Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Электрическая цепь представляет собой- Группа заранее изготовленных элементов соединенных определенным

Работа добавлена на сайт samzan.net: 2015-12-26

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.5.2024

1.Электрическая цепь представляет собой:

Группа заранее изготовленных элементов, соединенных определенным образом и предназначенных для протекания по ним электрического тока.

Разница между активными и пассивными элементами электрической цепи:

Активные элементы способны самостоятельно создавать в цепи ток, а пассивные могут только потреблять или накапливать электрическую энергию;

Электрический заряд это:

Количество электричества, переносимое через поперечное сечение проводника за определенное время;

Электрический потенциал это:

Энергия, необходимая для перемещения единичного положительного заряда из бесконечности в точку цепи;

Электрический ток это:

Упорядоченное и направленное движение свободных носителей заряда;

ЭДС (электродвижущая сила) это:

напряжение, созданное в цепи за счет внешней энергии (часто неэлектрического характера);

Напряжение на участке цепи это:

Разность потенциалов на выводах этого участка цепи, возникающая вследствие потери части энергии на этом участке из-за перехода электрической энергии в другие формы;

Падение напряжения на участке цепи это:

напряжение создаваемое на выводах цепи за счет внешней энергии (часто неэлектрического характера);

Электрическая мощность это:

Мощность – это скорость изменения энергии.

Узел электрической цепи это:

Точка соединения трех и более элементов цепи;

Контуром электрической цепи называют:

Участок цепи, состоящий из отдельных ветвей, которые образуют замкнутый путь для протекания тока.

Ветвью электрической цепи называется:

Участок цепи, состоящий из отдельных элементов по которым протекает общий для них ток;

Скорость изменения электрического заряда в единицу времени это:

ток Разность потенциалов на выводах участка цепи это:

напряжение Отношение энергии к величине перемещаемого заряда это:

напряжение "Алгебраическая сумма напряжений на сопротивлениях участков замкнутого контура равна алгебраической сумме э. д. с. источников, входящих в этот контур" это:

второй закон Кирхгофа

Мгновенная мощность на участке цепи определяется соотношением:

p=ui

2 Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

3

4 время частота период амплитуда угловая частота

5.  Если напряжение u = Umsin(ωt + y) подвести к сопротивлению R, то через сопротивление пройдет гармонический ток

 .

    Следовательно, напряжение на зажимах сопротивления и ток, проходящий через это сопротивление, имеют одинаковую начальную фазу, или, как говорят, совпадают по фазе: они одновременно достигают своих амплитудных значений Um и Im и соответственно одновременно проходят через нуль (рисунок 2.7).

    В данном случае фазовый сдвиг между напряжением u и током i (и соответственно между векторами напряжения  и тока  ) равен нулю: φ = yu - yI = 0. При прохождении гармонического тока через сопротивление R не только мгновенные значения напряжения на сопротивлении и тока в нем, но и амплитуды и соответственно действующие значения напряжения и тока связаны законом Ома: Um = RIm; U = RI.

    Пользуясь величиной проводимости g = 1/R, получаем: Im = gUm; I = gU.

 Пусть через индуктивность L проходит ток i = Imsin(ωt + y).

    Электродвижущая сила самоиндукции определяется по формуле

 (1.3)

.    Значит, напряжение на индуктивности

 .

    Полученное выражение показывает, что напряжение на индуктивности опережает ток на угол π/2; максимум напряжения смещен влево относительно максимума тока на π/2 (рисунок 2.9). Когда ток проходит через нуль, напряжение достигает положительного или отрицательного максимума, так как оно пропорционально скорости изменения тока (di/dt), которая в момент прохождения тока через нуль максимальна (синусоида тока в этот момент имеет наибольшую крутизну). Когда ток достигает максимума, скорость его изменения, а следовательно, и напряжение на индуктивности обращаются в нуль.

Пусть напряжение на емкости C синусоидально u = Umsin(wt+y). На основании (1.8)

(2.14)

    Изменение электрического заряда происходит по косинусоидальному закону в соответствии с приложенным напряжением и. При этом попеременное накапливание положительных и отрицательных электрических зарядов на пластинах емкости обусловливает прохождение в цепи гармонического тока i. Его величина определяется скоростью изменения заряда на емкости (dq/dt).

    Выражение (2.14) показывает, что ток i опережает приложенное напряжение и на угол π/2 (рисунок 2.11). Нулевым значениям тока соответствуют максимальные (положительные или отрицательные) значения напряжения и. Физически это объясняется тем, что, когда электрический заряд q и соответственно напряжение и = q/С достигают максимального значения (положительного или отрицательного), ток i равен нулю.

6. Расчеты электрических цепей гармонического тока можно вести аналитически в тригонометрической форме или графически с помощью векторных диаграмм. На практике эти способы применяются только для простых схем. С усложнением схем расчеты становятся слишком трудоемкими.

Наиболее удобным является способ расчета цепей с помощью комплексных чисел. Он, так же как и векторные диаграммы, основан на представлении синусоидальных функций в виде проекций вращающихся векторов. Но в данном случае векторы изображаются в комплексной плоскости и могут быть однозначно описаны с помощью комплексных чисел. Этот способ удачно сочетает наглядность геометрического представления с удобством аналитических расчетов.

Известно, что каждая точка на комплексной плоскости определяется радиусом-вектором этой точки. Начало вектора совпадает с началом координат, а конец находится в точке, соответствующей заданному комплексному числу (рис. 2.5).

Рис. 2.5. Представление вектора в комплексной плоскости

Пользуясь показательной или полярной формой, вектор A можно записать:

 (2.11)

где A – модуль вектора A; a – аргумент или фаза; .

Применив формулу Эйлера, этот вектор запишем в тригонометрической форме

A = A×cos a + jA×sin a (2.12)

или соответствующей ей алгебраической форме

A = A1 + A2,

где

Вектор, вращающийся в положительном направлении с угловой частотой ω, можно определить следующим образом

, (2.13)

где  – комплексная амплитуда, представляющая данный вектор в момент времени t =0; множитель  является оператором вращения.

Запишем комплексную функцию в тригонометрической форме:

.

Из этой формулы видно, что гармоническая функция  может рассматриваться как действительная часть комплексной функции (2.13) или как проекция вращающегося вектора на действительную ось (рис. 2.6).

Рис. 2.6. Представление вращающегося вектора в комплексной плоскости

Условно это записывается как

;

.

Используя представление комплексных чисел в показательной и алгебраической форме, можно легко производить с ними математические операции.

Пусть заданы два вектора

;

.

Сумма этих векторов

.

Их произведение

.

7. Пусть мы имеем векторную диаграмму, изображенную на рис. 159. Проектируя вектор тока I на направление вектора напряжения U,   разложим  вектор тока на две составляющие.

Одна из составляющих совпадает по направлению с вектором напряжений и называется активнойсоставляющей тока. Она обозначается буквой Iа и равна

Другая составляющая, перпендикулярная вектору напряжения, называется реактивнойсоставляющей тока. Она обозначается буквой Iр и равна

Таким образом, переменный ток I можно рассматривать как геометрическую сумму двух составляющих: активной Iа и реактивной Iр. Применение этого приема позволяет сравнительно просто производить расчеты разветвленных цепей переменного тока.

Рассмотрим   разветвленную цепь, изображенную на рис.   160.

Токи в ветвях:

Углы сдвига фаз между напряжением и токами в ветвях

На рис. 160 справа построена векторная диаграмма для параллельного соединения ветвей r1, L1 иr2, L2. Построение диаграммы начинается с вектора напряжения, так как напряжение является общим для двух ветвей. Ввиду наличия r и L в каждой из ветвей токи I1 и I2 отстают по фазе от напряжения U на углы j1 и j2.

Построив векторы токов I1, и I2 и сложив их по правилу параллелограмма, получим вектор тока I, протекающего на общем участке цепи. Из построения диаграммы видно, что

Общий ток равен

8. 1.3 Метод контурных токов

В методе контурных токов за основные неизвестные величины принимают контурные токи, которые замыкаются только по независимым контурам (главным контурам). Контурные токи находят, решая систему уравнений, составленную по второму закону Кирхгофа для каждого контура. По найденным контурным токам определяют токи ветвей схемы.

Алгоритмом метода контурных токов:

1. Задаются направлением токов ветвей и обозначают их на схеме.

2. Определяют независимые контуры и их нумеруют. При наличии в схеме источников тока независимые контуры, для которых составляются уравнения метода контурных токов, можно определить, если мысленно удалить источники тока.

3. Выбирают направление контурных токов (целесообразно в одну сторону) и составляют уравнения по методу контурных токов, обходя каждый контур в направлении его контурного токаКонтурный ток, проходящий через источник тока, известен и равен току источника тока (через источник тока проходит только один контурный ток!).

4. Полученную систему алгебраических уравнений решают относительно неизвестных контурных токов.

5. Искомые токи по методу контурных токов находят как алгебраическую сумму контурных токов, проходящих по данной ветви. Токи в ветвях связи равны контурным токам.

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравненийметодом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.

9. Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление XLравно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?( R2 + [?0L - 1/(?0C)]2 ) = R

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xсстановится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений ULи Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ?0, при которой имеют место условия резонанса, определяется из равенства ?oL = 1/(?0С).

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Отсюда имеем

?o = 1/?(LC) (74)

Если плавно изменять угловую частоту ? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ?o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ?oL = 1/(?oC). Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части
цепи при резонансе I=U?(G
2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ?0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

Рис. 197. Зависимость тока I и полного сопротивления Z от ? для последовательной (а) и параллельной (б) цепей переменного тока

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость

10.

Симметричная трехфазная цепь с несколькими приемниками

Расчет трехфазной цепи в симметричном режиме сводится к расчету одной фазы и проводится аналогично расчету обычной цепи синусоидального тока.


Дано: - линейное напряжение; UЛ

ZЛ - сопротивление линии;

ZФ1 - фазное сопротивление нагрузки 1;

ZФ2 - фазное сопротивление нагрузки 2.

Последовательность расчета:

1. Сопротивление двух треугольников, соединенных параллельно, необходимо заменить эк-вивалентным треугольником с сопротивлением фаз:

2. Полученный эквивалентный треугольник следует заменить эквивалентной звездой с сопротивлением фаз:

3. Определяют фазные сопротивления эквивалентной звезды с учетом ZЛ:

4. Дальнейший расчет не требует применения комплексного метода. Достаточно определить действующее значение линейного тока


затем найти действующие значения фазного напряжения эквивалентной звезды приемника

и линейного напряжения приемника

Действующие значения фазных токов приемников определяются по закону Ома:

Несимметричный режим трехфазной цепи

Несимметричный режим в трехфазной системе имеет место, если нарушается хотя бы одно из условий симметрии фазных ЭДС источника --

и равенства сопротивлений фаз приемника ZA = ZB = ZC.


При соединении фаз приемника звездой и наличии нейтрального провода (рис. 1) в общем случае несимметричного режима ток в нейтральном проводе I0 отличен от нуля и существует напряжение между нейтралями приемника и источника U0'0. В связи с этим расчет токов нельзя проводить изолированно по фазам, как в симметричном режиме.

Для расчета рассматриваемой цепи удобнее всего воспользоваться методом узловых напряжений, так как в схеме содержатся всего лишь два узла. Для единственного узлового напряжения имеем уравнение

,

из которого непосредственно находим напряжение между нейтральными точками:

.

Для токов в цепи найдем далее и аналогично для и , а . Отсюда следует, что токи во всех трех фазах несимметричной системы взаимозависимы, т. е. изменение сопротивления одной из фаз ведет к изменению тока и в остальных фазах, так как при этом изменяется напряжение U0'0.

Полученная формула относится также и к цепи с изолированной нейтралью, для перехода к которой следует положить лишь Y0 = 0. Фазные токи в этом случае определяют по тем же формулам, что и выше.

Значения тока в несимметричной нагрузке, соединенной треугольником, при заданных фазных ЭДС можно рассчитывать с помощью преобразования треугольника ZAB, ZBC, ZCA в звезду, сопротивления фаз которой выражаются формулами:

В результате задача расчета цепи сводится к только что рассмотренной. Такое преобразование позволяет одновременно учесть и сопротивления линейных проводов ZA', ZB', ZC' , которые после преобразования оказываются включенными последовательно с фазами образовавшейся звезды ZA, ZB, ZC, изображенной на рис. 10.3 штриховыми линиями.

По этой же общей схеме рассматривают и случай, когда в несимметричной системе заданы линейные ЭДС , и . При этом для схемы соединения звездой с изолированной нейтралью (см. рис. 10.4 при Y0 = 0) в качестве опорного узла 0' для вычисления напряжения фазы С приемника возьмем, например, вывод С генератора. В результате получим непосредственно

Аналогично, осуществляя круговую перестановку индексов, запишем:

Токи в фазах получим, умножая фазные напряжения на соответствующие проводимости YA, B, C.

При наличии нескольких несимметричных нагрузок с различным способом соединения фаз следует воспользоваться последовательным преобразованием звезды в треугольник и обратно и эквивалентными преобразованиями параллельно или последовательно соединенных участков.

 11. Переходные процессы есть процессы перехода от одного установившегося состояния к другому установившемуся состоянию. Изменения параметров элементов схемы или изменение режима работы самой схемы называютсякоммутациями.
Непосредственное изменение сигналов тока и напряжения во времени может быть определено классическим методом расчета электрических цепей. Основой этого способа является составление дифференциальных уравнений, описывающих состояние цепи, и их интегрирование, причем количество производных определяется числом элементов-накопителей в заданной цепи.
В соответствии с классическим методом находят частное и общее решения однородных дифференциальных уравнений. Частное решение обусловлено вынужденным воздействием источников e(t) или i(t). Общее решение находят при отсутствии источников. В этом случае токи и напряжения называются свободными и всегда затухают за счет потерь в цепи. В случае комплексных корней процессы в цепи могут быть колебательными за счет собственных колебаний цепи, но также будут убывать во времени при положительной вещественной части.

12. Простые нелинейные электрические цепи постоянного тока рассчитывают графическим способом. При этом считаются известными вольт-амперные характеристики (ВАХ) нелинейных элементов, входящих в нелинейную цепь постоянного тока.

Нелинейный элемент, ВАХ которого в рабочем диапазоне приближенно можно изобразить прямолинейным участком, заменяют последовательным соединением линейного резистивного элемента с источником ЭДС. При этом сопротивление линейного элемента принимается равным дифференциальному сопротивлению нелинейного элемента в рабочей точке его ВАХ.

Нелинейный элемент в области рабочей точки характеристики можно также заменить параллельным соединением источника тока с линейным элементом, проводимость которого равна дифференциальной проводимости нелинейного элемента в этой точке.

Разветвленная нелинейная электрическая цепь постоянного тока с одним нелинейным элементом может быть рассчитана методом эквивалентного генератора. При этом заменяют линейную часть нелинейной цепи постоянного тока по отношению к нелинейному элементу эквивалентным источником. Полученную цепь последовательного соединения источника, линейного и нелинейного элементов рассчитывают графически.

Решение нелинейных уравнений, описывающих нелинейную электрическую цепь постоянного тока с двумя узлами, также проводят графически. При этом все уравнения необходимо строить в одинаковом масштабе, на одном графике в функции узлового напряжения.

ЕФЕРАТЫ © 2010




1. Попытка 1 Начало формы Question1 Баллов- 1 Восстановите последовательность
2. Статья основоположника евразийства князя Н
3. ч всего ч лишь ч одна ч из ч многих ч функций ч маркетинга ч причем ч зачастую ч не ч самая ч существенная
4. Ethernet
5. Основы работы в операционной системе Windows
6.  Титульний лист 3
7. Г Гачевой венок сонетов Магистрал Уилер говорит что всё из бита ~ Нет мира без моих альтернат
8. Зробити порівняльний аналіз Конституції УРСР 1978 року і Кон
9. Проектирование организационных структур государственного управления
10. установщики на корню губят судьбу устанавливаемого кондиционера производя неквалифицированные действия
11. Белки семян как маркеры в решении проблем генетических ресурсов растений, селекции и семеноводства
12. Варианты ответа- 1 2 3 4 ~.
13. Строгино
14. тема Маркетинговые исследования
15. на тему- Методы финансовой оценки предпринимательских проектов
16. Вдоль пути движения нефти уменьшаются температура и давление выделяется газ поток охлаждается снижаетс
17. Ювелирные изделия
18. память мысли эмоции
19. l crt comercil els mrges i espis en blnc- Hn de ser els m~nims imprescindibles.html
20. Население и общество