Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Электрический импеда́нс (комплексное сопротивление, полное сопротивление) комплексное сопротивление двухполюсника для гармонического сигнала.
В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения к току на нём, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального конденсатора к бесконечности.
Сопротивление правильно описывает свойства катушки и конденсатора только на постоянном токе. В случае же переменного тока свойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. Такое поведение сопротивлением уже не описывается, поскольку сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов тока и напряжения.
Было бы удобно иметь некоторую характеристику и для реактивных элементов, которая бы при любых условиях связывала ток и напряжение на них подобно сопротивлению. Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при гармонических воздействиях на них. В этом случае ток и напряжение оказываются связаны некоей стабильной константой (подобной в некотором смысле сопротивлению), которая и получила название электрический импеданс(или просто импеданс). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов и систем.
Импедансом называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени: если время t в выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.
(1) |
Здесь
Исторически сложилось, что обозначение импеданса, комплексных амплитуд и других комплекснозначных функций частоты записывают как , а не . Такое обозначение показывает, что мы имеем дело с комплексными представлениями гармонических функций вида . Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: чтобы отличать от соответствующих действительных (некомплексных) величин.
Если рассматривать комплексный импеданс как комплексное число в алгебраической форме, то действительная часть соответствует активному сопротивлению, а мнимая реактивному. То есть двухполюсник с импедансом можно рассматривать как последовательно соединенные резистор с сопротивлением и чисто реактивный элемент с импедансом
Рассмотрение действительной части полезно при расчёте мощности, выделяемой в двухполюснике, поскольку мощность выделяется только на активном сопротивлении.
Если рассматривать импеданс как комплексное число в тригонометрической форме, то модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент сдвигу фазы между током и напряжением, то есть на сколько ток отстаёт от напряжения.
Понятие импеданса применимо, если при приложении к двухполюснику гармонического напряжения, ток, вызванный этим напряжением, также гармонический той же частоты. Для этого необходимо и достаточно, чтобы двухполюсник был линейным и его свойства не менялись со временем. Если это условие не выполнено, то импеданс не может быть найден по следующей причине: невозможно получить выражение для импеданса, не зависящее от времени t, поскольку при вычислении импеданса множитель в (1) не сокращается.
Практически это означает, что импеданс может быть вычислен для любого двухполюсника, состоящего из резисторов, катушек индуктивности и конденсаторов, то есть из линейных пассивных элементов. Также импеданс хорошо применим для активных цепей, линейных в широком диапазоне входных сигналов (например, цепи на основе операционных усилителей). Для цепей, импеданс которых не может быть найден в силу указанного выше ограничения, бывает полезным найти импеданс в мало сигнальном приближении для конкретной рабочей точки. Для этого необходимо перейти к эквивалентной схеме и искать импеданс для нее.
Резистор
Для резистора импеданс всегда равен его сопротивлению R и не зависит от частоты:
(2) |
Конденсатор
Ток и напряжение для конденсатора связаны соотношением:
(3) |
Отсюда следует, что при напряжении
(4) |
ток, текущий через конденсатор, будет равен:
(5) |
После подстановки (4) и (5) в (1) получаем:
(6) |
Катушка индуктивности
Аналогичное рассмотрение для катушки индуктивности приводит к результату:
(7) |
Для произвольного двухполюсника, состоящего из элементов с известным импедансом, нет необходимости производить приведенные выше вычисления с целью нахождения импеданса. Импеданс находится по обычным правилам расчёта сопротивления сложной цепи, то есть используются формулы для сопротивления при параллельном и последовательном соединении резисторов. При этом все математические операции производятся по правилам действий над комплексными числами. Например, импеданс последовательно соединенных резистора, конденсатора и катушки индуктивности будет равен:
(8) |
Импеданс реальных элементов может быть измерен специальными приборами: измерителем RLC или анализатором импеданса. Эти приборы позволяют производить измерения в широком диапазоне частот и при различных напряжениях смещения.
Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого сигнал раскладывается на спектральные компоненты при помощи ряда Фурье или преобразования Фурье и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал.
Адмитта́нс (англ. admittance от лат. admittere пропускать, впускать) полная комплексная проводимость двухполюсника для гармонического сигнала. В отечественной литературе этот термин обычно не применяется - употребляется "комплексная проводимость" (см. н-р: Бессонов Л.А."Теорические основы электротехники")
Стандартное обозначение адмиттанса в формулах Y или y, размерность dim Y = L−2M−1T3I2, единица СИ сименс (См, S).
Под полной проводимостью понимают величину, обратную импедансу (полному сопротивлению):
где Z импеданс; G действительная составляющая; B мнимая составляющая.
Действительная и мнимая составляющие адмиттанса связаны с составляющими импеданса следующим образом:
;
где R и X соответственно активная и реактивная составляющие импеданса
Абсолютное значение адмиттанса равно квадратичной сумме составляющих:
Эквивалентную схему двухполюсника в цепи переменного тока можно представить в виде двух соединенных параллельно элементов идеального резистора с чисто активным сопротивлением и идеального (без потерь) реактивного элемента (конденсатора или катушки индуктивности). При этом активная проводимость резистора будет соответствовать действительной составляющей комплексной проводимости, а реактивная проводимость катушки или конденсатора мнимой составляющей.
Закон Ома при использовании комплексной проводимости записывают в виде:
или
где I сила тока; IA и IR активная и реактивная составляющие тока; U напряжение на участке цепи
Для измерения адмиттанса применяются измерители иммитанса, анализаторы импеданса, измерители добротности (косвенный метод), а в диапазоне СВЧ также измерительные линии и измерители полных сопротивлений (косвенный метод).
10) Первый закон Кирхгофа в комплексной форме
Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач.
Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.
где число токов, сходящихся в данном узле.
Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 - I2 + I3 - I4 + I5 = 0
Рис. 1
В этом уравнении токи, направленные к узлу, приняты положительными.
Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений. Первый закон Кирхгофа: «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»