Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

I. Принцип относительности- никакие опыты механические электрические оптические проведенные внутри данно

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

Билет №8

Постулаты специальной теории относительности. Преобразования Лоренца и следствия из них: относительность одновременности, промежутков времени и длин.

А.Эйнштейн, пришел к выводу о том, что мирового эфира  – не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла.

Таким образом, А.Эйнштейн заложил основы специальной теории относительности. В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

II. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Преобразования Лоренца

Из преобразований Лоренца следует вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преобразования не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени – пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, а  образующие четырехмерное пространство-время.

Следствия из преобразований Лоренца

1. Одновременность событии в разных системах отсчета. Пусть в системе К в точках с координатами x1 и х2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты  и  и моменты времени  и . Если события в системе К происходят в одной точке (x1=x2) и являются одновременными () то, согласно преобразованиям Лоренца,

, ,

т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены () но одновременны (), то в системе К', согласно преобразованиям Лоренца ,

Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

,        (1)

причем началу и концу события, согласно преобразованиям Лоренца, соответствуют

       (2)

Подставляя (2) в (1), получаем

,

или

.         (3)

Из соотношения (3) вытекает, что , т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна.

3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где и – не изменяющиеся со временем координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью . Для этого необходимо измерить координаты его концов и в системе К в один и тот же момент времени t. Их разность и определяет длину стержня в системе К. Используя преобразования Лоренца , получим

,

т.е.

.         (4)

Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К' опять-таки придем к выражению (4).

Из выражения (4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения.




1. Історія української культури
2. Монголо-татарское иго. Версия математиков А. Фоменко и Г. Носовского
3. Электростатическое поле создано бесконечной заряженной плоскостью с поверхностной плотностью заряда 1 м
4. Материя в дробноразмерном пространстве
5. і. 2 травня ~ Виселення з готелю.html
6. Функционирование конвенциональной нормы при переводе текста
7. Курсовая работа- Организация управленческого учета
8. Проектирование фильтра нижних частот Чебышева с заданной шириной переходной области на основе операцио
9. Територія Іспанії розподілена на області.html
10. Практикум з прикладної соціології напрям підготовки 0301 Соціальнополітичні науки спеціальність 8
11. Вычислительная техника и програмирование ОТЧЁТ По лабораторной работе 2 Вып
12. на тему- Ранние утописты
13. Производство изделий народных художественных промыслов
14. Основные механизмы координации как основа конструирования организации
15. Subject ~ зд подданный Of sturdy build ~ крепкого телосложения fleshy hooked nose ~ крючковатый нос Sleek ~ лоснящийся Exuber
16. Расчётно-пояснительная записка к курсовой работе по ОМПТ
17. Picture8 EMBED Word
18. Господин Никто Привет Осень
19. х последних цифр номеров вагонов в СТЦ- нечётных поездов сигналистом первого поста чётных ~оператором СТЦ п
20. . ОБЩИЕ ПОЛОЖЕНИЯ 1.1