У вас вопросы?
У нас ответы:) SamZan.net

Интерференция света

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 7.3.2025

Билет №1

1. Интерференция света. Когерентные волны. Выведите выражение интенсивности результирующей волны в случае сложения когерентных и не когерентных волн.

Явление интерференции света состоит в отсутствии простого суммирования интенсивности волн при их наложении т.е. взаимном усилении волн одних т-к прост-ва и ослабления в др-х.

Устойчивую картину интерференции света дают только когерентные волны. Две волны яв-ся когер-ми если:

  1.  l1=l2 или n1=n2  
  2.  Δφ=const
  3.  Ë1= Ë2 (Волны поляризованы в одной пл-ти).

Оптической длиной пути наз. Величина =-я произвед-ю геометр-й длины пути на показатель преломления среды в которой распростр-ся луч света. Оптическая разность хода 2-х лучей D=l1n1-l2n2. max-м интерф-ии наблюдается если D=2ml/2, (m=0,1,…) min-м если D=(2m+1)l/2, (m=0,1,…).

Рассмотрим 2 когер-е волны, к-е налагаются др. на др. возбуждают в нек-й т-ке прост-ва результир-е кол-я.

A2=a12+a22+2cosd, d=a2-a1 m=0,1,…

Ë1(r,t)=A1cos(wt+kr1+a1), Ë2(r,t)=A2cos(wt+kr2+a2).

Наиболее отчетливая интерф-я картина наблюлается когда A1= A2.

I=I1+ I2+2cosd.

Если налаг. волны не когерен. То 2-е условие не выполняется и угол d будет менятся со временем т.к. всякий фотоприемник обладает инерционностью то он будет усреднять значение интенсивности, среднее значение <cosd>=0 т.к. 0<=d<=p то I=I1+ I2= 2I1 т.е. в случае некогерентных волн происходит простое суммирование интенсивности. Если волны когерентны то D=const и в зависимости от значения этого угла -1<cosd<1 след-но при наложении когер-х волн Imax=4I1, Imin=0 (A1= A2). Обычные источники света дают не когерентное излучение.

2. Проводники, полупроводники и диэлектрики с точки зрения зонной теории твердых тел.

Каждая зона сод-т ограниченное число энерг-х подуровней. В соответствии с принципом Паули на каждом подуровне зоны может нах-ся не более 2х эл-нов с противоположно напр-ми спинами. По хар-ру запол-я энерг-х зон эл-нами все в-ва дел-ся на 2 большие группы:

1) отн-ся в-ва, у к-х на целиком заполненной зоне, нах-ся зоны заполненные лишь частично. Такая част-но запол-я зона возникает лишь в том случае, когда энерг. уровень в атоме из к-го она обр-сь заполнена эл-нами не полностью. К таким в-вам отн-ся, напр-р, щелочные эл-ты. Частично запол-я зона может также образ-ся в рез-те наложения полностью заполненных зон на пустые зоны. Это присуще металлам.

2) отн-ся в-ва, у к-х на целиком заполненной зоне лежит запрещ-я зона. К таким в-вам отн-ся алмаз, германий, кремний. В-ва с таким запол-ем энерг. зон м б как диэл, так и полупр-ми. Эл-ны внеш энерг-х уровней при образовании кристаллов получают возможность беспрепятственно перемещ-ся своб по кристаллу. Однако такие в-ва м б как диэл,так и полупр-ки => наличие своб е яв-ся недостоточным для того, чтобы такое в-во было проводником. В газе своб эл-нов совершается хаот-е броуновское движ-е по всему объему кристалла. Если к кристаллу приложить внешнее электрич поле, то на это хаот-е дв-е эл-нов будет накладываться упор-е дв-е, т о в кр-ле должен возникнуть эл ток (проводник). Однако это означает что эл-н должен перейти на более высокий энерг. уровень. Если такого близколеж-го своб энерг уровня нет, то состояние дв-я эл-в (а => и его энергии) не изм-ся, т е никакого направленного упор-го дв-я заряж частиц не будет. Т е Эл ток возникать не будет и => такое в-во будет диэл-м или полупр-ком.

Необх-мо, чтобы энерг зоны были заполнены эл-нами лишь частично. В этом случае на очень небольшом расст-и (10-23эВ) заполненного подуровня есть своб энерг подуровень и слабое эл поле приложенное к кр-лу может привести этот эл-н на этот уровень и в кр-ле появ-ся эл ток.

Окончательно по ширине запр-й зоны все в-ва дел-ся на диэл (Eд=5-7эВ), пров(Eд=0эВ), и полупр-ки(Eд=1эВ).

3. Природа α-излучения. Правила смещения для α-распада. Α-распад с точки зрения квантовой теории.

Радиоактивное превращение с испусканием  α - частицы называют»  α - распады. Его уравнение имеет вид . Заряд ядра при этом уменьшается на две единицы, а массовое число  на 4. Из закона сохранения энергии .находим  т.к. Ер>0, то α - распад возможен, если масса материнского ядра больше суммы масс дочернего ядра и (α – частицы).

Из экспериментов были найдены две особенности α -распада.

1. Сопоставление длины пробега (кинетической энергии) α - частицы с вероятностью распада  λ  альфа-излучателя (период полураспада) позволило Г.Гейгеру и Дж.Неттолу установить зависимость - закон Гейгера-Неттола: , где  Eα- энергия α  частиц, А и B – постоянные ( или ln λ=A+BRα, где Rα –пробег α  частицы.

2. Энергия α частиц значительно меньше той, что должна бы она получить после распада. α-частица, вылетая из ядра с меньшей энергией, преодолевает значительно больший потенциальный барьер. Это экспериментальный факт объясняется лишь квантовой механикой. Перед началом распада α-частица формируется в ядре и находится там в потенциальной яме (глубина 8,9 МэВ) с энергией Е α.Обладая волновыми свойствами часть α частиц отражается от стенок потенциального барьера, а часть проникает сквозь нее и уходит с энергией , что и наблюдается на опыте. Эффект просачивания α частиц через потенциальный барьер называют туннельным эффектом. Им объясняется закономерности α - распада. С ростом Еα уменьшается ширина потенциального барьера и увеличивается вероятность распада, что находится в согласии с законон Гейгера-Неттола.

Билет №2

1. Спонтанное и вынужденное излучение фотонов. Вероятности переходов. Принцип работы квантового генератора. Свойства лазерного излучения.

2 вида переходов электронов м/у энергетичискими уровнями:1) вынужденные-снизу вверх; 2) спонтанные –сверху вниз. Вероятность спонтанных переходов(СП) опред-ся лишь внутренними свойствами атомов и => не могут зависеть от интенсивности  падающего излучения. Вероятность вынужденных переходов(ВП) зависит как от внутренних свойств атомов, так и от интенсивности падающего излучения. Для объяснения существования равновесия м/у излучением и веществом нужно предположить, что сущес-т ВП сверху вниз, вероятность которых зависит как от внутренних свойств атомов, так и от интенсивности  падающего излучения. Рассмотрим 2 энергетических уровня n и m. Число электронов, вынужденно пришедших снизу ввех – Nmn(вын), число электронов, сверху вниз – Nnm. Nmn(вын)= Nnm(вын)+ Nnm(сп). Пусть число электронов на нижнем уровне- Nm, на верхнем -. Nn. Nmn(вын)=NmUw Bmn; Nnm(вын)= NnUw Bnm, где Uw –плотность(спектральная) энергии падающего излучения. Nnm(сп)= Nn nm. Коэф-ты A, Bnm, Bmn определяются только внутренними свойствами атомов-коэф-ты Эйнштейна. Эйнштейн показал, что ВП снизу вверх и сверху вниз происходит с одинаковой вероятностью, т.е. Bmn= Bnm. ВП происходят под действием падающего излучения. ВП сверху вниз  приводят к появлению новых фотонов. Это вынужденное или индуцированное излучение.(ВИ). ВИ обладает  следующими свойствами: 1)Направление ВИ совпадает с направлением вынуждающего излучения. 2)ВИ строго конкретно с вынуждающим излучением.

1-й случай: Пусть к моменту прихода фотона hν на верхнем уровне не было ничего. Пусть энергия фотона hν: hν=En-Em. В этом случае электрон поглощает фотон и переходит снизу вверх. Фотон поглощается, а электрон переходит в возбуждённое энергетическое состояние.

Рассмотрим 2-й случай: к моменту прихода фотона на верхнем энергетическом уровне находится электрон. Фотон заставит вынужденно перейти электрон сверху вниз. При этом проходящий фотон не поглотится и появится ещё 1 фотон, т.е. свет усилится.                                                                            усиление света

Видно, что для того чтобы свет усилился проходя ч\з вещество нужно создать такие условия, когда на верхнем энергетическом уровне находится  > электронов, чем на нижнем. Обычно в состоянии теплового равновесия заселённость энергетического уровня уменьшается с ростом его энергии (распределение Больцмана), т.е., Nn< Nm => число переходов вверх больше, чем число переходов вниз. Поэтому проходя ч\з вещ-во, находящееся в состоянии термодинамического равновесия свет ослабляется (положительное поглощение). Для получения среды с отрицательным поглощением нужно создать условия, когда Nn> Nm.. Такое состояние будет неравновесным. Его наз-т состоянием с инверсной заселённостью, или состоянием с отрицательной температурой. Процесс перевода среды в состояние с инверсной заселённостью(ИЗ) наз-ся накачкой. При создании ИЗ встречается ряд трудностей: создать ИЗ можно только на метастабильных энергетических уровнях. Метастабильные энергетические уровни(МСЭУ)-уровни, на кот-х время жизни электрона значительно превышает время их жизни на обычном уровне(10 (с. –8)сек.). Существование МСЭУ объясняется тем, что переходы с них в основное состояние запрещены правилами отбора=>их вероятность очень мала. Этим и  объясняется, что время жизни электронов на этих уровнях значительно больше, чем на обычных. Однако, эти же правила отбора запрещают переход электронов из основного состояния на метастабильный уровень. Поэтому ИЗ в моменты стабильных уровней создаётся по 3-хуровневой схеме. Её суть: используется 3-ий вышележащий уровень, переходы на кот-й разрешены правилами отбора Затем с 3-го уровня осущ-ся переход на 2-ой уровень(спонтанный). Такой переход тоже разрешён. Переход 21 запрещён. Таким образом удаётся на МСУ создать ИЗ по отношению к основному энергетическому уровню. Далее происходит ВП с МСУ в основное состояние, в резул-те кот-го происходит усиление проходящего ч\з вещ-во света.

Принцип работы квантового  генератора.

Лазер или оптический квантовый генератор состоит из 3-х основных частей: 1)Активная среда(среда, в кот-й создаётся ИЗ жидкость, тв. тело, газ). 2) Оптический резонатор(В простейшем случае 2 || зеркала, установленных друг против друга.). 3) Источник накачки (источник, за счёт энергии кот-го осуществляется ИЗ в активной среде) Лазер:  I=I0e(c. 2αL); I> I0   (I/ I0 )>=1= e(c. 2αL)R1 R2;0=2αL+ln R1 R2

   α=- ln R1 R2 /2L 

 Свойства лазерного излучения:  1)высокая монохроматичность ∆λ=0,1Å;

2) высокая пространственная и временная когерентность

3) высокая плотность мощности излучения; 4) малая узость пучка.

2. Зонная структура полупроводников p и n типа. Примесные локальные  уровни. Электронные и дырочные полупроводники.

Рассм полупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-ва валентность , к-х отлич-ся валентностью основного полупр-ка.

Пусть в 4х валент. Полупр-к внедрены атомы 5валент  примеси.

В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле.

5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси.

При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся.

Такая примесь наз-ся донорной примесью.

В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа.

В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны. Эти примесные уровни локализованы около атомов примесей и не распр-ся на весь кристалл полупр-ка. На этих примесных уровнях расположены эл-ны.

Уровень Ферми в полупр-ке n-типа смещен по напр-ю к потолку запрещ зоны.

Ясно что при увел-и темп-ры в зоне проводимости появ-ся своб эл-ны перешедшие с этих донорных уровней. При этом в валентной зоне своб дырки не появ-ся.

Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь.

В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся.

Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная.

С т. з. зоной теории атомы акцепторной примеси дают энерг уровни расположены также в запрещ-й зоне. Однако в этом случае они расположены у дна запрещенной зоны. Ясно что при увел-и темп-ры будет осуществляться переходы эл-нов из валентной зоны на уровень акцепторной примеси. При этом своб эл-ны в примеси не появ-ся, но в валентной зоне появ-ся своб дырки.

3. Строение атомных ядер. Взаимодействие нуклонов. Свойства и природа ядерных сил.

Ядром атома назыв центр часть, в к-й сосредоточен весь полож заряд атома и почти вся его масса. Согласно совр представ ядро атома сост из протонов и нейтронов, к-е считаются 2мя заряж состояниями – нуклоны.

AZX , где Z – зарядовое число ядра, совп с номером в табл Менд.

A – массовое число совпад с атомн массой хим эл-та выраж-ся в атомной единице массы. A выраж общее кол-во нуклонов в ядре, т к атом хим эл-та нейтрален, то эл-н (полож) д б в точности равен заряду эл-на в его эл-й оболочке. Поэтому число протонов в ядре (+e): Np =Z. Число нейтронов: Nn=A-Z.

Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами

Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е.

Ядерные взаимодействия между протонами (р-р),нейтронами (п-п), протоном и нейтроном (р-п ) одинаковы, поэтому ядерные силу обладают зарядовой независимостью. Отсюда следует, что природа этих сил отличается от природы электрических и гравитационных сил. Ядерные силы относятся к силам насыщения. Это означает, что каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Такое заключений следует из того факта, что Есв~А Если бы каждый нуклон взаимодействовал с остальными, то Есв ~А(А-1)~А2..

Билет №3

1. Схема опыта Юнга. Расчет интерференционной картины от двух точечных когерентных источников света.

D=S1- S2,  S12=L2+(x-d/2) 2, S22=L2+(x+d/2) 2  

S12- S22=(S2- S1)(S2+S1)=D2L=2xd => x=DL/d

т.к. оптическая разность хода не может быть большой, интерференционная картина наблюдается в области близкой к центру экрана. S1»S2»L, xmax=mLl/d, xmin= (2m+1)Ll/2d. Если источник S2 и S1 представляют из себя щели, то на экране набл-ся система парал-х равноудал-х др от др полос. Расст-е м/у  ними Dx=Dxm+1-Dxm=Ll/d.

2. Дисперсия света. Нормальная и аномальная дисперсии. Электронная теория дисперсии.

Дисп. света – это зависимость показателя преломления от длины волны l или от n т.к. n=c/u, где u - ск-ть распрост-я света в среде то дисперсия света связана с зависимостью ск-ти распространения волны в вещ-ве от длины и частоты. Различают нормальную и аномальною дисп. При нормальной дисперсии показатель преломления уменьшается с длиной волны.

Норм. dn/dl<0, dn/dn>0. При аномальной дисперсии наблюдается обратная зависимость dn/dl>0, dn/dn<0.

Пусть Dw- интервал частот в к-м нах. частоты отдельных волн этой суперпозиции. Если спед. частота группы волн w0, Dw<<w0, то такую совокупность волн наз. волновым пакетом. Волновой пакет ограничен в пространстве и имеет вид

Для волнового пакета справедливо DkDx=2p, отсюда k=2p/l, чем >-ше Dx тем >-ше Dk. Для волнового пакета м. выделить 2 способа для распространения фазовую и групповую. Фаз. ск-ть u=w/k – ск-ть распрастран-я т-ки с постоянной фазой. Групповая ск-ть – это ск-ть перемещения max-ма U=dw/dk.

Волновой пакет м. описать ур-ем E=∫(w0-Dw/2) (w0+Dw/2)Awcos(wt-kwr+aw)dw      При нормальной дисперсии U<u, при аномальной дисперсии U>u.

Т.к. согласно теор. Максвелла n=Öe, то дисперсия света обусловлена зависимостью диэлектрич. проницаем. от частоты. Дисп. света объясняется взаимодейств.-м эл.-маг. волны с заряжен. частиц. вещ-ва. Эл.-маг. волна заставляет вещ-во вынуждено колебаться электрон. в атомах, т.к. расс-е м/у соседними атомами в диэлектрике значительно < длины волны света, то эл-ны соседних атомов колеблются в одной фазе. В результате смещения эл-в. в атомах меняется дипольные моменты в атомах => атомы излучают вторич. эл.-маг. волны n-которых = n падающей волны т.к. эл-ны в атомах смещаются колеб-ся спифазно эти вторичные волны будут когерен-ми и при наложении интен-ть как м/у собой так и с волной. Результат интерф. зависит от их амплитуд и фаз. В однородном изотропном диэлектрике в результ. интерф. образуется проходящая волна, фазовая ск-ть к-й зависит от n, а направ. совпад. с направ. падающей эл.-маг. волны. n2=e=1+X=1+Pe/(e0E), где X-диэл.-я восприимчивость вещ-ва, Е-напряж. поля падающ. эл-маг. волны, Pe- электр. поляризов. Пусть напряж. эл-го поля направл. вдоль OX,

E=Eoxcos(wt-kx+a), Pe=pen0, где pe-дипольн. момент отдельн. атома, n0- число атомов в ед. объема. Т.к. поле направ вдоль ox то pe=-ex, т.о. Pe=-exn0 => n2=1-en0x/(Eoxcos(wt-kx+a)), Запишем диф-е ур-е описыв. движен. эл-в в атоме F=ma=md2x/(d2t) на эл-н в атоме действует a) Fкул=-eEoxcos(wt-kx+a), b) Fупр=-kx=-mw02x, w0=Ö(k/x) => k=w02m,=> md2x/(d2t)=-eEoxcos(wt-kx+a)-mw02x, m- масс. эл-на. Решая это диф. ур-е окнчательно получаем n=Ö(1+n0e2/(e0E(w02-w02))). Видно что это выр-е терпит разрыв при w=w02 такой рез. получается в рез-те того что в 2-м законе Ньютона не была учтена сила трения (затухания) если учесть затухание то разрыва этой ф-ии не будет. Во всякой реальной колеб. сист. всегда есть затухание. Аномальная дисперсия набл-ся в области част-т близких к колеб. эл-в в атоме т.к. в общем случае таких частот (резонансов) м. б. несколько.

3. Модель атома Резерфорда и ее недостатки.

Существенную роль в создании классической модели атома сыграли опыты Резерфорда по рассеянию α-частиц. α-частица представляет собой ядро атома гелия (He), образуется при распаде тяжелых элементов. Резерфорд исследовал рассеяние α-частиц на металлических фольгах. d=10(c.-4)см – их толщина.

Подавляющее число α-частиц отклоняется на угол θ=π/2.

Очень незначительное число α-частиц изменили направление.

отклонение α-частицы обусловлено действием на нее эл. поля со стороны зарядов внутри атомов.

Из всех опытов Резерфорд пришел к следующим представлениям о строении атомов. Внутри атома имеется положительно заряженное ядро, заряд которого +ze, причем в ядре сосредоточен весь положительный заряд атома. С ядром связана и большая часть массы атома. Заряд ядра совпадает с порядковым номером элемента в таблице Менделеева. Т.к. атом нейтрален, то в атоме кроме положительно заряженного ядра есть электроны, причем суммарный заряд электронов равен положительному заряду ядра. Положительно заряженное ядро и электроны, входящие в состав атома, определяют внутриатомное эл. поле, которое в свою очередь характеризует межатомные взаимодействия. Т.к. атом является устойчивой системой, то конфигурация электронов в атоме является устойчивой. Однако никакое устойчивое распределение зарядов не может быть статическим. На основании этого Резерфорд пришел к выводу, что электроны должны вращаться вокруг ядра.

Однако модель Резерфорда явилась не универсальной.

Недостатки: 1) Т.к. атом Резерфорда излучает непрерывно, то спектр излучения атома должен быть сплошным. Опыт показывает, что спектры носят линейчатый хар-р.

2) Согласно законам электродинамики электрон, вращаясь вокруг ядра, обладая нормальным ускорением, должен непрерывно излучать электро-магнитные волны => его энергия и расстояние м/у электроном и ядром должны непрерывно убывать. Т.к. из эксперимента известно, что атом излучает в течении τ=10(с.-8)с, то атом Резерфорда может существовать в течении этого времени, а после электрон упадет на ядро и атом прекратит свое существование. Эти недостатки имели принципиальное значение. Они показали, что движение электронов в атомах подчиняется иным законам, не нашедшим отражения в классической физике.

Билет №4

1. Дифракция Френеля на круглом отверстии и круглом непрозрачном диске.

Пусть на пути сферич. фронта свет. волны распол. непрозрачный экран, к-й открыв. 1-е m зон Френеля.

m-четное A=A1/2+(A1/2-A2+ A3/2)+ A3/2+…+ (Am-1/2-Am)=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am

m-нечетное A=A1/2+(A1/2-A2+ A3/2)+…+ (Am/2-Am-1 Am/2)+Am/2=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am, => A=(A1+Am)/2

Если отверст. открыв. четное число зон Френеля то в т. P наблюд. min, если нечетное – то max.

Пусть на пути сферич. фронта свет. волны распол. круглый непрозрачный диск, к-й закрыв. 1-е m зон Френеля.

A= Am+1-Am+2+Am+3-Am+4+…=Am+1/2+(Am+1/2-Am+2+ Am+3/2)+(Am+3/2-…=Am+1/2  

Видно что в т.P всегда наблюд. max. Расчитаем радиус зон Френеля.

rm2=a2-(a-h)2=(b-ml/2)2-(b+h)2, пренебрегая величинами порядка l2 окончательно получаем

rm=Ö(abml/(a+b))- сферический фронт свет. волны

rm=lima®¥Ö(abml/(a+b))=Ö(bml) т.е. rm=Ö(bml)-плоский фронт свет. волны.

2. Тепловое равновесное излучение. Закон Кирхгофа.

Т. и. это излучение эл–маг вол нагретым вещ. Т. и. происходит за счет внут. энергии нагретого тела нах. в связи с термодин. средой. То это наз. равновесным излучением. В теории Т.и. вводится понятие абсол. черного тела. Аб. ч. тело–это тело к–е полностью поглощ. падающий на него излучение (не отраж.). Моделью а.ч. тела может  служить маленькое отверстие в полой сфере. Для описания Т.и. вводится след. величины Rэ–энерг. светимость (излучательность), эта энергия излуч. с ед поверх. нагретого тела за ед времени на всех длинах волн (мощность). A(l,T)–поглощ. способ. тела, A(l,T)=Wпогл(l,T)/ Wпад(l,T)–отнош. пад. энергии к поглощ. (на длине волны l при темп. T). E(l,T)–спектральн. плотность излучат. способности–эта энерг. излучаем. с ед. поверхн. тела за ед времени на длине волны l.

Закон Киргофа. Для всех тел справедливо соотнош. E(l,T)/A(l,T)=const=e(l,T)–спектраль. плотность излучат. способность а.ч. тела. Отсюда видно что а.ч. тело излучает больше любого др.

3. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. Дифракция электронов.

В 1924г Луи де-Бройль высказал гипотезу, согласно которой дуализм (двойственность) св-в присущи не только оптическим явлениям, но и к материи вообще. В частности с потоком электронов связан волновой процесс, который влияет на поведение электрона как частицу, заряд и масса которой локализованы в малом объеме пространства так, что ведет себя как точечный заряд. Д-Бройль показал, как можно определить длинну электронной волны по аналогии с длинной волны фотона.

Pф=m(индекс ф)c=hνc/c (c.2)=/c=h/λ; λ(инд.c)=h/P(индекс е)=

=h/m(инд. с) v(инд.с) (1). Длина волны, определяемая (1) называется дебройлевой длиной волны. Д-Бройль попробовал объяснить 1-й постулат Бора – постулат квантования. Согласно д-Бройлю, стационарными являются такие орбиты электрона, у которых вдоль периметра укладывается целое число волн д-Бройля. Т.е. вдоль орбиты устанавливается стоячая волна. 2πr = (индекс с), 2πr = nh/mv;

mvr = nh/2π=nh(в).

Джемер и Дэвисон впервые обнаружили дифракцию электронов при рассеянии их на монохроматические никеля. Электроны, ускоренные разностью потенциалов U, вылетали из эл. пушки в виде узкого пучка, и фокусировались на клисталлической пластинке. Рассеяные электроны улавливались ловушкой цилиндра Фарадея, соединенного с чувствительным гальванометром.

Электроны отдавали свой заряд ловушке и устанавливалась зависимость J от √U. Сила тока J является мерой отраженных от пластины электронов, а  √U – мера их скорости.

mv 2/2=eU; √U~v. Т.о. от кристалла отражаются лишь электроны определенных скоростей. Кристалл представляет собо пространственную дифракционную решетку, в которой источники вторичных волн, т.е. частицы в узлах кристаллической решетки, находятся на строго определенных расстояниях вдоль координатных осей. При прохождении через кристалл электро-магнитного излучения, частицы в узлах кристаллической решетки испускают вторичные волны, которые, налагаясь, образуют максимум и минимум дифракции. То, что от кристалла отражались лишь электроны определенных скоростей означало, что на кристалл падает излучение, представляющее собой волновой процесс, в его избирательное отражение есть результат дифракции.

Билет №5

1. Дифракция Фраунгофера на щели. Получите выражение, описывающее распределение интенсивности света на экране.

Диф. Ф.-диф. в параллельн. лучах. Диф. Френеля-диф. в не параллельн. лучах (в част. сфер.)

Рассмот. не прозрач. экран в ¥-но длиной узкой щели, ширина к-го =b, b>>l это условия позволяет не учитывать диэлектрические св-ва вещ-ва из к-го сделан экран. Разобьем площ. щели на ряд плоск. узких полосок равной ширины, каждая из этих полос можно расс. как источник волн, причем фазы колеб. различных пололс одинаковы (т.к. плос. щели совпадает с плоск. свет. волны), амплитуды одинаковы т.к. полоски один. по ширине и одинаково направлены. Если ширину волны выбрать так, что разности хода от краев полосок =l/2 то их м. расс. как зоны Френеля. Если на ширине щели укладыв. четное число зон Френеля то в данном направ. надлюд. min, если нечетное то max. Воспольз. граф. методом.

1) j=0    

2) bsinj=l/2,  1-зона Френеля, j=arcsinl/(2b) => d=2A0/p,

3) bsinj=2l/2,  2-зоны Френеля, j=arcsinl/b,

4) bsinj=3l/2,  3-зоны Френеля, j=arcsin3l/(2b) => d=3A0/(2p),

Метод зон Френеля яв. приближенным методом, точнее расспред. интенс. м. получить воспользовавшись принципом Гюгенса-Френеля: dE=B(j)a0/2cos(wt-kr+a), разобьем поверхн. щели на ряд узких полосок шириной dy.

Амплитуда кол. такой полоски можно считать dA~dy

dA=cdy, где c нект. коэф. пропорц. к-й м. найти из условия что при j=0 A=A0. т.е.

A=∫0bdA=∫0bcdy=cb => c=A0/b, dA=A0dy/b,  Результирующую амплитуду колебаний Ej=∫0bdAcos(wt-kD)dy, Окончательно получаем

Ej=∫0bA0/bcos(wt-2p/lysinj)dy=A0sin[pb/l(pb/lsinj)]/[pb/l(pb/lsinj)]cos(wt-pb/lsinj) =>

Амплитуда кол-й =A0sin(pb/lsinj)/(pb/lsinj), I=I0sin2(pb/lsinj)/(pb/lsinj).  

2. Абсолютно черное тело. Законы излучения абсолютно черного тела.

Аб. ч. тело–это тело к–е полностью поглощ. падающий на него излучение (не отраж.). Моделью а.ч. тела может  служить маленькое отверстие в полой сфере.

Анализ получ. эксперимент. закономерн. позволили сформул. законы излуч.

Стефана–Больцмана Rэ=sT4, пост. Ст–Б. s=5.71*10–8, если тело не яв–ся А.ч. то Rэ=ksT4, где k–нек–ий коэф. наз. степенью нечерноты 0<=k<=1

Закон смещения Вина lmax=b/T, b–1–я пост. Вина b=2.898*10–3, lmax–длина волны на к–ю приход. max излучательной способн. А.ч.тела.

2–й закон Вина e0(lmax,T)=b1T5, b1–2–я пост. Вина b=1.29*10–5,

Попытки дать объясн. эксперим. кривой e(l,T) на основе класич физики приводили к завис.: e(l,T)~1/l  (Рэлея–Джинса).

Формула Р.–Д. согласовывается с экспериментальной кривой только в области больших длин волн при 0 => e(l,T)®¥.    

Расхождение ф. Р.–Д. с экспериментальной кривой в области малых длин волн было названо “ультрафиолетовой катастрофой”. Классич. физика оказалась не способна объяснить излучен. нагрет. тел. Получить теорет. зависимость e(l,T) удалось Максу Планку путем отказа от теории о непрер. излучен. энергии нагрет. тел.

3. Акустические и оптические колебания кристаллической решетки. Понятие о фононах.

Рассм-м цепочку (одномерную), состоящую из разнородных атомов.

В такой цепочке может возникнуть 2 типа колебаний.

Кол-я 1 типа наз-ся акуст кол-ями кр реш-ки. При этом соседние атомы кр реш-ки колеб-ся практически в 1й фазе. Акуст кол-я определяют тепловые св-ва кристалла (теплопроводность, теплоемкость и др.).

Кол-я 2 типа наз-ся оптическими. При таких кол-ях соседние атомы кол-ся практически в противофазе. Такие кол-я опред-ют процессы взаимодействия тв тела со светом.

Дисперсионные кривые для этих кол-й имеют существенные различия.

Каждое нормальное колебание (коллективное дв-е в пространственно-упорядоченной системе; вследствии сильного взаимодействия м/у частицами в ТВ теле колебание возникшее в какой-либо точке ТВ тела быстро распростаняется по всему тв телу в виде упругой волны) кр реш-ки несет с собой энергии Ei, поэтому полная энергия кол-й кр реш-ки Ei=13NEi.Можно показать, что энергия норм кол-й = энергии гармонич осциллятора имеющего массу=массе колебл-ся частиц и частоту=частоте норм колеб-я. Такой осциллятор наз-ся норм осциллятором. Норм осциллятор не имеет ничего общего с колеб-ся атомами кроме одинаковой массы.Согласно кв мех расчетам энергия гарм асцелятора квантуется. Evw(v+1/2) v=0,1,2.. – наиб-е кв число

Согласно правилам отбора Δv=+-1, т е переходы могут осущ-ся только м/у соседними энерг уровнями. Приэтом испуск-ся или поглощ-ся квант энергии = ħw = Eф.

Этот квант энергии тепловых колебаний реш-ки наз-ся фононом.

Фонон может рассм-ть как своеобразную квази-частицу, приписывая ему энергию, массу и импульс.

В отличии от обычных частиц квази-частица не может возникнуть в вакууме, для ее сущ-ия необх-мо некоторая квантовая среда, в данном случае это кр реш-ка.

Т о тв тела можно рассм-ть, как нек-й объем заполненный фононным газом и в нек-х случаях применятьк нему з-ны идеал газа.

Билет №6

1. Интерференция света в тонких линзах.

Распространенным примером интерференции света

в природе является интерференция в тонких пленках: радужная окраска

мыльных пленок, пленок нефти на воде и т.д. Рассмотрим плоскопараллельную пластинку толщиной d с показателем преломления n, на которую падает параллельный пучок света (рис). Луч 1 частично отражается - луч 2 и частично преломляется, луч, выходящий из пластинки параллельно лучу 2- луч 3. Оба луча получены из одного, а потому когерентные. При их наложении происходит интер-я, и   в зависимости от разности хода Δ т.В окажется либо освещенной сильнее, либо слабее соседних точек. Если пленка освещена белым светом, то ее часть (место усиления освещенности)  будет окрашена. Оптическая разность хода лучей равна: Δ12=АС-n(AB+CB), используя закон преломления света sini=n*sinr можно найти Δ=2d√(n2sin2i).

Из ур-я Максвелла и условий наклад. На эл.-маг. Поля на границе 2-х диэлектриков => что при отражен. эл.-маг. волны (света) от оптически более плотной среды происходит поворот фазы кол-й на 180°, след-но фаза кол-й в т.А на рис. меняется при отражении на 180°, это можно учесть введя l/2, l- длина монохр. света попадающ. на пленку. Значит полная оптическая разность хода м/у лучами 1 и 2 будет l/2. Условия max можно получить при равенстве n четному числу волн т.е. max: 2d√(n2sin2i)=(2m+1)l/2, min: 2d√(n2sin2i)=2ml/2 (в отраженном свете). В проходящем свете условия max и min меняется местами. Если толщина пластинки постоянна, то интерференционная картина имеет вид чередующихся темных и светлых полос, каждая из которых соответствует определенному углу i - полосы равного наклона.

Если пластинка переменной, толщины, то места ослабления и усиления света будут соответствовать местам определенной толщины пластины. Интерференционные полосы в этом случае называют полосами равной толщины.

2. Внешний фотоэффект и его законы.

Внешним фотоэффектом называется испускание электронов с поверхности металла под действием падающего света. Экспериментально было установлено, что внешний фотоэффект подчиняется следующим законам:

1.Максимальная скорость вылетающих с поверхности металла электронов не зависит от интенсивности падающего света, а зависит от его частоты.

2.Существует предельная длина волны характерного для каждого вещества, выше которого фотоэффект не наблюдается (простая граница Фотоэффекта).

Эти закономерности, наблюдаемые экспериментально, нельзя было объяснить, считая свет волной, в фотоэффекте действует корпускулярная природа света.

3.Взаимодействие нуклонов. Свойства и природа ядерных сил.

Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами

Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е.

Ядерные взаимодействия между протонами (р-р),нейтронами (п-п), протоном и нейтроном (р-п ) одинаковы, поэтому ядерные силу обладают зарядовой независимостью. Отсюда следует, что природа этих сил отличается от природы электрических и гравитационных сил. Ядерные силы относятся к силам насыщения. Это означает, что каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Такое заключений следует из того факта, что Есв~А Если бы каждый нуклон взаимодействовал с остальными, то Есв ~А(А-1)~А2..

Билет №7

1. Интерференция света в тонких линзах. Кольца Ньютона.

Распространенным примером интерференции света в природе является интерференция в тонких пленках: радужная окраска мыльных пленок, пленок нефти на воде и т.д. Рассмотрим плоскопараллельную пластинку толщиной d с показателем преломления n, на которую падает параллельный пучок света (рис). Луч 1 частично отражается - луч 2 и частично преломляется, луч, выходящий из пластинки параллельно лучу 2- луч 3. Оба луча получены из одного, а потому когерентные. При их наложении происходит интер-я, и   в зависимости от разности хода Δ т.В окажется либо освещенной сильнее, либо слабее соседних точек. Если пленка освещена белым светом, то ее часть (место усиления освещенности)  будет окрашена. Оптическая разность хода лучей равна: Δ12=АС-n(AB+CB), используя закон преломления света sini=n*sinr можно найти Δ=2d√(n2sin2i).

Из ур-я Максвелла и условий наклад. На эл.-маг. Поля на границе 2-х диэлектриков => что при отражен. эл.-маг. волны (света) от оптически более плотной среды происходит поворот фазы кол-й на 180°, след-но фаза кол-й в т.А на рис. меняется при отражении на 180°, это можно учесть введя l/2, l- длина монохр. света попадающ. на пленку. Значит полная оптическая разность хода м/у лучами 1 и 2 будет l/2. Условия max можно получить при равенстве n четному числу волн т.е. max: 2d√(n2sin2i)=(2m+1)l/2, min: 2d√(n2sin2i)=2ml/2 (в отраженном свете). В проходящем свете условия max и min меняется местами. Если толщина пластинки постоянна, то интерференционная картина имеет вид чередующихся темных и светлых полос, каждая из которых соответствует определенному углу i - полосы равного наклона.

Если пластинка переменной, толщины, то места ослабления и усиления света будут соответствовать местам определенной толщины пластины. Интерференционные полосы в этом случае называют полосами равной толщины.

Примером являются интерференционные полосы в воздушном клине (кольца Ньютона), которые можно наблюдать, если на плоскопараллельную пластинку положить плосковыпуклую линзу большого радиуса R(Рис). При нормальном падении лучей разность хода равна: Δ=2d+ λ/2(2). Найдем радиус к-го кольца. Из Δ АВС r2=R2-(R-d)2=2Rd+d2~2Rd,тк R>>d, откуда d= r2/2R. Подставляя это в формулу(2), находим Δ=r2/R+λ/2

Находим радиус К-го' кольца rk=√(kλR)Измеряя rk , и зная R , можно найти длину волна света.

2. Поглощение света. Закон Ламберта-Бера.

Поглощение света или адсорбция – это уменьшение интенсивности света при распрост. волны в вещ. (фронт волны плоск.). При поглащ. энергия эл-маг. волны переходит во внутр. энергию поглощающ. вещ-ва (оно нагревается). Рассм. слой погл. вещ-ва толщ. l, пусть на него падает параллель. пучек света интенс. I0 вылим внутри поглощ. слоя слой dx. Уменьшение интенс. света при прохождении слоя толщины dx: dI~–Idx, dI=–aIdx. Интегрируя получаем закон Ламберта–Бугера: I= I0eal, I–интенс. света прошед. слой поглощ. вещ–ва толщ. l. Если поглощ. вещ–во растворено в непоглощ. раствор. то a0=a1c, где c–концентр. поглощ. вещ–ва, a1–коэф. поглощ. отнесен. к ед. конц. a1,a зависят как от природы поглощающегося вещ–ва так и от длины волны падающ. света.

3. Соотношение неопределенностей Гейзенберга.

Во всех макроскопических системах электрон ведет себя как частица, локализованная в малом объеме, обладающая определенной координатой и скоростью. При движении электрона в атоме проявляются его волновые свойства в большей степени, как и во всех микроскопических частицах, но волна не локализована в пространстве, а безгранична.

Пусть электроны движутся в направлении ОА со скоростью Vx и встречают узкую щель ВС с шириной а. DE – экран, на который будут попадать электроны. Т.к. электроны обладают волновыми свойствами, то при прохождении через узкую щель они дифрагируют, в результате чего электроны будут попадать не только в точки экрана DE, расположенные непосредственно за щелью, но распределяется по всему экрану. Представим, что электрон – классическая частица. Она характеризуется координатой и количеством движения. Можно охарактеризовать координату электрона в момент прохождения щели как координату щели. В таком определении координаты, однако, есть неточность, обусловленная шириной щели. Обозначим эту неопределенность через ∆x=a. После прохождения щели составляющая импульса Px≠0, т.к. вследствии дифракции изменяется скоростью. Составляющая импульса электрона не может быть определено точно, а лишь с некоторой погрешностью ∆PxPsinφ1=/a=/λa=h/a; ∆Px*∆xh (1) – соотношение неопределенностей Гейзенберга.

Билет №8

1. Двойное лучепреломление и его объяснение.

При прохождении света ч/з все прозрачные кристаллы, за исключением принадлежащих к кубической системе, набл-ся явление, получившее название двойного лучепреломления. Это явление закл-ся в том, что упавший на кристалл луч разделяется внутри кристалла на два луча, распространяющиеся с разными скоростями и в разл направлениях.

Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные (исландский шпат, кварц и турмалин) и двуосные (слюда, гипс). У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления, в частности он лежит в одной плоскости с падающим чучом и нормалью к преломляющей поверхности. Этот луч наз-ся обыкн-м о. Для другого луча – необыкн-ного е, отношение синусов угла падения и угла преломления не остается постоянным при изменении угла падения. У двуосных оба луча необ-е.

2. Спин электрона. Спиновое квантовое число. Экспериментальные доказательства существования спина.

Был поставлен эксперимент, для которого брались  атомы, у кот-х число электронов нечётно, и механические и магнитные моменты кот-х попарно взаимно компенсируются. Такими атомами явл-ся атомы элем-в 1-ой группы таблицы Менделеева. Важной особенностью элем-в этой группы явл-ся то, что элек-н находящиеся в основном состоянии имеет l=0, Мl =0 Рl =0. Брался источник атомов, поток кот-х пропускали ч\з магн. поле. Т.к. магнитный и механ-й моменты атомов  были =0, то эти атомы не должны были отклоняться магнитным полем и на экране должно было наблюдаться 1 пятно. Эксперимент показал: атомы отклон-ся и дают 2 max на экране. Т.к. механ-й и магн-й моменты электрона в атоме обусловленые его движением вокруг ядра были равны 0, а атомы всё равно отклон-сь магн. полем, было предположено, что электрон в атоме обладает собственным механическим Мs  и соответствующим ему магнитным Рs  моментами, кот-е были названы механическим магнитным спиновым моментами. Спин электрона считается таким же фундаментальным свойством, как заряд и масса. Значение спинового механического момента м\б вычислено по формуле: Мs,где s- спиновое квантовое число, кот-е может принимать 2 значения: s=1/2, s=-1/2.

3. Зонная структура собственных полупроводников. Собственная проводимость полупроводников и ее зависимость от температуры.

Полупр-ки – в-ва, у к-х ширина запрещ-й зоны составляет величину порядка 1 эВ.

При низких темп-х полупр-ки не проводят эл ток и яв-ся изолятором. Хим-ски чистые в-ва яв-ся собств полупр-ками.

Рассм 4хвалентный полупр-к Ge (германий). Четыре связи с соседними атомами, образованы восемью эл-нами (по четыре от каждого атома). Каждый эл-н обр-ет связь с противоположно направ-ми спинами. При низк темп-ре все связи оказываются укомплектованными эл-нами и своб эл-нов в полупр-ке нет. При увел темп-ры за счет энергии хим-го дв-я происходит отрыв эл-нов от одной из связи. При этом на месте ушедшего эл-на остается не скомпенсированный полож заряд наз-й дыркой. Дырка локализована на какой-то одной связи в кристалле и своб переем-ся по кристаллу не может. Оторвавшийся же эл-н может своб-но перем-ся по кр-лу.

Если приложить внешнее эл поле, то эл-н будет перем-ся против поля. Дырку же может занять эл-н из соседней связи. Путем таких перескоков дырка будет перем-ся по полю, а эл-н против поля. Дв-е дырки можно рассм-ть как дв-е полож заряж частиц. Когда своб эл-н занимает место дырки исчезает одновременно и своб эл-н и дырка. Такой процесс наз-ся рекомбинацией. Т о в хим-ски чистых полупр-ках появл-ся одновр-но своб эл-ны и дырка, причем кол-во их одинаково. Проводимость хим-ски чистых полупр-ков наз-ых собств яв-ся электронно-дырочными. С т з зонной теории эл-н задействованный в создании хим-х связей в кр-ле нах-ся в валентной зоне.

При сообщении ему достаточной энергии он преодолевает запрещ-ю зону и переходит в зону проводимости. При этом в валентной зоне образ-ся дырка. Такой переход будет осуществляться прежде всего с верхних уровней валентной зоны. По мере увеличения энергии в зону проводимости будут переходить эл-ны со все более глуб-х уровней валентной зоны. Поэтому энергия дырки тем больше, чем глубже она нах-ся в валентной зоне. Эл-н в зоне проводимост и дырку в валентной зоне можно рассм-ть как своб-е носители заряда в собств полупр-ке. Ясно, что по мере увел-я темп-ры число таких носителей будет возрастать. Уровень Ферми в собств полупр-ках нах-ся в сер-не запр-й зоны.

Билет №9

1. Метод зон Френеля. Графический метод сложения амплитуд.

Френель предложил объединил симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают.

Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1> A2> A3

Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A=A1-A2+A3-A4…,   A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля.

Графический метод определения результирующей амплитуды.

Разобьем каждую зону Френеля на ряд еще более мелких подзон (колец) настолько узких, что можно считать что кол-я от всех т-х источников внутри такой подзоны приходит в т.P с одинаковой фазой и одной амплитудой. Будем изображать результирующ. колб. от каждой подзоны в виде вектора, длина к-го результир. амплитуда, а угол поворота фазу коллеб. такой подзоны.

2. Внешний фотоэффект и его законы. Уравнение Эйнштейна.

Внешним фотоэффектом называется испускание электронов с поверхности металла под действием падающего света. Экспериментально было установлено, что внешний фотоэффект подчиняется следующим законам:

1.Максимальная скорость вылетающих с поверхности металла электронов не зависит от интенсивности падающего света, а зависит от его частоты.

2.Существует предельная длина волны характерного для каждого вещества, выше которого фотоэффект не наблюдается (простая граница Фотоэффекта).

Эти закономерности, наблюдаемые экспериментально, нельзя было объяснить, считая свет волной, в фотоэффекте действует корпускулярная природа света.

Эйнштейн развил квантовую гипотезу Планка. Свет распространяется в виде отдельных порций (фотонов).

Отсюда видно, что скорость электронов при фотоэффекте зависит только от частоты падающего света.  hv=Aвых+mv2/2.

Интенсивность света определяется числом фотонов падающих на катод. Следовательно, число фотоэлектронов определяется только интенсивностью падающего света и не зависит от его частоты.

Для того чтобы придержат фототок необходимо подать на анод задерживающее напряжение. Его величину можно определить по формуле: mv2/2=eU,U – задерживающее напряжение на аноде.

Поэтому, hvвых+eU. Работа  Авых определяется типом материи из к–го сделан фотокатод. При уменьшении частоты падающего света энергия вылетевших электронов будет уменьшаться hvкрвых => λкр=hc/ Авых. Таким образом ур–е Эйнш. позволяет объяснить все экспер. набл. законом–ти. Ур–е Эйнш. построено на основе одно. приближения. Авых каж–го конкрет. эл–на не завис. от выхода др. эл–в с фотокатода.

3. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.

Любое тв тело состоит из огромного числа частиц. В таких коллективах проявл-ся особые статистич-е законы. Существуют 2 способа описания большого кол-ва частиц.

1) термодинамический В таком методе рассм-ся макроскоп-я система и не рассм-ся св-ва каждой частицы в отдельности. Равновесное состояние такой т-д с-мы опис-ся нек-ми макроскоп-ми с-мами (P,V,T).

2) в статистическом методе опис-ся только вероятность того, что частица может иметь то или иное значение координаты и импульса => статист метод позволяет рассч-ть вер-сть наступления того или иного события.

Квантовая статистика – это раздел физики рассм-й коллек-вы частиц подчиняющ-ся квант-м законам, а классич-я статистика – классич-м зак-м. Принципиальное отличие квант и класс статистики состоит в том, что в класс стат-ке меняются все величины непрерывным способом и => число возм-х сост-й для каждой частицы бесконечно большое. В квант стат-ке величины меняются дискретно и => число возм-х сост-й для каждой частицы конечно. Кроме этого на квант коллективы распространяется принцип неразличимости тождественных частиц.

Состояние эл-нов проводимости в металле опред-ся 4мя квант числами (n,l,m,s). При абсол темп-ре эл-ны проводимости в соответствии с принципом запрета Паули занимают энерг сост-я начиная с самого нижнего. Т к кратность выпожденного энерг уровня с данным значением n равна 2n2, то на каждом энерг уровне будет нах-ся 3*2n2 эл-нов (т к пространство 3хмерное). Все уровни начиная с самого нижнего будут заняты. Наивысший энерг уровень занятый наз-ся уровнем Ферми.

Билет №10

1. Двойственная природа света. Суть волновой и квантовой теории света. Приведите примеры проявления волновых и квантовых свойств света.

Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц, фотонов, что проявляется более отчетливо для очень коротких электромагнитных волн  рентгеновское излучение, (Гамма- лучи). Поэтому часто под оптикой понимают учение о физических явлениях, связанных с распространением коротких электромагнитных волн.

Волновое св-ва света проявляется: интерференции, дифракции, поляризации.

Корпускулярное св-во: явление внешнего фотоэффекта.

Световая волна - электромагнитная волна, где колеблются векторы Е и Н. Опыт показывает, что действие света на вещество определяется, главным образом, вектором Е, который поэтому называют световым вектором. То, что мы называем видимым светом, представляет узкий интервал электромагнитных волн: 0,4-0,75 мкм. Распространение световой волны описывается уравнением Е=Е0Cos(ωt-kr),

где w-частота колебаний, k=2π/λ- волновое число, r-расстояние, отсчитываемые вдоль направления распространения.

Отношение скорости световой волны в вакууме к скорости ее в среде называется абсолютный показателем преломления этой среды n : n=c/υ. С учетом формулы: υ=c/√(εμ) находим n=√(εμ). Т.к. для большинства прозрачных сред μ =1, то n=√ε формула связывает оптические свойства вещества с его электрическими свойствами. Значения n  характеризуют оптическую плотность среды, которая тем больше, чем больше n.

2. Спин электрона. Спиновое квантовое число. Экспериментальное подтверждение  существования спина у электрона.

Был поставлен эксперимент, для которого брались  атомы, у кот-х число электронов нечётно, и механические и магнитные моменты кот-х попарно взаимно компенсируются. Такими атомами явл-ся атомы элем-в 1-ой группы таблицы Менделеева. Важной особенностью элем-в этой группы явл-ся то, что элек-н находящиеся в основном состоянии имеет l=0, Мl =0 Рl =0. Брался источник атомов, поток кот-х пропускали ч\з магн. поле. Т.к. магнитный и механ-й моменты атомов  были =0, то эти атомы не должны были отклоняться магнитным полем и на экране должно было наблюдаться 1 пятно. Эксперимент показал: атомы отклон-ся и дают 2 max на экране. Т.к. механ-й и магн-й моменты электрона в атоме обусловленые его движением вокруг ядра были равны 0, а атомы всё равно отклон-сь магн. полем, было предположено, что электрон в атоме обладает собственным механическим Мs  и соответствующим ему магнитным Рs  моментами, кот-е были названы механическим магнитным спиновым моментами. Спин электрона считается таким же фундаментальным свойством, как заряд и масса. Значение спинового механического момента м\б вычислено по формуле: Мs,где s- спиновое квантовое число, кот-е может принимать 2 значения: s=1/2, s=-1/2.

3. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект. Коэффициент прозрачности.

Зададим потенциальную функцию И(х) в виде: И(х)=0 в 1-й и 3-й области, И(х)=И0 в области 2. Пусть частица движется в «+» направлении оси х из области 1 и на своем пути встречает прямоугольный потенциальный барьер ширины L и высоты Uo.

1)C точки зрения классической физики, если Uo<E (E – энергия микрочастицы), то частица беспрепятственно проходит над барьером. 2)Если Uo>E, то микрочастица отражается от барьера и летит обратно. В квантово-механическом случае при Uo<E час-ца также беспрепятственно проходит из области 1 в область 3. С точки зрения квантовой механики существует отличная от нуля вероятность, что микрочастица просочится через барьер при условии, что Uo>E, и окажется x>L.

В 1 и 3:U=0 => Уравнение Шредингера запишем в виде:

d(c.2)ψ/dx(c.2) + dm/h(в)(с.2)=0 (для первой и третьей областей).

В 2:U=Uo=>(по уравнению Шредингера)

d(c.2)ψ/dx(c.2)+dm(E-Uo)ψ/h(в)(с.2)=0 (для второй области). Решение этого уравнения будем искать в виде: ψ(x)=A e(c. Ø x)

ψ1(x)=A1 e(c. i α x)+B1 e(c. – i α x)    (I)

ψ3(x)=A3 e(c. i α x)+B3 e(c. – i α x)    (III)           α=√2mE/h(в);

A1 и A3- амплитуды волн, расспространяющихся в “+” направлении оси х.B1,B3- --||--||-- в «-» направлении оси х.

ψ2(x)=A2 e(c.βx) + B2 e(c. –βx)   (II) β=√2m(UoE)/h(в).

Коэффициент отражения: R=|B1(c. 2)/ A1(c. 2)|. Т.к. в области 3 прошедшей волне отразиться не от чего, то отражённой волны в области 3 не будет и =>B3=0. Вероятность прохождения микрочастицы через потенциальный барьер определяется коэффициентом прозрачности барьера: D=|A3(c.2)/A1(c.2)|=

=e(c.-2βL)=e(c. –2L /h(в)√2m(UoE)). Для объяснения этого явления на языке классической физике считают, что час-ца проделывает в барьере туннель и ч\з него проходит из области 1 в 3. Поэтому этот эффект называют туннельным эффектом.

Билет №11

1. Дифракционная решетка. Используя графический метод, получите выражение, определяющее положение главных максимумов и минимумов в ее дифракционной картине.

Система параллельных щелей, разделенных непрозрачными промежутками, называется дифракционной решеткой. Расстояние между щелями d=a+b называют периодом решетки.

Рассмотрим диф. реш. d=a+b, перио или пост. диф. Лучи дифрак. от двух щелей имеют опред. разность хода Δ=sinφ, δ=2πΔ/λ=2πdsinφ/ λ.

В д.р. кроме дифрак. от каждой щели происходит сложение кол–й от различ. щелей решетки, т.е. мы имеем дело с многомерной интерполяцией.

В результате интерференции колебаний в фактической плотности линзы получается результирующее колебания с амплитудой А значение которой зависит от угла дифракции j. Для нахождения амплитуды воспользуемся  граф–м методом. Будем изображать амплитуду в виде вектора А. В–р A будет max в том случае если все в–ры A распологаются вдоль 1–й прямой (направ. в одну и туже сторону) если 2 сосед–х в–ра A повер–ты др относ др. на угол φ то это возможно только втом случае, если δ =±0,.., ±2πk, 2πdsin φ / λ =±2πk, => dsin φk λ, След–но направление угла φ, удовлет. условию, наблюдается max амплитуды (главный max). Ломаная кривая образ. в–м A будет замык–ся сама по себе в том случае, когда 1–е и послед–е в–ры A направ. в одну сторону 2πk=N δ, где N–общее число щелей реш. ±2πk =Ndsinφ/ λ => dsin φk λ /Nmin. В этом случае мы наблюдаем min вдоль направ–я угла φ. М/у 2–мя min наблюдается добав. max.

2. Решение уравнения Шредингера для водородоподобных атомов. Квантовые числа и их физический смысл.

Рассмотрим систему, состоящую из неподвижного ядра зарядом +z и 1-го электрона, находящегося около ядра (атом водорода или водородоподобная система). Потенциальная функция

U(r)=-ze(c. 2)/4πε0r(c.2). Стационарное уравнение Шредингера для этого случая имеет вид ψ+ (2m/ħ(c.2))*(E+(1/4πε0 )*(ze(c.2)/r(c.2))*ψ=0. Для решения этого уравнения удобно перейти к сферическим координатам: ψ(x,y,z)=ψ(r,θ,φ). Расчёты показывают, что это уравнение Шредингера имеет решение при любом E>0(электрон вне атома). И при E<0, удовлетворяющие условию: En=-(1/4πε0)*(mz(c.2)e(c.4)/2ħ(c.2))*(1/n(с.2)). Собственные функции содержат 3 целочисленных параметра, которые носят название квантовых чисел, n – главное квантовое число, L – орбитальное (азимутальное) квантовое число, m – магнитное квантовое число.

n=1,2,3…, L=0,…., (n-1), т.е. n значений, m=0,±1,…,±L т.е. (2L+1) значений. Квантовые числа имеют определенный физический смысл: n определяет энергию электрона в атоме. L определяет момент импульса электрона в атоме. M=√L(L+1)`*ħ. m определяет проекцию вектора момента импульса на некот-е выделенное направление(ориентация вектора M в пространстве):Nz=mħ- проекция M на внешнее направление.

3. Взаимодействие нуклонов. Свойства и природа ядерных сил.

Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами

Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е.

Ядерные взаимодействия между протонами (р-р),нейтронами (п-п), протоном и нейтроном (р-п ) одинаковы, поэтому ядерные силу обладают зарядовой независимостью. Отсюда следует, что природа этих сил отличается от природы электрических и гравитационных сил. Ядерные силы относятся к силам насыщения. Это означает, что каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Такое заключений следует из того факта, что Есв~А Если бы каждый нуклон взаимодействовал с остальными, то Есв ~А(А-1)~А2..

Билет №12

1. Метод зон Френеля. Пользуясь этим методом, получите выражение для амплитуды световой волны в точке наблюдения.

Френель предложил объединил симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают.

Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1> A2> A3

Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A=A1-A2+A3-A4…,   A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля.

Графический метод определения результирующей амплитуды.

Разобьем каждую зону Френеля на ряд еще более мелких подзон (колец) настолько узких, что можно считать что кол-я от всех т-х источников внутри такой подзоны приходит в т.P с одинаковой фазой и одной амплитудой. Будем изображать результирующ. колб. от каждой подзоны в виде вектора, длина к-го результир. амплитуда, а угол поворота фазу коллеб. такой подзоны.

2. Сплошной и характеристический рентгеновские спектры. Формула Мозли.

Рентгеновские лучи возникают при бомбардировке твёрдых мишеней быстрыми электронами. Рентгеновское излучение-коротковолновое электромагнитное излучене с                             λ=10(с. –8)—10(с. –12) м. При небольших ускоренных напряжениях наблюдается тормозное рентгеновское излучение, оно имеет сплошной спектр, максимум кот-го зависит от ускоренного напряжения. Электроны попав в вещество мишени испытывают сильное торможение, т.е. двигаются с ускорением, при этом они излучают электромагнитную волну. EU==h*(c/λmin) => λmin=hc/eU. При увеличении ускоренного напряжения на фоне сплошного рентгеновского излучения появляется характеристическое рентгеновское излучение, обусловленное переходом электронов во внутреннюю электронную оболочку атомов. Характеристические рентгеновские спектры просты и состоят из нескольких линий, кот-е обозначаются Kα ,Kβ ,Lα ,Lβ. 1/λ=R*(z-σ)(c.2)*((1/n(c.2))-(1/m(c.2))), где σ- постоянная экранирования. Мозли установил связь м\у частотой характеристических линий и z- порядковым номером элемента в таблице Менделеева. √w`=c*(z-σ) –закон Мозли, где с-сonst. Закон Мозли следует из сериальной формулы.   

3. Явление сверхпроводимости.

Закл-ся в том, что при достаточно низких температурах сопротивление нек-х пров-ков скачком умен-ся до 0. Впервые это явление было обнаружено в 1911г. голланд физиком Камерлинг-Окнес при изучении темп-й зависимости сопр-я ртути. При 20К ртуть полностью теряла свое сопротивление. Темп-ра, при к-х происходит переход в сверхпров-е сост-е наз крит-й.

Явл-е сверхпров-сти это кв эффект проявляющийся в макроскопических масштабах. Кроме полной потери сопр-я сверхпров-е сост-е хар-ся тем, что магн поле не проникает в толщу проводника (эффект Нейпнера), т е сверхпр-к явл-ся идеальным диамагнетиком. μ=0.

Внешнее магн поле м разрушить сверхпров-е сост-е. Зависимость индукции этого поля и макс тока сверхпров-сти от темп-ры имеет вид:

Теория сверхпров-сти очень сложна. В наиболее полном виде она была создана в 1957г. Бардином, Купером, Шриффером (БКШ-теория).

Идея сверхпров-сти закл-ся в след-щем:

Эл-ны в металлах кроме кулоновского отталкивания испытывает особый вид притягивания, в результате чего эл-ны объединяют куперовские пары. Расст-е м/у эл-нами в купер-й паре очень велико. Оно может превышать межатомное расст-е в металлах на много порядков. Т к куперовские пары эл-нов объединяются с противоположно напр-ным эл-ном, то суммарный спин Купер пары =0 и => куперовская пара яв-ся базоном(частица с целым спином). Базоны способны в неограниченном кол-ве накапливаться в одном энерг сост-и.

Согласованное упор-е дв-е куперовских пар в одном энерг сост-и представляют из себя сверхпров-сть. Взаимное притяжение эл-нов в куперовской паре можно объяснить след образом: эл-н при своем дв-и в кр-ле искажает поле кр реш-ки – полож заряж ионы смещ-ся по напр-ю к этому эл-ну. В рез-те чего эл-н окружает себя “шубой” из полож заряж ионов. К ней и притягивается др эл-ны. Для такого дв-я 2х эл-нов необх-ма кр реш-ка. Чем сильнее взаимодействие эл-нов с кр реш-кой, тем проще образоваться куперовской паре, а проводнику сверхпров-сть. Чем лучшей пров-стью обладает в-во в обычном сост-и, тем труднее их перевести в сверхпров-е сост-е (серебро и медь не удается перевести).

 

Билет №13

1. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии. Связь дисперсии с поглощением.

Дисп. света – это зависимость показателя преломления от длины волны l или от n т.к. n=c/u, где u - ск-ть распрост-я света в среде то дисперсия света связана с зависимостью ск-ти распространения волны в вещ-ве от длины и частоты. Различают нормальную и аномальною дисп. При нормальной дисперсии показатель преломления уменьшается с длиной волны. Норм. dn/dl<0, dn/dn>0. При аномальной дисперсии наблюдается обратная зависимость dn/dl>0, dn/dn<0. Пусть Dw- интервал частот в к-м нах. частоты отдельных волн этой суперпозиции. Если спед. частота группы волн w0, Dw<<w0, то такую совокупность волн наз. волновым пакетом. Волновой пакет ограничен в пространстве и имеет вид

Для волнового пакета справедливо DkDx=2p, отсюда k=2p/l, чем >-ше Dx тем >-ше Dk. Для волнового пакета м. выделить 2 способа для распространения фазовую и групповую. Фаз. ск-ть u=w/k – ск-ть распрастран-я т-ки с постоянной фазой. Групповая ск-ть – это ск-ть перемещения max-ма U=dw/dk.

Волновой пакет м. описать ур-ем E=∫(w0-Dw/2) (w0+Dw/2)Awcos(wt-kwr+aw)dw      При нормальной дисперсии U<u, при аномальной дисперсии U>u.

Т.к. согласно теор. Максвелла n=Öe, то дисперсия света обусловлена зависимостью диэлектрич. проницаем. от частоты. Дисп. света объясняется взаимодейств.-м эл.-маг. волны с заряжен. частиц. вещ-ва. Эл.-маг. волна заставляет вещ-во вынуждено колебаться электрон. в атомах, т.к. расс-е м/у соседними атомами в диэлектрике значительно < длины волны света, то эл-ны соседних атомов колеблются в одной фазе. В результате смещения эл-в. в атомах меняется дипольные моменты в атомах => атомы излучают вторич. эл.-маг. волны n-которых = n падающей волны т.к. эл-ны в атомах смещаются колеб-ся спифазно эти вторичные волны будут когерен-ми и при наложении интен-ть как м/у собой так и с волной. Результат интерф. зависит от их амплитуд и фаз. В однородном изотропном диэлектрике в результ. интерф. образуется проходящая волна, фазовая ск-ть к-й зависит от n, а направ. совпад. с направ. падающей эл.-маг. волны. n2=e=1+X=1+Pe/(e0E), где X-диэл.-я восприимчивость вещ-ва, Е-напряж. поля падающ. эл-маг. волны, Pe- электр. поляризов. Пусть напряж. эл-го поля направл. вдоль OX, E=Eoxcos(wt-kx+a), Pe=pen0, где pe-дипольн. момент отдельн. атома, n0- число атомов в ед. объема. Т.к. поле направ вдоль ox то pe=-ex, т.о. Pe=-exn0 => n2=1-en0x/(Eoxcos(wt-kx+a)), Запишем диф-е ур-е описыв. движен. эл-в в атоме F=ma=md2x/(d2t) на эл-н в атоме действует a) Fкул=-eEoxcos(wt-kx+a), b) Fупр=-kx=-mw02x, w0=Ö(k/x) => k=w02m,=> md2x/(d2t)=-eEoxcos(wt-kx+a)-mw02x, m- масс. эл-на. Решая это диф. ур-е окнчательно получаем n=Ö(1+n0e2/(e0E(w02-w02))). Видно что это выр-е терпит разрыв при w=w02 такой рез. получается в рез-те того что в 2-м законе Ньютона не была учтена сила трения (затухания) если учесть затухание то разрыва этой ф-ии не будет. Во всякой реальной колеб. сист. всегда есть затухание. Аномальная дисперсия набл-ся в области част-т близких к колеб. эл-в в атоме т.к. в общем случае таких частот (резонансов) м. б. несколько.

Т.к. аномальная диспер. света наблюд. на част–х близких к част–м собств. колеб. эл–в в атомах на к–х вещ–во сильно поглощ. свет, то аномальная диспер. наблюд. в области полос поглощ. вещ–ва.

2. Искусственное двойное лучепреломление. Метод фотоупругости. Эффект Керра.

В прозрачных изотропных средах и в кристаллах куб. системы может возникать двойной луч преломления под влиянием внеш. воздейс–й, в частности это происходит при мех. дифор. тв. тел.

Метод фотоупругости.

Под действием одноосной нагрузки в изотропном теле возникает анизотропия в частности анизотропия диэлектрической проницаемости. В резулт. этого в изотропном теле возникает 2–й луч преломления мерой возникающей фактической анизотропией яв–ся разность показ. преломл. обыкн. и необыкн. лучей. n0nL=ks, k–коэф. пропор–ти, s–мех. напряж. возник. в образце s=F/S. Если толщина образца L возраст. то возраст. оптич. разность хода Δ=L(n0nL)=Lks. Если обыч. и необыч. лучи когерер. то после прохода образца они м. интерферировать и добавить интерф. картину, вид к–й зависит от мех. напряж. в образце. Здесь обыкнов. и необыкнов. когер. м. если овещать образец плоскополяризов. светом, т.к. обыкнов. и необыкнов. лучи поляриз. во взаимоперпен–х пл–х. Для того чтобы получитьинтерф. карт. их кол. нужно привести к одной пл–ти. Делается это с помощью анализатора стоящего на выходе устройства.

Электрооптический эффект.

Э. эф. это возник–е 2–го луча релом–я в жидкостях и аморфн. телах под воздейст. эл–го поля, Эффект–Керра, Под деист. внеш. эл. поля в жид. и аморф. телах возникает анизотропия диэлектр–й проницаемости а рез–те чего в нах становит. возмож. 2–й луче преломл. Эф. Керра был обнаружен и в газах.

Меры возникающие фактической анизотропией яв–ся разность показ. прелом. в обыкн. и необыкн. лучей. n0nL=k1E2, D=L(n0nL)=Lk1E2, s=2pD/l=2pDLk1E2/l, b=k1/l–пост. Керра для данного вещ.

3. Электронные и дырочные полупроводники. P-n переход и его свойства.

Рассм полупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-ва валентность , к-х отлич-ся валентностью основного полупр-ка.

Пусть в 4х валент. Полупр-к внедрены атомы 5валент  примеси.

В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле.

5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси.

При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся. Такая примесь наз-ся донорной примесью. В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа. В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны.

Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь.

В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся. Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная.  В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны.

P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки.

В области p-n перехода происходит диффузия во встречных направлениях дырок и эл-нов. Эл-ны попадают из n в p-область рекомбинируя с дырками. Дырки перемещаясь из p в n-область рекомбинируют с эл-нами. В рез-те этого p-n перехода оказ-ся сильно обедненной своб носителями заряда и поэтому имеет большое электрич. Сопротив-е. Одновременно на границе p-n областей возникает двойной электрич слой, образ отриц ионами акцепторной примеси в p-области, и полож ионами донорной примеси в n-области. При нек-й концентрации ионов в двойном эл слое наступает равновесие. С т зр зонной теории, равновесие наст-ет тогда, когда срав-ся уровни Ферми p и n областей. Изгибание электрич зон в области p-n перехода обусловлено тем, что потенц энергия эл-нов p области больше, чем в n и соответственно дырок n>p области.

Подадим на p-n переход внеш напр-е. Если на p-область отриц напр-е, а на n полож (обратное), то в этом случае внеш поле совпадать по напр-ю с полем запирающ слоя и в этом случае тока ч/з p-n переход не будет. Поменяем (прямое). Если внеш поле будет больше, чем поле запир слоя, то ток будет. Если внеш поле постепенно увел-ть от 0, то ток будет плавно возр-ть, достигнув макс знач-я, когда внеш поле полностью скомпенсирует поле запир слоя.

Вольт-амперная хар-ка имеет вид:

p-n переход пропускает ток только в одном напрвлении.

Т о p-n переход яв-ся полупр-ковым диодом.

Билет №14

1. Поляризация света при отражении. Закон Брюстера.

Опыт показывает, что при падении на диэлектрик (вода, стекло) отраженный и преломленный лучи всегда частично поляризованы. Степень поляризации при этом зависит от угла падения и показателя преломления отражающей среды. При этом отраженный луч частично поляризован в плоскости, перпендикулярной плоскости падения, а преломленный - в плоскости падения. Условие полной поляризации состоит в том, чтобы угол между отраженным и преломленным лучами был равен π/2, т.е. чтобы n=sin i0/sin r= sin i0/cos i0=tg i0. Это соотношение называют законом Брюстера. Этот закон объясняется тем, что отраженный  преломленный лучи представляют собой вторичное излучение, возбужденное падающей волной. Электроны колеблются в направлении вектора Е. Однако  электрический диполь не излучает в этом направлении, максимум излучения приходится на перпендикулярное направление.

2. Уравнение Шредингера для стационарных состояний. Частица в бесконечно глубокой одномерной потенциальной яме.

Уравнение Шредингера для стационарных состояний: Если микрочас-ца находится в стационарном силовом поле(т.е. силовое поле не меняется со временем), то потенциальная функция U(x,y,z,t) не будет зависеть от времени. U(x,y,z,t)=U(x,y,z). В этом случае волновую функцию можно представить в виде произведения 2-х функций: 1 из кот-х зависит только от координат, а другая- от времени. ψ(x,y,z,t)= ψ’ (x,y,z)*α(t). Подставив это выражение во временное уравнение Шредингера, которое выглядит:

(-h(в)(c.2)/2m)*ψ+=i h (в) ∂ψ/∂t можно показать, что

α(t)=e(c. –i(E/h(в))t). Подставив это выражение во временное уравнение Шредингера можно получить стационарное уравнение Шредингера: ψ+2m(E-U) ψ/h(в)(с.2)=0.Где E-полная энергия частицы. U=U(x,y,z)- потенциальная функция описывающая стационарное силовое поле, в кот-м находится час-ца. Волновые функции ψ, кот-е удовлетв-т этому уравнению при заданном виде U потенциальной функции называются собственными волновыми функциями. Значения энергии E, при котором это уравнение имеет решение наз-ся собственными значениями энергии. Результат решения уравнения Шредингера будет зависеть от вида потенциальной функции U(x,y,z). Если частица свободна, то на неё не действуют никакие силовые поля и U(x,y,z)=0. В этом случае одномерное уравнение Шредингера будет иметь вид:

d(c.2)ψ/dx(c.2)+2mEψ/h(в)(c.2)=0. Это волновое уравнение, решением кот-го явл-ся плоская монохроматическая волна.

Ψ(х)=e(c.i(wt-kx))=e(c.–i(px-Et)/h(в);E=h(в)w, k=2π/λ=2π/(h(в)/p))=p/h(в). Т.о. волновая функция свободной частицы представляет из себя  плоскую монохроматическую волну Де-Бройля.

Частица в бесконечно глубокой одномерной потенциальной яме.

Зададим потенциальную функцию U(x) в виде U(x)=∞ при х<0 x>a. U(x)=0 при 0≤х≤a. Такое потенциальное поле называется потенциальной ямой. Т.к. яма бесконечно глубокая, то за её пределы частица выйти не может и следовательно вероятность обнаружить частицу в области 1 и 3 =0.=> в области 1 и 3 ψ(х)=0.

Т.к. волновая функция должна быть непрерывной, то ψ(0)= ψ(a)=0. Запишем уравнение Шредингера для области 2: d(c.2)ψ/dx(c.2) + (2m/h(в)(с.2))*E ψ = 0

Обозначим k(c. 2)= (2m/h(в)(с.2))*E.

Ψ’’+ k(c. 2)Ψ=0.  – волновое уравнение, решением которого является функция вида: ψ(х)=b*sin(kx+α). Из условия ψ(0)=b*sin(0+α)=0, sin(0+α), α=0.      ψ(a)=b*sin(ka+α)=0//b<>0=>ka=πn, где n=1,2,3,…=>

k=πn/a, где n=1,2,3,… π(c.2)n(c.2)/a(c.2)=2mE/h(в)(с.2)=>

E=π(c.2)*h(в)(с.2)n(c.2)/2ma(c.2).

Частицы внутри потенциальной ямы могут только дискретный ряд значений, т.е. частицы в потенциальной яме квантуются. n-главное квантовое число, оно определяет энергию микрочас-цы. b определим из условия нормировки волновой функции: =>b=. Волновая функция частицы внутри потенциальной ямы имеет вид: ψ(х)= √(2/a) sin(πnx/a).        

3. Основы квантовой теории электропроводности металлов.

Первоначально в кв т мет-ов, также как и в классич теории, вводится понятие о газе своб эл-нов. Т к внутри мет-ла эл поле отсутствует, а для того, чтобы выйти за пределы мет-в эл-н должен преод-ть раб выхода, то можно считать, что газ своб эл-нов представляет из себя эл-ны нах-ся в потенц яме, дно к-й плоское, а длина = работе выхода.

Первоначально в кв т учитывалось, что эл-ны явл-ся фермионами (частицы с полуцелым спином) и поэтому подчиняются принципу запрета Паули => согласно кв т эл-ны занимают внутри этой ямы все уровни, начиная с самого высшего до уровня Ферми. => глубина потенц ямы нужно отсчитывать не от ее дна, а от уровня Ферми.

При помещении пров-ка во внеш эл поле согласно классич теории понимают упорядоченное дв-е всех своб эл-ны. Согласно кв т упор-е дв-е появ-ся только у эл-нов нах-ся вблизи уровня Ферми.

Согласно класс теории причиной сопротивления пров-ков яв-ся рассеяние эл-нов  проводимости на дефектах кр реш-ки. Согласно кв т – распространение волн де-Бройля.

  

Билет №15

1. Зоны Френеля. Получите выражение для радиуса зон Френеля в случае сферического и плоского фронта световой волны.

Френель предложил объединить симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают.

Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1> A2> A3

Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A=A1-A2+A3-A4…,   A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля.

Пусть на пути сферич. фронта свет. волны распол. непрозрачный экран, к-й открыв. 1-е m зон Френеля.

  1.  четное A=A1/2+(A1/2-A2+ A3/2)+ A3/2+…+ (Am-1/2-Am)=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am

2. m-нечетное A=A1/2+(A1/2-A2+ A3/2)+…+ (Am/2-Am-1 Am/2)+Am/2=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am, => A=(A1+Am)/2

Если отверст. открыв. четное число зон Френеля то в т. P наблюд. min, если нечетное – то max.

Пусть на пути сферич. фронта свет. волны распол. круглый непрозрачный диск, к-й закрыв. 1-е m зон Френеля.

A= Am+1-Am+2+Am+3-Am+4+…=Am+1/2+(Am+1/2-Am+2+ Am+3/2)+(Am+3/2-…=Am+1/2  

Видно что в т.P всегда наблюд. max. Расчитаем радиус зон Френеля.

rm2=a2-(a-h)2=(b-ml/2)2-(b+h)2, пренебрегая величинами порядка l2 окончательно получаем

rm=Ö(abml/(a+b) сферический фронт свет. волны

rm=lima®¥Ö(abml/(a+b))=Ö(bml) -плоский фронт свет. волны.

2. Уравнение Шредингера для квантового гармонического осциллятора и его решение. Энергия квантового гармонического осциллятора. Нулевые колебания.

Гармонический осциллятор- частица, на которую действует сила стремящаяся вернуть её в положение равновесия и пропорциональная величине смещения частицы из положения равновесия. F=-Ux; U=1/2*k*x(c.2); w=√k/m`; k=mw(c.2);

U=1/2*mw(c.2)x(c.2), где w-частота собственных колебаний частицы. Уравнение Шредингера для гармонического осциллятора(ГО) будет:

d(c.2)Ψ/dx(c.2)+(2m/ħ(c.2))*(E-(mw(c.2)x(c.2)/2))*Ψ=0. Это уравнение имеет решение при собственных значениях энергии: En=(n+(1/2))ħw, n=0,1,2,… Видно, что энергия ГО квантуется. Нулевые колебания. Согласно классической физике при абсолютном нуле температуры всякое движение  прекращается. Рассмотрим энергию квантового ГО. При уменьшении температуры n будет уменьшатся и при абсолютном нуле n станет =0. Однако, E0w/2, т.е. энергия не равна 0. Эта энергия наз-ся энергией нулевых колебаний, а сами колебания- нулевыми, т.е. согласно квантовой механике при абсолютном нуле температуры движение не прекращается: остаются нулевые колебания.

3. Взаимопревращение нуклонов при β-распаде.

Бета - распад объединяет три вида ядерных превращений электронный (β-) распад, позитронный (β+} распад и электронный захват. При изучении В - распада пришлось столкнуться со следующими фактами: I. В отличие от α - распада, где  α- частица имеет определенное значение энергии, при β - распаде кинетические энергии вылетающих электронов (позитронов) лежат в пределах от 0 до Емакс , т.е. вылетающие электроны имеют сплошной спектр. Величина Емакс=(my+me-mx)c2 имеет, определенное значение для каждого изотопа Сплошной β- спектр как бы - противоречит закону сохранения энергии, т.к. нет определенной энергии Еβ, у вылетающей частицы  2. После открытия нейтрона стало ясно, что ядра атомов состоят из протонов и нейтронов и в их состав не входят ни электроны , ни позитроны. 3. Электрон или позитрон, вылетающие при β - распаде уносят с собой собственный момент количества движения.(спин), равный ħ/2 => ядра с четным числом нуклонов, обладающие целым спиной, после β -распада должны были бы иметь полуцелый спин при четном числе нуклонов.

Для преодоления указанных трудностей Паули предложил гипотезу нейтрино. Согласно этой гипотезе в каждом акте β - распада наряду с β - частицей испускается еще другая незаряженная частица со спином ħ/2 При позитронном распаде испускается нейтрино ( AZX-> AZ-1Y+ 0-1e-v), а при электронном – антинейтрино ( AZX-> AZ+1Y+ 0-1e+v~). Они отличаются направлением спина. В третьем типе β - распада - электронном захвате материнское ядро с избытком протонов захватывает орбитальный электрон из атомных оболочек. После захвата, как и в позитронном распаде, один протон превращается в нейтрон: . Электронный захват обозначают как и оболочку К-захват, L- захват и т.д.

Билет №16

1. Вращение плоскости поляризации.

Некоторые вещества, называемые оптически активными обладают способностью, при пропускании через них линейно поляризованного света,  поворачивать плоскость поляризации. К ним относятся кварц, растворы оптически активных веществ (раствор сахара и др.). Кристаллические вещества сильнее всего вращают плоскость поляризации, если свет распространяется вдоль оптической оси, Угол поворота φ  пропорционален пути луча l  в кристалле φ=αl

Здесь  φ- постоянная вращения. Например, для кварца α=21,7 град/мм. В растворах угол поворота φ  зависит и от концентрации активного вещества: φ=[α]cl

Здесь [α] - величина, называемая удельной постоянной вращения. Различают право и левовращающие вещества.

Это явление вызывается особым расположением ионов кристалла вокруг рассматриваемого направления.

2. Распределение энергии по длинам волн в спектре излучения абсолютно черного тела. Законы Вина.

Аб. ч. тело–это тело к–е полностью поглощ. падающий на него излучение (не отраж.). Моделью а.ч. тела может  служить маленькое отверстие в полой сфере.

Анализ получ. эксперимент. закономерн. позволили сформул. законы излуч.

  1.  Стефана–Больцмана Rэ=sT4, пост. Ст–Б. s=5.71*10–8, если тело не яв–ся А.ч. то Rэ=ksT4, где k–нек–ий коэф. наз. степенью нечерноты 0<=k<=1
  2.  Закон смещения Вина lmax=b/T, b–1–я пост. Вина b=2.898*10–3, lmax–длина волны на к–ю приход. max излучательной способн. А.ч.тела.
  3.  2–й закон Вина e0(lmax,T)=b1T5, b1–2–я пост. Вина b=1.29*10–5,

Попытки дать объясн. эксперим. кривой e(l,T) на основе класич физики приводили к завис.: e(l,T)~1/l  (Рэлея–Джинса).

Формула Р.–Д. согласовывается с экспериментальной кривой только в области больших длин волн при 0 => e(l,T)®¥.    

Расхождение ф. Р.–Д. с экспериментальной кривой в области малых длин волн было названо “ультрафиолетовой катастрофой”. Классич. физика оказалась не способна объяснить излучен. нагрет. тел. Получить теорет. зависимость e(l,T) удалось Максу Планку путем отказа от теории о непрер. излучен. энергии нагрет. тел.

3. Закон радиоактивного распада. Период полураспада и время жизни радиоактивного ядра. Активность радиоактивного изотопа.

Отдельные радиоактивные ядра испытывают распад независимо друг от друга, поэтому количество распавшихся ядер dN за время dt пропорционально числу имеющихся ядер N и времени-(1),где λ- постоянная распада, характерная величина для данного вещества. Знак минус указываот на убыль радиоактивных ядер. Из (1)  находим уравнение (закон) радиоактивного распада ,где N0-начальное количество ядер , N - количество нераспавщихся ядер к моменту времени t .   

Время, за которое распадается половина первоначального количества ядер, называется периодом полураспада Т_.

Т.к. активность распада ядра носит случайный характер, то постоянная распада λ характеризует .вероятность распада. Обратная же ей величина называется средним временем жизни радиоактивного ядра:

Радиоактивные вещества характеризуются активностью, равную числу ядер, распадающиеся за 1 с:   За единицу активности принят 1Бк (беккерелях) = 1распад/с. Часто пользуются внесистемной единицей I Кю (кюри) равно3,7*1010 расп/с. Активность радиоактивного вещества массой m  равна где NA – число Авогадро, А – атомная масса.

Билет №17

1. Поглощение света. Закон Ламберта-Бера. Причина поглощения света в диэлектриках и проводниках.

Поглощение света или адсорбция – это уменьшение интенсивности света при распрост. волны в вещ. (фронт волны плоск.). При поглащ. энергия эл-маг. волны переходит во внутр. энергию поглощающ. вещ-ва (оно нагревается). Рассм. слой погл. вещ-ва толщ. l, пусть на него падает параллель. пучек света интенс. I0 вылим внутри поглощ. слоя слой dx. Уменьшение интенс. света при прохождении слоя толщины dx: dI~–Idx, dI=–aIdx. Интегрируя получаем закон Ламберта–Бугера: I= I0eal, I–интенс. света прошед. слой поглощ. вещ–ва толщ. l. Если поглощ. вещ–во растворено в непоглощ. раствор. то a0=a1c, где c–концентр. поглощ. вещ–ва, a1–коэф. поглощ. отнесен. к ед. конц. a1,a зависят как от природы поглощающегося вещ–ва так и от длины волны падающ. света.

Диэлектрики, в них нет своб. эл–в, поглощ. света обусловл. по резон. при вынуж. колеб. эл–в в атомах, поэтому поглащ. света селективно.

Металлы–в них много своб. эл–в, в поле падающ. свет. волн своб. эл–ны соверш–ют след. движен. и получ. вторич. волны. Накопление первич. и вторрич. волн дает интенсивно отраженную волну слабо преломленную, быстро затух. ее энергия перех. в тепло. Поглощ. света в металле не селективно. Т.к. аномальная диспер. света наблюд. на част–х близких к част–м собств. колеб. эл–в в атомах на к–х вещ–во сильно поглощ. свет, то аномальная диспер. наблюд. в области полос поглощ. вещ–ва.

2. Физическая природа химической связи. Обменное взаимодействие.

Для объяснения образования отдельных молекул химия вынуждена была ввести понятие о некот-х химич-х силах. Однако позже установили: никаких хим. сил нет и все они сводятся к обычным электрическим взаимодействиям заряженных частиц. Различают 2 вида связей м\у атомами в молекуле: гетерополярная(ионная) и гомеополярная (ковалентная). При гетерополярной связи электроны от одного атома переходят к другому и связь возникает за счёт разноименно заряженных частиц. Ковалентные связи обусловлены тем, что при образовании такой связи электроны отдельных атомов обобществляются. Ковалентная связь имеет квантово-обменный характер. Обменное взаимодействие - специальное взаимодействие тождественных частиц. Оно эффективно возникает в том случае, если перекрываются волновые функции отдельных частиц.

3. Собственные и примесные полупроводники и их зонная структура. Положение уровня Ферми в них.

Полупр-ки – в-ва, у к-х ширина запрещ-й зоны составляет величину порядка 1 эВ.

Рассм полупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-ва валентность , к-х отлич-ся валентностью основного полупр-ка.

Пусть в 4х валент. Полупр-к внедрены атомы 5валент  примеси.

В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле.

5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси.

При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся.

Такая примесь наз-ся донорной примесью.

В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа.

В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны. Уровень Ферми в полупр-ке n-типа смещен по напр-ю к потолку запрещ зоны.

Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь.

В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся.

Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная. В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны.

Хим-ски чистые в-ва яв-ся собств полупр-ками. Рассм 4хвалентный полупр-к Ge (германий). Четыре связи с соседними атомами, образованы восемью эл-нами (по четыре от каждого атома). Каждый эл-н обр-ет связь с противоположно направ-ми спинами. При низк темп-ре все связи оказываются укомплектованными эл-нами и своб эл-нов в полупр-ке нет. При увел темп-ры за счет энергии хим-го дв-я происходит отрыв эл-нов от одной из связи. При этом на месте ушедшего эл-на остается дырка. Дырка локализована на какой-то одной связи в кристалле и своб перем-ся по кристаллу не может. Оторвавшийся же эл-н может своб-но перем-ся по кр-лу.

Если приложить внешнее эл поле, то эл-н будет перем-ся против поля. Дырку же может занять эл-н из соседней связи. Путем таких перескоков дырка будет перем-ся по полю, а эл-н против поля. Дв-е дырки можно рассм-ть как дв-е полож заряж частиц. Когда своб эл-н занимает место дырки исчезает одновременно и своб эл-н и дырка. Такой процесс наз-ся рекомбинацией. Т о в хим-ски чистых полупр-ках появл-ся одновр-но своб эл-ны и дырка, причем кол-во их одинаково. Проводимость собств полупр-ков яв-ся электронно-дырочными. С т з зонной теории эл-н задействованный в создании хим-х связей в кр-ле нах-ся в валентной зоне.

При сообщении ему достаточной энергии он преодолевает запрещ-ю зону и переходит в зону проводимости. При этом в валентной зоне образ-ся дырка. Такой переход будет осуществляться прежде всего с верхних уровней валентной зоны. По мере увеличения энергии в зону проводимости будут переходить эл-ны со все более глуб-х уровней валентной зоны. Поэтому энергия дырки тем больше, чем глубже она нах-ся в валентной зоне. Эл-н в зоне проводимост и дырку в валентной зоне можно рассм-ть как своб-е носители заряда в собств полупр-ке. По мере увел-я темп-ры число таких носителей будет возрастать. Уровень Ферми в собств полупр-ках нах-ся в сер-не запр-й зоны.

Билет №18

1. Дифракция Френеля на круглом отверстии и круглом непрозрачном диске. Используя метод зон Френеля, получите выражение для амплитуды результирующего колебания световой волны для этих случаев.

Френель предложил объединил симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают.

Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1> A2> A3

Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A=A1-A2+A3-A4…,   A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля.

Пусть на пути сферич. фронта свет. волны распол. непрозрачный экран, к-й открыв. 1-е m зон Френеля.

  1.  четное A=A1/2+(A1/2-A2+ A3/2)+ A3/2+…+ (Am-1/2-Am)=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am

2. m-нечетное A=A1/2+(A1/2-A2+ A3/2)+…+ (Am/2-Am-1 Am/2)+Am/2=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am, => A=(A1+Am)/2

Если отверст. открыв. четное число зон Френеля то в т. P наблюд. min, если нечетное – то max.

Пусть на пути сферич. фронта свет. волны распол. круглый непрозрачный диск, к-й закрыв. 1-е m зон Френеля.

A= Am+1-Am+2+Am+3-Am+4+…=Am+1/2+(Am+1/2-Am+2+ Am+3/2)+(Am+3/2-…=Am+1/2  

Видно что в т.P всегда наблюд. max. Расчитаем радиус зон Френеля.

rm2=a2-(a-h)2=(b-ml/2)2-(b+h)2, пренебрегая величинами порядка l2 окончательно получаем

rm=Ö(abml/(a+b) сферический фронт свет. волны

rm=lima®¥Ö(abml/(a+b))=Ö(bml) -плоский фронт свет. волны.

2. Решение уравнения Шредингера для водородоподобных атомов. Пространственное распределение электрона в атоме водорода.

Рассмотрим систему, состоящую из неподвижного ядра зарядом +z и 1-го электрона, находящегося около ядра (атом водорода или водородоподобная система). Потенциальная функция U(r)=-ze(c. 2)/4πε0r(c.2). Стационарное уравнение Шредингера для этого случая имеет вид ψ+ (2m/ħ(c.2))*(E+(1/4πε0 )*(ze(c.2)/r(c.2))*ψ=0. Для решения этого уравнения удобно перейти к сферическим координатам: ψ(x,y,z)=ψ(r,θ,φ). Расчёты показывают, что это уравнение Шредингера имеет решение при любом E>0(электрон вне атома). И при E<0, удовлетворяющие условию: En=-(1/4πε0)*(mz(c.2)e(c.4)/2ħ(c.2))*(1/n(с.2)). Решение уравнения Шредингера удобно искать в виде ψ(r,θ,φ)=R(r)θ(θ)Ф(φ), т.е. представим волновую функцию в виде произведения 3-х функций, каждая из кот-х зависит только от 1 переменной. R(r)-радиальная функция распределения; θ(θ) и Ф(φ) – функции углового распределения. В зависимости от значения орбитального квантового числа L=0,1,2,3,… состояние электрона в атоме обозначают s,p,d,f. Для электрона 1s-состоянии(n=1,L=0) функция радиального распределения R(r) имеет вид:

Максимум этой функции приходится на r=0,529Å, т.е.                          совпадает с 1-м боровским радиусом. Функция углового распределения для 1s состояния:

Для электронов p-состояний функция углового распределения имеет вид в зависимости от значения магнитного квантового числа:

Видно, что современным представлениям соответствуют не орбиты, по кот-м движется электрон в атоме, а некоторая совокупность положений электронов в атоме(электронное облако, форма кот-го определяется значением квантовых чисел m, n, L, поэтому вместо термина орбита используют термин орбиталь. Каждой орбитали соответствует своё состояние электрона в вакууме, описанное волновой функцией.

                  Mz=mħ

                  p-состояние: L=1;m=0,±1

Видно, что положение вектора М в пространстве квантуется. Он может принимать только определённое положение в пространстве. Энергия электрона в атоме зависит от главного квантового числа n. Однако, при данном значении n, кроме n=1, значение L и m могут быть разными. Это значит, что одному и тому же уровню энергии En(собственное значение энергии) соответствует несколько различных состояний, каждое из которых описано своей волновой функцией. Состояния с одинаковыми энергиями наз-ся вырожденными. Число состояний, обладающих данным значением энергии En наз-ся кратностью вырождения. Кратность вырождения  можно сосчитать по формуле:  Σ[L=0, n-1] (2L+1)=2*n(c.2).

3. Закон радиоактивного распада. Правила смещения для α- и β-распадов.

Отдельные радиоактивные ядра испытывают распад независимо друг от друга, поэтому количество распавшихся ядер dN за время dt пропорционально числу имеющихся ядер N и времени-(1),где λ- постоянная распада, характерная величина для данного вещества. Знак минус указываот на убыль радиоактивных ядер. Из (1)  находим уравнение (закон) радиоактивного распада ,где N0-начальное количество ядер , N - количество нераспавщихся ядер к моменту времени t .   

Время, за которое распадается половина первоначального количества ядер, называется периодом полураспада Т_. Т.к. активность распада ядра носит случайный характер, то постоянная распада λ характеризует вероятность распада. Обратная же ей величина называется средним временем жизни радиоактивного ядра:

Радиоактивные вещества характеризуются активностью, равную числу ядер, распадающиеся за 1 с:   За единицу активности принят 1Бк (беккерелях) = 1распад/с. Часто пользуются внесистемной единицей I Кю (кюри) равно3,7*1010 расп/с. Активность радиоактивного вещества массой m  равна где NA – число Авогадро, А – атомная масса. Правила смещения для α и β-распадов:

AZX-> A-4Z-2Y+ 42α (Заряд ядра уменьшается на две единицы, а массовое число  на 4.)

 AZX-> AZ+1Y+ 0-1e (Из материнского ядра образуется дочернее ядро, расположенное на одно место правее в табл Менд-ва).

Билет №19

1. Дифракция рентгеновских лучей. Формула Вульфа-Брейта.

В изучении строения электронных оболочек большую роль сыграли рентгеновские лучи, открытые Рентгеном. Эти  лучи возникают при прямом взаимодействии летящих с катода электронов с атомами материала анода. Для их получения используются специальные рентгеновские трубки, в которых между катодом и анодом создается напряжение. Рентгеновские лучи представляют собой короткие электромагнитные волны. Волновая электромагнитная природа этих лучей была доказана опытами по дифракции электронов на кристаллах, проделанных Лауэ с сотрудниками. Кристалл, состояния из упорядочение расположенных частиц, представляет собой пространственную дифракционную решетку, дифракцию рентгеновских лучей можно рассматривать как результат их отражения от системы параллельных атомных, плоскостей, Для того, чтобы лучи, отраженные от соседних плоскостей, усиливали друг друга, необходимо, чтобы разность хода между ними была равна целому числу волн (интерференционные максимумы), те Δ=АВ+ВС=2dsinj=kl => максимумы интенсивноcтей дифрагирован-ных лучей будут наблюдаться для углов, удовлетворяющих условию 2dsinj=kl.

Эта формула называется формулой Вульфа-Брэгга. Существует две разновидности рентгеновских лучей, причины возникновения которых совершенно различны. Одна из компонент представляет собой тормозное излучение, имеющая непрерывный спектр.

Возникновение этого излучения можно объяснить так. Вокруг движущегося электрона существует магнитное поле. При ударе об анод происходит резкое изменение скорости электрона и соответственно магнитного поляг в результате чего возникают электромагнитные волны. Сплошной спектр такого излучения объясняется тем, что различное электроны по разному тормозятся атомами анода, что и приводит к излучению различных волн. Согласно квантовой теории часть кинетической энергии электрона переходит при соударении в тепло W , остальная часть в энергию фотона рентгеновского излучения: hn=mu2/2–W. Т.о. с формальной точки зрения возникновение тормозного рентгеновского излучения обратно внешнему фотоэффекту.

2. Колебательные и вращательные спектры молекул. Колебательное и вращательное квантовые числа.

Изменение энергии в молекулах происходит в основном, как и в атоме за счёт изменения электронной конфигурации, образования периферич-й части молекул. Однако, при данной электронной конфигурации ядро в молекуле может колебаться относительно положения равновесия и молекула может вращаться как целое. Этим двум видам движения соответствует колебательная Eυ  и  вращательная Eвр энергии, которых не может быть у отдельного атома. Эти 2 вида энергии также квантуются. Eυ=(ħw/2)*(υ+1), где υ=0, 1, 2, … - колебательное квантовое число. Eвр=(ħ(с.2)/2I)*(I+1)*J, где I=0, 1, …-момент инерции молекул. J- вращательное квантовое число. Таким образом, энергия молекулы будет складываться из 3-х частей: E= Ee +Eυ +Eвр. Всегда: Ee >Eυ >Eвр. По порядку величины этих энергий можно оценить так: Ee :Eυ :Eвр=1:√me/M`: me/M. me-масса электрона; M-масса молекулы. Переходы только м\у электронными уровнями обуславливают электронными спектрами молекулы, кот-е наблюдаются в видимой и ультрофиолетовой областях спектра. Переходы только м\у колебательными уровнями обуславливают колебательные спектры молекулы, кот-е наблюдаются в инфракрасной области спектра. Переходы только м\у вращательными уровнями обуславливают вращательные спектры молекулы, кот-е наблюдаются в дальней инфракрасной области спектра и микроволновом диапазоне спектра. В общем случае частота излучённого или поглощённого фотона может быть определена по формуле: ▲E=,

ν=▲E/h=(▲Ee/h)+(▲Eυ /h)+(▲Eвр/h). Всегда для любой молекулы:

Ee >>▲Eυ >>▲Eвр.

3. Ядерные реакции и законы сохранения. Энергия ядерной реакции.

Ядерными реакциями называются превращения атомных ядер, происходящие.в результате их взаимодействия с элементарными частицами или друг с другом. Обычно ядерная реакция  вызывается бомбардировкой ядер мишени ZХА потоком ускоренных частиц: α- частиц, протонов, нейтронов и т.д. В результате интенсивного взаимодействия  исходного ядра и налетающей частицы, а образуется новое ядро и некоторая частица b,разлетающиеся в различных направлениях. Ядерную реакцию, как и химическую, обычно записывают в  виде уравнения.

Экспериментально было установлено, что яд реакции вызываемыми не очень быстрыми частицами проходит в 2 этапа: X+a->П->Y+b

На 1м этапе, в рез-те взаимод-я матер ядра X и элем частицы а образ-ся промеж ядро П (составное ядро). За очень короткое время энергия привнесенная частицей а перераспределяется м/у нуклонами состав ядра П, в рез-те чего оно оказ-ся в возб-м сост-и. На 2м этапе реакции сост ядро П превращается в дочернее ядро Y с одноврем-м испусканием эл част b. Если част а и b тожд-ны, то такой процесс наз-ся рассеянием. Яд реакции, вызыв-емые быстрыми част-ми происходит без образ-я промеж ядра П наз-ся прямыми.

В ядерных реакциях выполняются те же законы сохранения. что и при радиоактивном распаде: законы сохранения энергии, импульса, электрического заряда, количества нуклонов, спина.

Закон сохранения энергии в реакции  учитывая, что полная энергия ядер и частиц равна энергии покоя и кинетической энергии будет: ;

Изменение кинетической энергии в реакции называют энергией реакции или тепловым эффектом . Как видно . В эндотермической реакции Q>0 происходит преобразование части энергии покоя ядра мишени и бомбардирующей частицы в кинетическую энергия продуктов реакции. Такая реакция становится возможной; лишь при некоторой минимальной энергии налегающей частицы, которая называется пороговой энергией данной эндотермической реакции:

Билет №20

1. Интерференция света. Когерентные волны. Условия максимумов и минимума. Способы получения когерентных волн.

Явление интерференции света состоит в отсутствии простого суммирования интенсивности волн при их наложении т.е. взаимном усилении волн одних т-к прост-ва и ослабления в др-х.

Устойчивую картину интерференции света дают только когерентные волны. Две волны яв-ся когер-ми если:

  1.  l1=l2 или n1=n2  
  2.  Δφ=const
  3.  Ë1= Ë2 (Волны поляризованы в одной пл-ти).

Оптической длиной пути наз. Величина =-я произвед-ю геометр-й длины пути на показатель преломления среды в которой распростр-ся луч света. Оптическая разность хода 2-х лучей D=l1n1-l2n2. max-м интерф-ии наблюдается если D=2ml/2, (m=0,1,…) min-м если D=(2m+1)l/2, (m=0,1,…).

Способы получения когерентных волн

1)Бипризма Френеля   2)Бизеркала Френеля   3)Билинза Бийе 4)зеркало Ллойда

Получить когерентные источники света можно, если при помощи какой-либо оптической установки образовать два его изображения. В качестве примера получения интер-й картины рассм. Зеркала Френеля - два плоских зеркала расположенных под малым углом.

Когерентными источниками являются мнимые изображения S1 и S2. Попадая на экран, лучи S1 и S2 создают устойчивую интер-ю картину в виде чередующихся темных и светлых полос.

2. Закономерности в спектре излучения атома водорода. Сериальная формула.

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: ν=1/λ=R(1/n2 – 1/m2). n=n+1, n+2,.. λ=1,2,3,… (сериальная ф-ла) R=1,092*10м-1 пост-я Ридберга. В общем случае записывают 1/λ=Rz2(1/n2 – 1/m2).

Энергия фотона преш-го с уровня n на m: hv=Em-En=(hz2me4/(4πε0)22)(1/n2-1/m2).

Серия Лаймона – ν=1/λ=R(1/1 – 1/n2), n=2,3,4…,в УФ области.

Серия Бальмера – ν=1/λ=R(1/22 – 1/n2), n=3,4,5… видимая область и близкая УФ. Серия Пашена – ν=1/λ=R(1/32 – 1/n2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

3. Энергия связи ядра. Удельная энергия связи и ее зависимость от положения элемента в таблице Менделеева.

Масса ядра всегда меньше суммы масс нуклонов, из к-х оно состоит Δm=z*mp+(A-z)*mn-mя - дефект масс. Энергия связи ядра: Eсв= Δm2= (z*mp+(A-z)*mn-mя)*с2

Удельная энергия связи: Eуд= Eсв/A (приходящая на один нуклон).

Размер ядра сост порядка 10-15м. Из кривой видно, что при делении тяж ядер (уран) появл-ся осколки деления находящиеся в средней части табл Менд. При этом разность отдельных энерг связей в конце и середине при делении выделяются в качестве энергии реакции.

Если перемещ-ся из начала табл Менд в ее середину энерг выход таких реакций будет знач-но больше – реакции термоядерного синтеза.

Билет №21

1. Выведите условие интерференциальных максимумов и минимумов при наложении двух когерентных волн.

Явление интерференции света состоит в отсутствии простого суммирования интенсивности волн при их наложении т.е. взаимном усилении волн одних т-к прост-ва и ослабления в др-х.

Устойчивую картину интерференции света дают только когерентные волны. Две волны яв-ся когер-ми если:

  1.  l1=l2 или n1=n2  
  2.  Δφ=const
  3.  Ë1= Ë2 (Волны поляризованы в одной пл-ти).

Оптической длиной пути наз. Величина =-я произвед-ю геометр-й длины пути на показатель преломления среды в которой распростр-ся луч света. Оптическая разность хода 2-х лучей D=l1n1-l2n2. max-м интерф-ии наблюдается если D=2ml/2, (m=0,1,…) min-м если D=(2m+1)l/2, (m=0,1,…).

Рассмотрим 2 когер-е волны, к-е налагаются др. на др. возбуждают в нек-й т-ке прост-ва результир-е кол-я.

A2=a12+a22+2√(a1a2)cosd, d=a2-a1 m=0,1,…

Ë1(r,t)=A1cos(wt+kr1+a1), Ë2(r,t)=A2cos(wt+kr2+a2).

Наиболее отчетливая интерф-я картина наблюлается когда A1= A2.

I=I1+ I2+2√(I1 I2)cosd.

Если налаг. волны не когерен. То 2-е условие не выполняется и угол d будет менятся со временем т.к. всякий фотоприемник обладает инерционностью то он будет усреднять значение интенсивности, среднее значение <cosd>=0 т.к. 0<=d<=p то I=I1+ I2= 2I1 т.е. в случае некогерентных волн происходит простое суммирование интенсивности. Если волны когерентны то D=const и в зависимости от значения этого угла -1<cosd<1 след-но при наложении когер-х волн Imax=4I1, Imin=0 (A1= A2). Обычные источники света дают не когерентное излучение.

2. Объясните возникновение потенциального барьера на границе полупроводников p- и n-типа.

P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки.

В области p-n перехода происходит диффузия во встречных направлениях дырок и эл-нов. Эл-ны попадают из n в p-область рекомбинируя с дырками. Дырки перемещаясь из p в n-область рекомбинируют с эл-нами. В рез-те этого p-n перехода оказ-ся сильно обедненной своб носителями заряда и поэтому имеет большое электрич сопротив-е. Одновременно на границе p-n областей возникает двойной электрич слой, образ отриц ионами акцепторной примеси в p-области, и полож ионами донорной примеси в n-области. При нек-й концентрации ионов в двойном эл слое наступает равновесие. С т зр зонной теории, равновесие наст-ет тогда, когда срав-ся уровни Ферми p и n областей. Изгибание электрич зон в области p-n перехода обусловлено тем, что потенц энергия эл-нов p области больше, чем в n и соответственно дырок n>p области.

3. Соотношение неопределенностей Гейзенберга. Применяя соотношение неопределенностей показать, что для движущейся частицы, неопределенность координаты, которой равна длине волны де-Бройля, неопределенность скорости равна самой скорости.

Во всех макроскопических системах электрон ведет себя как частица, локализованная в малом объеме, обладающая определенной координатой и скоростью. При движении электрона в атоме проявляются его волновые свойства в большей степени, как и во всех микроскопических частицах, но волна не локализована в пространстве, а безгранична.

Пусть электроны движутся в направлении ОА со скоростью Vx и встречают узкую щель ВС с шириной а. DE – экран, на который будут попадать электроны. Т.к. электроны обладают волновыми свойствами, то при прохождении через узкую щель они дифрагируют, в результате чего электроны будут попадать не только в точки экрана DE, расположенные непосредственно за щелью, но распределяется по всему экрану. Представим, что электрон – классическая частица. Она характеризуется координатой и количеством движения. Можно охарактеризовать координату электрона в момент прохождения щели как координату щели. В таком определении координаты, однако, есть неточность, обусловленная шириной щели. Обозначим эту неопределенность через ∆x=a. После прохождения щели составляющая импульса Px≠0, т.к. вследствии дифракции изменяется скоростью. Составляющая импульса электрона не может быть определено точно, а лишь с некоторой погрешностью ∆PxPsinφ1=/a=/λa=h/a; ∆Px*∆xh (1) – соотношение неопределенностей Гейзенберга.




1. Принципы Неймана
2. Правовое регулирование в конкретных ситуациях
3. Эти документы перечитываются в банке помногу раз в зависимости от сложности проводимых операций и появлени
4. Тема Миграционные процессы в России и на постсоветском пространстве Определение миграции населения
5. Законопроектные работы 1994 г
6. Предпосылки и перспективы развития туристических связей Республики Беларусь и Польши
7. 13 14 EIVo В11 4
8. варианты Под ред1
9. Лекция Экономический анали
10. Сущность, объект и предмет управления.html