 4-6 ч. На сроки схватывания портландцемента влияют его минералогический состав, тонкость помола и др.
Тепловыделение при твердении цемента происходит длительное время, поэтому сильный разогрев бетона и раствора не происходит. Если же объем укладываемого в конструкцию бетона велик (например, при возведении плотин или массивных фундаментов), то разогрев достигает 80 °С, что опасно: бетон растрескивается, разрушается.
Равномерность изменения объема цемента при твердении - признак его высокого качества. При твердении на воздухе цемент уменьшается в объеме - дает усадку. Линейная воздушная усадка цемента достигает 1 мм/м. При твердении в воде, особенно в начале твердения, цемент увеличивается в объеме - набухает. Линейное набухание его достигает 0,5 мм/м. В конце твердения цемент даже в воде уменьшается в объеме.
Прочность портландцемента характеризуют маркой, которую устанавливают по пределу прочности при сжатии и изгибе образцов-балочек размерами 40x40x160 мм, испытанных в возрасте 28 суток твердения. Балочки изготавливают из цементно-песчаного раствора состава 1:3 (цемент : нормальный песок) стандартной консистенции при водоцементном отношении В/Ц = 0,4. На воздухе (над водой) образцы твердеют в течение суток, а в воде комнатной температуры (без форм) - 27 суток. Портландцементы разделяют на марки 300, 400, 500, 550 и 600.
Изделия и конструкции, изготовленные с использованием портландцемента, широко используют в надземных, подземных и подводных условиях. Его применяют для изготовления монолитного и сборного бетона и железобетона в жилищном, промышленном, гидротехническом, дорожном строительстве и т. д. На нем изготовляют тяжелые и легкие бетоны, ячеистые бетоны, строительные растворы высоких марок, теплоизоляционные материалы и т. д. Портландцемент не следует применять для конструкций, подвергающихся воздействию морской, минерализованной и даже пресной воды проточной или под сильным напором. В этих случаях рекомендуется использовать цементы специальных видов (сульфатостойкие, цементы с добавками).
Портландцемент, являющийся высококачественным и дефицитным материалом, необходимо расходовать экономно, заменяя его, где это технически возможно, более дешевыми вяжущими веществами - известью, гипсовыми вяжущими, смешанными цементами.
Свойства
Эксплуатационно-технические свойства металлических материалов определяются их оригинальным строением.
Средняя плотность металлических материалов сравнительно высока ( например, стальных около 7860 кг/м³).
Пористость ,гигроскопичность, водопоглощение у металлических материалов отсутствуют.
Предел прочности стальных материалов при сжатии, изгибе и растяжении 300 400 МПа, но может достигать 1000 МПа и более. Материалы их алюминиевых сплавов при меньшей средней плотности (около 2800 кг/м³) не уступают стальным по характерным прочностным показателям (предел прочности до 670 МПа).
Наряду с высокой прочностью, к положительным свойствам металлических материалов ( кроме чугуна) относится пластичность способность выдерживать большие остаточные деформации без разрушения и при сохранении прочности.
Основной недостаток широко применяемых стальных и других металлических материалов способность к коррозии.
Для защиты материалов от коррозии применяют защитные покрытия, электрохимическую защиту и замедлители коррозии ( ингибиторы), изменяющие состав коррозийной среды.
В строительной практике для защиты конструкций чаще используют лакокрасочные и др. покрытия поверхности.
Некоторые металлы, например алюминий, сами предохраняют себя от коррозии в некоторых средах в результате образовавшихся на их поверхности защитных плёнок при взаимодействии со средой.
Эстетические характеристики металлических материалов оригинальны и регулируются в широких пределах, причём в ряде случаев цветовая палитра обогащается в процессе эксплуатации. Так, медь и её сплавы окисляясь кислородом воздуха покрываются защитной плёнкой патиной, которая с течении времени приобретает множество цветовых оттенков. Сам процесс коррозии металла в начальной стадии может использоваться для получения своеобразного цветового оттенка стали. После окисления и приобретения красно-коричневого цвета металл покрывают прозрачным защитным лаком.
Цвет стали можно изменять после механической (шлифование или полирование) и термической (при температуре 200 300 ºС) обработки поверхности. На ней образуется оранжевая или синеватая плёнка, которая одновременно защищает металл от коррозии. Известны способы изготовления стали золотистого и розового цвета, электролитические процессы окрашивания нержавеющей стали в оранжевый, красный, голубой, синий, зелёный цвета.
Часто металлические материалы не нуждаются в отделке поверхности с эстетической точки зрения. Чёрный цвет чугуна, тёмно-серый стали, золотисты и зелёновато-коричневый у бронзы и меди, серебристо-белый у алюминия, как правило, отвечают эстетическим требованиям. Но лакокрасочные и металлические (анодирование анодное оксидирование и др) покрытия не только меняют цвет лицевой поверхности, но и защищают металл от коррозии.
Фактура лицевой поверхности металлов может быть рельефной, шероховатой, гладкой, матовой или блестящей.
Области применения строительных материалов из дерева в современной архитектуре.
Деревянные материалы применяются в современной архитектуре какконструкционные, но чаще какконструкционно-отделочные иотделочные.
Пиломатериалы для производства сборных элементов малоэтажных зданий в больших объемах применяют в Финляндии, Швеции, Норвегии, США, Канаде, а также в странах с ограниченными запасами сырья Германии, Англии, Франции и даже Японии. Известны примеры изготовления и применения сборных элементов жилых зданий из материалов на основе отходов деревообработки.
Существуют несущие клееные конструкции (балки, арки, рамы, фермы, пространственные оболочки, купола и т. п.), так же из древесины производятограждающие конструкции(стеновые панели, покрытия).
Широкое распространение получили ДСП и ДВП. Из древесины изготавливается огромное количество напольных покрытий, декоративных деталей интерьера и т.д. Древесина так же используется при реставрациях и реконструкциях памятников архитектуры.
Представления о свойствах природных каменных материалов связаны, как правило, с высокой прочностью и долговечностью. Однако природный камень материал, весьма разнообразный по структуре, часто сложенный из различных минералов, нередко подвергающийся в процессе образования и последующего залегания в земной коре воздействию значительных напряжений.
- Эксплуатационно-технические свойства
Эксплуатационно-технические свойства природных каменных материалов определяются структурой горной породы. При её оценке учитывают непосредственную связь с составом и свойствами породообразующих минералов, отличающихся разнообразными характеристиками, такими как, плотность и твердость.
- Пористость.
Действие воды, замораживания оттаивания, а также механических нагрузок на природные каменные материалы в большей мере зависят от их пористости, которые меняются в весьма широких пределах.
- Водопоглощение.
Водопоглощение природных камней средней твёрдости 0,1…40%, в том числе мрамора 0,1…0,7%; известняка 0,5…40%; песчаника 0,2…2,5%.
- Морозостойкость.
У каменных материалов сравнительно высокая морозостойкость, например, гранит, диорит, сиенит, габбро выдерживают 300 и более циклов лабораторных испытаний.
- Предел прочности.
Такой показатель, как предел прочности при сжатии каменных материалов зависит от их твердости. Гранит относится к группе твердых (90 -250 МПа), мрамор средней твёрдости (60-200 МПа).
- Истираемость.
Очень важный показатель, прежде всего для материалов, используемых для покрытий полов в различных общественных сооружениях. Весьма мала истираемость у твердых материалов (гранит) не более 0,5 г/см2.
- Долговечность.
Долговечность, как правило, связана с их твёрдостью. К весьма долговечным природным камням относятся мелкозернистые граниты. Первые признаки их разрушения при наружной облицовке зданий в городах средней полосы России могут наблюдаться только через 500 лет. Долговечны крупнозернистый гранит, сиенит, габбро, лабрадорит. Первые признаки разрушения у этих природных камней нередко обнаруживаются лишь через 200 лет. Сравнительно недолговечны мрамор, пористый известняк, гипсовый камень первый признаки их разрушения в упомянутых условиях эксплуатации нередко наблюдаются уже через 25 лет и менее.
Долговечность природных каменных материалов в условиях внутренней вертикальной облицовки практически неограниченна. Для сохранения их декоративно-художественных характеристик требуется лишь систематический уход.
Богатство расцветок природных камней исключительно велико. В большей мере это объясняется тем, что 85% минералов окрашены природой. Так, 40% минералов зелёные, 20% - желтые , 10% - красные и коричневые, 7% - черные, 5% - синие, 3% - фиолетовые и пурпурные.
По характеру обработки фактуры природного камня их делят на две основные группы: абразивные и ударные, также выделяют вскрытую фактуру, получаемую после обработки поверхности природного камня высокой температурой «термообработанную».
Основные требования к качеству материалов, изделий и готовых конструкций массового применения устанавливаются Государственными стандартами СССР (ГОСТ), отраслевыми стандартами (ОСТ), техническими условиями (ТУ).
В ГОСТах и ТУ содержатся краткое описание материала и способы его изготовления, указаны марки материалов и требования к их качеству, форма и размеры и допускаемые отклонения от них, а также правила транспортирования, приемки, упаковки и хранения, обеспечивающие сохранность материала, и методы испытаний. ГОСТы и ТУ документы, устанавливающие, что данный материал или изделие одобрены для производства и применения при определенном его качестве.
Основные положения строительного проектирования и производства строительных работ регламентируются Строительными нормами и правилами (СНиП). СНиПы разработаны с учетом развития строительной индустрии, внедрения передовой техники в строительство, максимального использования в строительстве изделий и конструкций заводского изготовления.
В части II СНиП «Нормы проектирования» содержатся сведения о том, в каких конструкциях и как следует применять строительные материалы с указанием необходимых требований к свойствам этих материалов.
В стандартах и СНиПах требования к свойствам материалов выражены в виде марок на эти материалы. Марка строительных материалов условный показатель, устанавливаемый по главнейшим эксплуатационным характеристикам или комплексу главнейших свойств материала. Так, существуют марки по прочности, плотности, морозостойкости, огнеупорности.
Один и тот же материал может иметь несколько марок по различным свойствам. Так, кирпич маркируют по прочности и морозостойкости, но основной из них считается марка по прочности главнейшему эксплуатационному показателю. По прочности для всех природных и искусственных каменных материалов СНиПом установлены следующие марки: 4; 7; 10; 15; 25; 35; 50; 75; 100; 125; 150; 200; 300 и т. д. до 3000. Цифра показывает минимально допустимый предел прочности материала, выраженный в кгс/см2 (например, кирпич марки 100 должен иметь прочность 10…12,5 МПа).
Теплоизоляционные материалы делят на марки по плотности. Это объясняется тем, что теплопроводность находится в прямой зависимости от плотности, но контролировать последнюю значительно проще. Например, минеральную вату выпускают марок 75; 100; 125; 150 (в этом случае размерность марки кг/м3).
Эксплуатационно-технические свойства древесины.
К положительным эксплуатационно-техническим свойствам уникальной природной структуры древесины относятся сравнительно низкая средняя плотность при прочности, обеспечивающей функциональную надежность разнообразных конструкций жилых, общественных, промышленных зданий. Коэффициент конструктивного качества (отношение предела прочности к средней плотности) у материалов из массивной древесины 0,8, у стали 0,5, у керамического кирпича 0,05.
К отрицательным характеристикам древесины относят возможность образования пороков, сравнительно высокая гидроскопичность и водопоглощение, низкая биостойкость, в том числе возможность загнивания. Так при увеличении влажности прочность древесного материала снижается, заметно повышается теплопроводность. При изменении влажности также происходит усадка или набухание древесины. При этом они различны в тангенциальном и радиальном направлениях, высыхание происходит не равномерно. В результате внутренние напряжения в материале могут вызвать коробление или растрескивание.
Принимая во внимание различное сопротивление вдоль и поперек волокон материала, древесина хорошо работает на сжатие, изгиб, растяжение вдоль волокон, и хуже поперек волокон. Плохо работает на скалывание.
25 Строение древесины. Основные части ствола дерева, их характеристика и использование в строительных материалах.
Строение древесины. Для изготовления музыкальных инструментов применяют древесину хвойных и лиственных пород, которые различаются между собой по целому ряду признаков.
Следует различать понятие дерева, т. е. растущего дерева, и древесины-- материала, получаемого из срубленного и очищенного от ветвей и коры дерева.
В каждом растущем дереве можно выделить три части: крону, ствол и корни.
В листьях кроны растущего дерева происходят процессы фотосинтеза. В результате этих процессов зелеными растениями и фотосинтезирующими микроорганизмами лучистая энергия Солнца превращается в энергию химических связей органических веществ, обеспечивающих питание и рост растения.
Корни дерева, во-первых, удерживают его в вертикальном положении, а во-вторых, всасывают из почвы воду с растворенными в ней минеральными питательными веществами.
Ствол дерева является прежде всего магистралью, по которой впитанные корнями минеральные вещества движутся к листьям, а выработанные в листьях пластические вещества (строительный материал, из которого дерево строит само себя) движутся вниз по стволу, наращивая его. Ствол дерева также является хранилищем запасенных питательных веществ. Ствол дает основное количество древесины, что составляет 50-90 % объема частей растущего дерева, и только древесина ствола пригодна для изготовления деталей музыкальных инструментов.
Древесина имеет слоисто-волокнистое строение. Свойства древесины в значительной степени зависят от направления (анизотропия свойств). Принято рассматривать три главных разреза ствола: поперечный (или торцовый) плоскость которого перпендикулярна оси ствола, радиальный, плоскость которого проходит через ось ствола, и тангенциальный 3, плоскость которого проходит параллельно оси ствола на некотором расстоянии от нее.
Поперечный срез имеет следующие основные части: ядро, сердцевину, заболонь и кору.
Ядро 2 отличает более темная окраска. Оно расположено посередине ствола. В центре ядра в виде круглого, четырех-пятиугольного или (как у дуба) звездчатого пятнышка диаметром 2-5 мм находится сердцевина 1. На радиальном разрезе хвойных пород сердцевина почти прямая, а у лиственных пород имеет извилистую форму.
Кора 4 на поперечном разрезе имеет форму кольца более темной, чем древесина, окраски. У взрослых деревьев в коре различают два слоя. Наружный слой, называемый коркой, является оболочкой, предохраняющей от испарения влаги, резких колебаний температуры и механических повреждений. Внутренний слой коры, называемый лубяным, является проводником органических питательных веществ вдоль ствола.
Заболонь 3 имеет наиболее светлую окраску. Породы древесины, у которых ядро ярко выражено, называют ядровыми. Если внутренняя часть ствола отличается от наружной только меньшим содержанием влаги, такие породы называют спело-древесными. Если же различий между внутренней и наружной частями ни по цвету, ни по влажности нет, то такие породы называют заболонными.
На главных разрезах дерева видны линии и полосы, составляющие рисунок древесины, или, как его часто называют, текстуру. Каждая порода древесины кроме характерного цвета имеет и свою текстуру.
Рисунок древесины возникает от ежегодного нарастания на поверхности ствола, ветвей и корней нового годичного слоя. Особенно хорошо эти слои заметны у хвойных пород. Ширина годичных слоев, определяемая на торцовом разрезе, зависит от породы, возраста, условий произрастания и положения в стволе. Так, например, у древесины ели, произрастающей в суровых горных условиях, ширина годичных слоев может колебаться в пределах 1 мм, а у ели, произрастающей в благоприятных условиях, может доходить до 3-4 мм и более.
По радиусу от сердцевины ширина годовых колец изменяется неравномерно. Наиболее широкие годовые кольца лежат в центральной части радиуса ствола, а ближе к сердцевине и дальше к коре ширина годовых колец уменьшается. У некоторых пород древесины наблюдают волнистость годичных колец, что придает поперечному срезу интересную текстуру (граб, тисс, можжевельник).
Более светло окрашенная и более мягкая часть годичного кольца называется ранней древесиной и образуется в первой половине периода нарастания слоя. Во второй половине образуется поздняя древесина, которая в годичном кольце окрашена темнее и твердость ее выше, чем у ранней древесины.
Все породы имеют в древесине своих стволов сучки. Для хвойных пород характерно расположение нескольких ветвей на одном уровне по высоте ствола. Эту часть ствола называют мутовкой. Лиственные породы характеризуются одиночным расположением ветвей. Наличие в древесине сучков делает ее мало, а подчас и совсем непригодной в производстве музыкальных инструментов. Так как годичные слои ствола при встрече с сучком изменяют свое направление, то для изготовления деки такую часть ствола ели не используют.
Абсолютно сухая древесина состоит из органических веществ, которые содержат в среднем 49,5 % углерода, 44,2 % кислорода (с азотом) и 6,3 % водорода. Минеральные соединения, получающиеся при сгорании древесины (зола), составляют 0,2-1,7 % общей ее массы.
Производство минеральных вяжущих сводится к двум главным технологическим операциям: помол и обжиг.
Обычно стремятся хорошо измельчать сырьё до обжига или продукт после обжига. Тонкость помола минеральных вяжущих влияет на свойства искусственных каменных материалов, приготовленных на их основе. С увеличением тонкости помола увеличивается связывающая, клеящая способность пластичной массы, которая образуется после перемешивания вяжущего с водой. В результате выше плотность и прочность искусственного камня.
Важнейшая операция при производстве минеральных вяжущих обжиг сырьевых минералов. Именно после обжига получается продукт, способный при соединении с водой образовывать пластичную массу, твердеющую с течением времени.
Полимеры, получаемые методами полимеризации или поликонденсации, обычно при нагревании служат жидкой фазой конгломерата. Они при отверждении образуют непрерывную сетку матрицу вяжущего вещества и сцепляют компоненты в единый конгломерат пластмассу.
Важнейшими термопластичными полимерами для производства пластмасс являются прежде всего полиолефины (полиэтилен), имеющие наибольшие потенциальные возможности наличия сырьевой базы и широкой области применения; поливинилхлорид, позволяющий получить пластмассы и изделия удовлетворительных свойств и малой стоимости; полистирол и др. Из термореактивных полимеров наибольшее значение для производства строительных материалов и изделий имеют фенолоформальдегидные, мочевиноформальдегидные, кремнийорганические и эпоксидные полимеры.
Наполнители. В качестве наполнителей используют органические или минеральные материалы. Они уменьшают расход дорогостоящего связующего (полимера) и оказывают существенное влияние на свойства пластмасс, придавая им надлежащую прочность, тепло- и огнестойкость, электро - и теплопроводность и т. д. Особое значение имеют порошкообразные (мел, тальк известняк), волокнистые (древесное волокно, стекловолокно) и листовые наполнители (бумага, хлопчатобумажные ткани, стеклоткань).
Отвердители химические вещества, которые вводят в композицию для отверждения (в процессе производства) термопластических полимеров. К числу наиболее распространенных отвердителей относится уротропин.
Пластификаторы. В качестве пластификаторов применяют малолетучие вещества, которые молекулярно распределяются в полимере, снижают их хрупкость и позволяют композиции хорошо формоваться в процессе производства изделий. К числу пластификаторов можно отнести камфору, олеиновую кислоту, диоктилфталат, стеарат аммония.
Стабилизаторы вещества сложного химического состава, препятствующие старению пластмасс, т. е. изменению физико-химических свойств во времени. Они сохраняют стабильность структуры в процессе переработки пластмасс в. изделие, а в период эксплуатации предохраняют изделие от тепловых воздействий, атмосферных факторов, кислорода воздуха, солнечной радиации.
Смазывающие вещества вводят в композицию для предупреждения прилипания изделий к стенкам формы в процессе формования. В качестве смазывающих веществ применяют стеарин, олеиновую кислоту, соли жирных кислот и др. К тому же стеарин, например, улучшает таблетируемость пресс-порошков и обеспечивает хорошее отделение изделий от формы.
Окрашивающие вещества вводят в композицию для придания изделию необходимого колера. В производстве пластмасс и изделий из них чаще всего находят применение следующие неорганические пигменты: охра, мумия, сурик, умбра, ультрамарин, оксид хрома и др. Из органических красителей используют нигразин, хризоидин. Светлые тона пластмассам придают белые пигменты: литопон, двуоксид титана, оксид цинка.
Поробразователи используют для получения газонаполненных пластмасс. Они представляют собой жидкие, твердые или газообразные вещества как минерального, так и органического происхождения.
Красочные составы и строительные растворы
Для отделки фасадов зданий и внутренних кирпичных, бетонных, оштукатуренных поверхностей целесообразно использовать шпатлевочные, грунтовочные и красочные составы на основе гипса, извести, жидкого стекла, белого и цветного портландцемента. Работа с ними безопасна, не требует применения таких дорогостоящих и вредных для организма человека материалов, как полимерные смолы и органические растворители. Примеры используемых составов приведены в табл. 6.1.
Таблица 6.1
Виды и назначение малярных составов на основе минеральных вяжущих
Виды связующего |
Назначение малярного состава |
Применение |
Гипс |
Шпатлевки |
Выравнивание окрашиваемой поверхности |
Известь |
Грунтовки. Окрасочные составы: известковые известково-гипсовые |
Окраска потолков, стен помещений временного характера, а также складов, подвалов. Окраска по наружной штукатурке |
Декоративный портландцемент |
Шпатлевки. Окрасочные составы: цементные известково-цементно-песчаные |
Наружная и внутренняя окраска по штукатурке, кирпичу, бетону. Окраска фасадов по штукатурке |
Жидкое стекло (калиевое, натриевое) |
Грунтовки, шпатлевки Окрасочные декоративные силикатные составы Кислотостойкие составы |
Окраска фасадов и лестничных клеток жилых домов по кирпичу, бетону, штукатурке. Антикоррозионная защита строительных конструкций и технологического оборудования |
При увеличении доли и размера частиц наполнителя шпатлевки приобретают новые свойства, назначение и название растворные смеси. Составы растворных смесей, в которые входят такие основные компоненты, как минеральное вяжущее, мелкий заполнитель размером менее 5 мм и вода, рассчитывают в зависимости от назначения по специальным формулам с использованием графиков и таблиц. В результате твердения пластичная однородная смесь приобретает прочность искусственного камня, который называют строительным раствором. Для регулирования свойств в составы вводят минеральные (золы, шлак, опоку, туфы, глину) и химические (ускорители и замедлители твердения, пластификаторы и др.) добавки. При подборе состава растворов необходимо учитывать ихтехнологические особенности, к которым относятся следующие:
- растворные смеси наносят на готовую поверхность относительно тонким слоем (1 2 см);
- равномерное распределение растворов по поверхности достигается не за счет приложения механических воздействий, а в результате их высокой пластичности;
- растворные смеси наносят на пористую, водоотсасывающую поверхность материалов;
- так как скорость выработки растворных смесей небольшая (штукатурные, кладочные работы) и привозят их, как правило, при большом объеме работ на строительные площадки с завода в готовом виде (товарный раствор), следовательно, они должны обладать медленными сроками схватывания и загустевания;
- в связи с тем, что строительные растворы в процессе эксплуатации не испытывают высоких нагрузок, прочность их небольшая;
- для достижения заданной марки раствора рационально использовать низкомарочные вяжущие (известь, гипс, наполненный цемент);
- твердение растворных смесей происходит только в естественных условиях.
Строительными вяжущими веществами называют порошкообразные материалы, которые при затворении водой образуют пластичное тесто, способное затвердевать и превращаться в прочный камень.
В зависимости от состава, основных свойств и областей применения минеральные вяжущие делятся на 4 группы:
Они после затворения водой способны сохранять и наращивать прочность в воздушно-сухих условиях. Используются для надземных сооружений, не подвергающиеся воздействию воды.
К такому роду вяжущих относятся:
После затворения водой и предварительного затвердевания на воздухе, способны сохранять и наращивать прочность в воде. Применяются в строительстве надземных, подземных и подводных сооружений.
К ним относятся:
Способны затвердевать и превращаться в камень в атмосфере насыщенной водяным паром и при давлении выше атмосферного.
Например:
P = 0.8 - 1.5 MПа
t = 174.5 - 200 C
К ним относятся:
После твердения в атмосфере тёплого сухого воздуха, способны длительное время выдерживать действие основных кислот.
трещины;
сучки;
пороки формы ствола;
пороки строения древесины;
химические окраски;
грибные поражения;
биологические повреждения;
инородные включения, механические повреждения и пороки обработки;
покоробленности.
Сучки представляют собой основание ветвей в стволе. По разным признакам (расположению, форме, степени срастания с древесиной, состоянию древесины сучка и др.) они делятся на 27 разновидностей. Это основной сортоопределяющий порок древесины почти во всех сортиментах и деталях из древесины. Сучки снижают показатели механических свойств и не только из-за области, ими занятой, а из-за искривления волокон вокруг них. Однако в отдельных случаях сучки увеличивают прочность, например при скалывании вдоль волокон в тангентальном направлении. Трещины это продольные разрывы древесины, возникающие, как правило, под действием внутренних напряжений, превосходящих предел ее прочности при растяжении поперек волокон. Трещины по типам, положению в сортименте, глубине и ширине распространения делятся на 17 разновидностей. Влияние трещин на свойства древесины зависит от положения их по отношению к действующим силам и видам нагрузки.