Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Министерство науки и образования Украины
Сумской государственный университет
Кафедра информатики и механики
Курсовая работа
по программированию в среде Borland Pascal
на тему
«Решение СЛАУ методом Гаусса»
Выполнил
студент группы ММ-34
Петренко И. Н.
Проверил преподаватель
Пташник Т. В.
Сумы, 2004 г.
Введение
Решение систем линейных алгебраических уравнений одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя объем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности. В значительной степени ограничения на размерность решаемых систем можно снять, если использовать для хранения матрицы внешние запоминающие устройства. Однако в этом случае многократно возрастают как затраты машинного времени, так и сложность соответствующих алгоритмов. Поэтому при создании вычислительных алгоритмов линейной алгебры большое внимание уделяют способам компактного размещения элементов матриц в памяти ЭВМ.
К счастью, приложения очень часто приводят к матрицам, в которых число ненулевых элементов много меньше общего числа элементов матрицы. Такие матрицы принято называть разреженными. Одним из основных источников разреженных матриц являются математические модели технических устройств, состоящих из большого числа элементов, связи между которыми локальны. Простейшие примеры таких устройств сложные строительные конструкции и большие электрические цепи.
Известны примеры решенных в последние годы задач, где число неизвестных достигало сотен тысяч. Естественно, это было бы невозможно, если бы соответствующие матрицы не являлись разреженными (матрица системы из 100 тыс. уравнений в формате двойной точности заняла бы около 75 Гбайт).
1. Теоретическая часть
1.1. Метод Гаусса
Одним из самых распространенных методов решения систем линейных уравнений является метод Гаусса. Этот метод (который также называют методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.
Вычисления с помощью метода Гаусса заключаются в последовательном исключении неизвестных из системы для преобразования ее к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.
1.1.1. Схема единственного деления.
Рассмотрим сначала простейший вариант метода Гаусса, называемый схемой единственного деления.
Прямой ход состоит из n 1 шагов исключения.
1-й шаг. Целью этого шага является исключение неизвестного x1 из уравнений с номерами i = 2, 3, …, n. Предположим, что коэффициент a11 0. Будем называть его главным элементом 1-го шага.
Найдем величины
qi1 = ai1/a11 (i = 2, 3, …, n),
называемые множителями 1-го шага. Вычтем последовательно из второго, третьего, …, n-го уравнений системы первое уравнение, умноженное соответственно на q21, q31, …, qn1. Это позволит обратить в нуль коэффициенты при x1 во всех уравнениях, кроме первого. В результате получим эквивалентную систему
a11x1 + a12x2 + a13x3 + … + a1nxn = b1 ,
a22(1)x2 + a23(1)x3 + … + a2n(1)xn = b2(1) ,
a32(1)x2 + a33(1)x3 + … + a3n(1)xn = b3(1) ,
. . . . . . . . . . . . . . .
an2(1)x2 + an3(1)x3 + … + ann(1)xn = bn(1) .
в которой aij(1) и bij(1) вычисляются по формулам
aij(1) = aij − qi1a1j , bi(1) = bi − qi1b1.
2-й шаг. Целью этого шага является исключение неизвестного x2 из уравнений с номерами i = 3, 4, …, n. Пусть a22(1) ≠ 0, где a22(1) коэффициент, называемый главным (или ведущим) элементом 2-го шага. Вычислим множители 2-го шага
qi2 = ai2(1) / a22(1) (i = 3, 4, …, n)
и вычтем последовательно из третьего, четвертого, …, n-го уравнения системы второе уравнение, умноженное соответственно на q32, q42, …, qm2. В результате получим систему
a11x1 + a12x2 + a13x3 +… + a1nxn = b1,
a22(1)x2 + a23(1)x3 + … + a2n(1) = b2(1),
a33(2)x3 + … + a3n(2)xn = b3(2),
. . . . . . . . . . . . . . . . . . .
an3(2)x3 + … + ann(2)xn = bn(2) .
Здесь коэффициенты aij(2) и bij(2) вычисляются по формулам
aij(2) = aij(1) qi2a2j(1) , bi(2) = bi(1) qi2b2(1).
Аналогично проводятся остальные шаги. Опишем очередной k-й шаг.
k-й шаг. В предположении, что главный (ведущий) элемент k-го шага akk(k1) отличен от нуля, вычислим множители k-го шага
qik = aik(k1) / akk(k1) (i = k + 1, …, n)
и вычтем последовательно из (k + 1)-го, …, n-го уравнений полученной на предыдущем шаге системы k-e уравнение, умноженное соответственно на qk+1,k, qk+2,k, …, qnk.
После (n - 1)-го шага исключения получим систему уравнений
a11x1 + a12x2 + a13x3 + … + a1nxn = b1,
a22(1)x2 + a23(1)x3 + … + a2n(1)xn = b2(1),
a33(2)x3 + … +a3n(2)xn =b3(2),
. . . . . . . . . . . . . . . . . . . .
ann(n1)xn =bn(n1).
матрица A(n-1) которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.
Обратный ход. Из последнего уравнения системы находим xn. Подставляя найденное значение xn в предпоследнее уравнение, получим xn1. Осуществляя обратную подстановку, далее последовательно находим xn1, xn2, …, x1. Вычисления неизвестных здесь проводятся по формулам
xn = bn(n1) / ann(n1),
xk = (bn(k1) ak,k+1(k1)xk+1 … akn(k1)xn) / akk(k1), (k = n 1, …, 1).
Необходимость выбора главных элементов. Заметим, что вычисление множителей, а также обратная подстановка требуют деления на главные элементы akk(k1). Поэтому если один из главных элементов оказывается равным нулю, то схема единственного деления не может быть реализована. Здравый смысл подсказывает, что и в ситуации, когда все главные элементы отличны от нуля, но среди них есть близкие к нулю, возможен неконтролируемый рост погрешности.
1.1.2.Метод Гаусса с выбором главного элемента по столбцу (схема частичного выбора).
Описание метода. На k-м шаге прямого хода коэффициенты уравнений системы с номерами i = k + 1, …, n преобразуются по формулам
aij(k) = aij(k1) − qikakj , bi(k) = bi(k1) − qikbk(k1) , i = k + 1, …, n.
Интуитивно ясно, что во избежание сильного роста коэффициентов системы и связанных с этим ошибок нельзя допускать появления больших множителей qik.
В методе Гаусса с выбором главного элементов по столбцу гарантируется, что |qik| ≤ 1 для всех k = 1, 2, …, n 1 и i = k + 1, …, n. Отличие этого варианта метода Гаусса от схемы единственного деления заключается в том, что на k-м шаге исключения в качестве главного элемента выбирают максимальный по модулю коэффициент aikk при неизвестной xk в уравнениях с номерами i = k + 1, …, n. Затем соответствующее выбранному коэффициенту уравнение с номером ik меняют местами с k-м уравнением системы для того, чтобы главный элемент занял место коэффициента akk(k-1). После этой перестановки исключение неизвестного xk производят, как в схеме единственного деления.
1.1.3. Метод Гаусса с выбором главного элемента по всей матрице (схема полного выбора).
В этой схеме допускается нарушение естественного порядка исключения неизвестных.
На 1-м шаге метода среди элементов aij определяют максимальный по модулю элемент ai1j1. Первое уравнение системы и уравнение с номером i1 меняют местами. Далее стандартным образом производят исключение неизвестного xi1 из всех уравнений, кроме первого.
На k-м шаге метода среди коэффициентов aij(k1) при неизвестных в уравнениях системы с номерами i = k, …, n выбирают максимальный по модулю коэффициент aikjk(k-1). Затем k-е уравнение и уравнение, содержащее найденный коэффициент, меняют местами и исключают неизвестное xjk из уравнений с номерами i = k + 1, …, n.
На этапе обратного хода неизвестные вычисляют в следующем порядке: xjn, xjn1, …, xj1.
1.3. Сравнение прямых и итерационных методов
Системы линейных алгебраических уравнений можно решать как с помощью прямых, так и итерационных методов. Для систем уравнений средней размерности чаще используют прямые методы.
Итерационные методы применяют главным образом для решения задач большой размерности, когда использование прямых методов невозможно из-за ограничений в доступной оперативной памяти ЭВМ или из-за необходимости выполнения чрезмерно большого числа арифметических операций. Большие системы уравнений, возникающие в основном в приложениях, как правило, являются разреженными. Методы исключения для систем с разреженным и матрицами неудобны, например, тем, что при их использовании большое число нулевых элементов превращается в ненулевые и матрица теряет свойство разреженности. В противоположность им при использовании итерационных методов в ходе итерационного процесса матрица не меняется, и она, естественно, остается разреженной. Большая эффективность итерационных методов по сравнению с прямыми методами тесно связанна с возможностью существенного использования разреженности матриц.
Применение итерационных методов для качественного решения большой системы уравнений требует серьезного использования ее структуры, специальных знаний и определенного опыта.
2. Практическая часть
2.1 Программа решения систем линейных уравнений по методу Гаусса
2.1.1. Постановка задачи.
Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида
a11x1 + a12x2 + … + a1nxn = b1 ,
a21x2 + a22x2 + … + a2nxn = b2 ,
. . . . . . . . . . . . .
an1x1 + an2x2 + … + annxn = bn
для n ≤ 10 по методу Гаусса.
2.1.2. Тестовый пример.
3,2x1 + 5,4x2 + 4,2x3 + 2,2x4 = 2,6 ,
2,1x1 + 3,2x2 + 3,1x3 + 1,1x4 = 4,8 ,
1,2x1 + 0,4x2 0,8x3 0,8x4 = 3,6 ,
4,7x1 + 10,4x2 + 9,7x3 + 9,7x4 = 8,4 ,
x1 = 5, x2 = 4, x3 = 3, x4 = 2.
2.1.3. Описание алгоритма.
В данной программе реализован метод Гаусса со схемой частичного выбора.
В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы, после чего оба массива и переменная n передаются функции Gauss. В функции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы, начиная с k-й строки. Номер строки, содержащей максимальный элемент, сохраняется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса. Далее вычисляется решение системы и помещается в массив x. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.
3. Листинг модуля, программы и результаты работы.
Модуль
unit gauss;
Interface
Uses winCRT;
Const
maxn = 10;
Type Data = Real;
Matrix = Array[1..maxn, 1..maxn] of Data;
Vector = Array[1..maxn] of Data;
{ Процедура ввода расширенной матрицы системы }
Procedure ReadSystem(n: Integer; var a: Matrix; var b: Vector);
{Процедура вывода результатов}
Procedure WriteX(n: Integer; x: Vector);
{Функция, реализующая метод Гаусса}
Function Gaus(n: Integer; a: Matrix; b: Vector; var x: Vector): Boolean;
Implementation
{Процедура ввода расширенной матрицы системы}
Procedure ReadSystem;
Var
i, j, r: Integer;
Begin
r := WhereY;
GotoXY(2, r);
Write('A');
For i := 1 to n do begin
GotoXY(i*6+2, r);
Write(i);
GotoXY(1, r+i+1);
Write(i:2);
end;
GotoXY((n+1)*6+2, r);
Write('b');
For i := 1 to n do begin
For j := 1 to n do begin
GotoXY(j * 6 + 2, r + i + 1);
Read(a[i, j]);
end;
GotoXY((n + 1) * 6 + 2, r + i + 1);
Read(b[i]);
end;
End;
{ Процедура вывода результатов }
Procedure WriteX;
Var
i: Integer;
Begin
For i := 1 to n do
Writeln('x', i, ' = ', x[i]);
End;
{ Функция, реализующая метод Гаусса }
Function Gaus;
Var
i, j, k, l: Integer;
q, m, t: Data;
Begin
For k := 1 to n - 1 do begin
{Ищем строку 1 с максимальным элементом в каждом столбце}
l := 0;
m := 0;
For i := k to n do
If Abs(a[i, k]) > m then begin
m := Abs(a[i, k]);
l := i;
end;
{Если у всех строк от к до n элемент в каждом столбце нулевой, то система не имеет однозначного решения}
If l = 0 then begin
Gaus := false;
Exit;
end;
{Меняем местом 1-ую строку с каждой }
If l <> k then begin
For j := 1 to n do begin
t := a[k, j];
a[k, j] := a[l, j];
a[l, j] := t;
end;
t := b[k];
b[k] := b[l];
b[l] := t;
end;
{Преобразуем матрицу }
For i := k + 1 to n do begin
q := a[i, k] / a[k, k];
For j := 1 to n do
If j = k then
a[i, j] := 0
else
a[i, j] := a[i, j] - q * a[k, j];
b[i] := b[i] - q * b[k];
end;
end;
{Вычисляем решение}
x[n] := b[n] / a[n, n];
For i := n - 1 downto 1 do begin
t := 0;
For j := 1 to n-i do
t := t + a[i, i + j] * x[i + j];
x[i] := (1 / a[i, i]) * (b[i] - t);
end;
Gaus := true;
End;
END.
Программа
program mail;
uses Gauss,WinCrt;
Var
n, i: Integer;
a: Matrix ;
b, x: Vector;
Begin
ClrScr;
Writeln('Программа решения систем линейных уравнений по методу Гаусса ');
Writeln;
Writeln('Введите порядок матрицы систем (макс. 10) ');
Repeat
Write('>');
Read(n);
Until (n > 0) and (n <= maxn);
Writeln;
Writeln('Введите расширенную матрицу системы ');
ReadSystem(n, a, b);
Writeln;
If Gaus(n, a, b, x) then begin
Writeln('Результат вычислений по методу Гаусса ');
WriteX(n, x);
end
else
Writeln('Данную систему невозможно решить по методу Гаусса ');
Writeln;
End.
Тестовый пример.
3,2x1 + 5,4x2 + 4,2x3 + 2,2x4 = 2,6 ,
2,1x1 + 3,2x2 + 3,1x3 + 1,1x4 = 4,8 ,
1,2x1 + 0,4x2 0,8x3 0,8x4 = 3,6 ,
4,7x1 + 10,4x2 + 9,7x3 + 9,7x4 = 8,4 ,
x1 = 5, x2 = 4, x3 = 3, x4 = 2.
Программа решения систем линейных уравнений по методу Гаусса
Введите порядок матрицы системы (макс. 10)
>4
Введите расширенную матрицу системы
A 1 2 3 4 b
1 3.2 5.4 4.2 2.2 2.6
2 2.1 3.2 3.1 1.1 4.8
3 1.2 0.4 -0.8 -0.8 3.6
4 4.7 10.4 9.7 9.7 -8.4
Результат вычислений по методу Гаусса
X1 = 5.0000000000E+00
X2 = -4.0000000000E+00
X3 = 3.0000000000E+00
X4 = -2.0000000000E+00
4. Инструкция программисту и пользователю
Чтобы запустить программу, необходимо её открыть в BP, а если вы хотите ее реализовать в среде BPW, то необходимо вместо модуля Uses Crt указать Uses WinCrt и далее нажать клавиши Ctrl+F9. Также весь метод, согласно которому осуществляется решение системы линейных уравнений методом Гаусса можно реализовать в отдельном модуле, а далее он просто подключается как обычная библиотека Uses WinCrt или Uses Crt. Откроется окно, где необходимо ввести порядок матрицы (не более чем 10), после нажать Enter, ввести расширенную матрицу системы с нажатием клавиши Enter, затем выводится результат. Если решений нет, то выводится строка: «Данную систему невозможно решить методом Гаусса».
Выводы.
Программа написана на языке Pascal для решения систем линейных алгебраических уравнений методом Гаусса. В программе используются модули WinCrt и Gauss, который должен быть в папке вместе с программой Mail. В результате получаем результаты вычислений.
Данная курсовая работа показывает нам пример решения системы линейных алгебраических уравнений методом Гаусса. В данной программе реализован метод Гаусса со схемой частичного выбора. Выше приведен теоретический материал по решению СЛАУ методом Гаусса различными способами.
Листинг программы и модуля прилагается. Ремарки в тексте программы дают подробное пояснение к частям самой программы (в соответствии с теоретическим описанием метода Гаусса (в наем случае со схемой частичного выбора)).
5. Литература