Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Билет №8
Постулаты специальной теории относительности. Преобразования Лоренца и следствия из них: относительность одновременности, промежутков времени и длин.
А.Эйнштейн, пришел к выводу о том, что мирового эфира не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.
Таким образом, А.Эйнштейн заложил основы специальной теории относительности. В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.
I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.
II. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Преобразования Лоренца
Из преобразований Лоренца следует вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преобразования не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, а образующие четырехмерное пространство-время.
Следствия из преобразований Лоренца
1. Одновременность событии в разных системах отсчета. Пусть в системе К в точках с координатами x1 и х2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (x1=x2) и являются одновременными () то, согласно преобразованиям Лоренца,
, ,
т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.
Если события в системе К пространственно разобщены () но одновременны (), то в системе К', согласно преобразованиям Лоренца ,
Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными.
2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'
, (1)
причем началу и концу события, согласно преобразованиям Лоренца, соответствуют
(2)
Подставляя (2) в (1), получаем
,
или
. (3)
Из соотношения (3) вытекает, что , т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна.
3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где и не изменяющиеся со временем координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью . Для этого необходимо измерить координаты его концов и в системе К в один и тот же момент времени t. Их разность и определяет длину стержня в системе К. Используя преобразования Лоренца , получим
,
т.е.
. (4)
Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К' опять-таки придем к выражению (4).
Из выражения (4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения.