У вас вопросы?
У нас ответы:) SamZan.net

тематика Сборник заданий и упражнений для текущего контроля знаний для направлений- гостиничное дело

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 1.2.2025

Мелкумян Б. В.

Математика

Сборник заданий и упражнений для текущего контроля знаний

для направлений:

гостиничное дело, лингвистика, психолого-педагогическое образование, реклама и связи с общественностью, туризм, юриспруденция

Квалификация (степень) выпускника: бакалавр

Москва – 2013 г.


Автор – составитель:

Мелкумян Баграт Владимирович

Математика. Сборник заданий и упражнений для текущего контроля знаний. – М.: Московский университет им. С. Ю. Витте, 2013, _367_ стр.

Научный редактор:

док. тех. наук, проф. Парфенова М. Я.

Рецензенты:

канд. тех. наук, с. н. с. Казееев И. М., Московская академия экономики и права;

канд. физ.-мат. наук, доц. Сибирский В. К., Московский университет им. С. Ю. Витте

Сборник предназначен для студентов всех форм обучения гуманитарных специальностей.

Печатается по решению научно-методического совета Московского университета им. С. Ю. Витте.

© Б. В. Мелкумян, 2013

© Московский университет им. С. Ю. Витте, 2013

СОДЕРЖАНИЕ

[1] ВВОДНАЯ ЧАСТЬ

[1.0.0.1] В соответствии с ГОС, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.

[2] 1. Алгебра высказываний

[2.1] 1.1. Аксиоматический метод и его понятийный аппарат

[2.2] 1.2. Основные законы математической логики.

[2.2.0.1] Операция отрицания, или отрицание высказывания

[2.2.0.2] Операция конъюнкции, или конъюнкция высказываний

[2.2.0.3] Операция дизъюнкции, или дизъюнкция высказываний

[2.2.0.4] Операция эквивалентности, или эквивалентность высказываний.

[2.2.0.5] Операция импликации, или импликация высказываний

[2.2.1] Порядок старшинства операций

[2.2.1.1] Задача 2.

[3] 2. Матрицы.

[3.1] 2.1. Алгебра матриц

[3.1.1] 2) Умножение матрицы на число.

[3.2] 2.2. Вычисление определителей

[3.3] 2.3. Вычисление обратной матрицы

[4] 3. Решение системы линейных уравнений

[4.1] 3.1. Решение системы линейных уравнений методом подстановки

[4.2] 3.2. Решение системы методом почленного сложения (вычитания) уравнений системы

[4.3] 3.3. Решение системы по правилу Крамера

[4.4] 3.4. Решение системы с помощью обратной матрицы

[4.5] 3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)

[4.6] 3.6. Несовместные системы. Системы с общим решением. Частные решения

[5] 4. Комплексные числа

[5.1] 4.1. Понятие комплексного числа

[5.2] 4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел

[5.2.1] 4.3. Тригонометрическая и показательная формы комплексного числа

[5.2.1.1] Возведение комплексных чисел в степень

[5.2.1.2] Извлечение корней из комплексных чисел

[6] 5. Математические формулы и графики

[6.1] 5.1. Математические формулы

[6.2] 5.2. Графики и основные свойства элементарных функций

[6.2.0.1] Как правильно построить координатные оси?

[6.2.1] График линейной функции

[6.2.2] График квадратичной, кубической функции, график многочлена

[6.2.3] Кубическая парабола

[6.2.4] График функции

[6.2.5] График гиперболы

[6.2.6] График показательной функции

[6.2.7] График логарифмической функции

[6.2.8] Графики тригонометрических функций

[6.2.9] Графики обратных тригонометрических функций

[7] 6. Пределы функций

[7.1] 6.2. Замечательные пределы.

[7.1.1] 7.1.1. Правила дифференцирования:

[7.1.1.1] 1) Постоянное число можно (и нужно) вынести за знак производной

[7.1.1.2] 2) Производная суммы равна сумме производных

[7.1.1.3] 3) Производная произведения функций

[7.1.1.4] 4) Производная частного функций

[7.1.2] Решения и ответы:

[7.1.3] 7.1.2. Производная сложной функции

[7.1.4] Решения и ответы:

[7.1.5] 7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции

[7.1.5.1] Сложные производные

[7.1.5.2] Логарифмическая производная

[7.1.5.3] Производная степенно-показательной функции

[7.1.6] Решения и ответы:

[7.1.7] 7.1.4. Производная функции, заданной неявно

[7.1.8] 7.1.5. Производная функции, заданной параметрически.

[7.1.9] Решения и ответы:

[7.2] 7.2. Простейшие типовые задачи с производной. Примеры решений

[7.2.0.1] Производная функции в точке

[7.2.0.2] Уравнение касательной к графику функции

[7.2.0.3] Дифференциал функции одной переменной для приближенных вычислений

[7.2.0.4] Вторая производная

[7.2.1] Решения и ответы:

[7.3] 7.3. Частные производные. Примеры решений

[7.3.0.1] Особенности вычисления частных производных

[7.3.1] Решения и ответы:

[7.4] 7.4. Приближенные вычисления с помощью дифференциала

[7.4.0.1] Приближенные вычисления с помощью дифференциала функции одной переменной

[7.4.0.2] Абсолютная и относительная погрешности вычислений

[7.4.0.3] Приближенные вычисления с помощью полного дифференциала функции двух переменных

[7.4.1] Решения и ответы:

[7.5] 7.5. Частные производные функции трёх переменных

[7.5.0.1] Частные производные второго порядка функции трёх переменных

[7.5.1] Решения и ответы:

[8] 8. Интегралы

[8.1] 8.1. Неопределенный интеграл. Подробные примеры решений

[8.1.1] Решения и ответы:

[8.1.2] 8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений

[8.1.2.1] Подведение функции под знак дифференциала

[8.1.2.2] Метод замены переменной в неопределенном интеграле

[8.1.3] Решения и ответы:

[8.1.4] 8.1.2. Интегрирование по частям. Примеры решений

[8.1.5] 8.1.3. Интегралы от логарифмов

[8.1.6] 8.1.4. Интегралы от экспоненты, умноженной на многочлен

[8.1.7] 8.1.5. Интегралы от тригонометрических функций, умноженных на многочлен

[8.1.8] 8.1.6. Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен

[8.1.9] Решения и ответы:

[8.1.10] 8.1.7. Интегралы от тригонометрических функций. Примеры решений

[8.1.10.1] Понижение степени подынтегральной функции

[8.1.10.2] Метод замены переменной

[8.1.10.3] Универсальная тригонометрическая подстановка

[8.1.11] 8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения

[8.1.11.1] Метод разложения числителя

[8.1.11.2] Метод подведения под знак дифференциала для простейших дробей

[8.1.11.3] Метод выделения полного квадрата

[8.1.11.4] Подведение числителя под знак дифференциала

[8.1.12] 8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов

[8.1.12.1] Интегрирование правильной дробно-рациональной функции

[8.1.12.2] Интегрирование неправильной дробно-рациональной функции

[8.1.13] Решения и ответы:

[8.1.14] 8.1.10. Интегрирование корней (иррациональных функций). Примеры решений

[8.1.14.1] Интегралы от  корней. Типовые методы и приемы решения

[8.1.14.2] Интегрирование биномиальных интегралов

[8.1.15] Решения и ответы:

[8.1.16] 8.1.11. Сложные интегралы

[8.1.16.1] Последовательная замена переменной и интегрирование по частям

[8.1.16.2] Метод сведения интеграла к самому себе

[8.1.16.3] Интегрирование сложных дробей

[8.1.16.4] Интеграл от неразложимого в знаменателе многочлена 2-ой степени в степени

[8.1.16.5] Интегрирование сложных тригонометрических функций

[8.1.16.6] Интеграл от корня из дроби

[8.1.17] Решения и ответы:

[8.2] 8.2. Определенный интеграл. Примеры решений

[8.2.1] 8.2.1. Замена переменной в определенном интеграле

[8.2.2] 8.2.2. Метод интегрирования по частям в определенном интеграле

[8.2.3] Решения и ответы:

[8.2.4] Решения и ответы:

[8.2.5] 8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?

[8.2.5.1] Вычисление объема тела, образованного вращением плоской фигуры вокруг оси OX

[8.2.5.2] Вычисление объема тела, образованного вращением плоской фигуры вокруг оси OY

[8.2.6] Решения и ответы:

[8.3] 8.3. Несобственные интегралы. Примеры решений

[8.3.1] 8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования

[8.3.2] 8.3.2. Несобственные интегралы от неограниченных функций

[8.3.3] Решения и ответы:

[8.4] 8.4. Эффективные методы решения определенных и несобственных интегралов

[8.4.1] 8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку

[8.4.1.1] Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка

[8.4.2] 8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку

[8.4.3] 8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом

[8.4.4] 8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования

[8.4.5] 8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка

[8.4.6] 8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования

[8.4.7] Решения и ответы:

[8.5] Приложение 1. Числа

[8.6] Приложение 2. Упражнения по элементам финансовой математики

[9] ЛИТЕРАТУРА

[9.1] Основной список

[9.2] Дополнительный список

  •  
    Об авторе-составителе

Мелкумян Баграт Владимирович – кандидат физико-математических наук, доцент. Читает лекции и проводит семинарские занятия в Московском университете им. С. Ю. Витте по различным разделам дисциплины «Математика» на факультетах экономики и финансов, управления и юридическом. Преподает дисциплины «Базы данных», «Проектирование информационных систем», «Разработка и стандартизация программных средств и информационных технологий» и «Физика» на факультете управления для специальности «Прикладная информатика в экономике» различных форм обучения. Область научных интересов связана с разработкой лазерных устройств и использованием методов математической физики в системах управления.

ВВОДНАЯ ЧАСТЬ

Предлагаемый учебник не отвечает на вопрос: ЗАЧЕМ НУЖНА ВЫСШАЯ МАТЕМАТИКА? Действительно, большинству из вас она никогда не потребуется. Это факт. Но изучение высшей математики предусмотрено учебными планами практически всех ВУЗов, и появляются задания, контрольные работы, которые необходимо сдавать. Тоже факт. Предлагаемое учебное пособие отвечает на вопрос: КАК ЭТО РЕШАТЬ?

Упражнения носят сугубо практическую направленность, и при изучении той или иной темы мы даже не всегда дадим строгие математические определения.

Так ЗАЧЕМ ЖЕ НУЖНА ВЫСШАЯ МАТЕМАТИКА? Изучение высшей математики очень хорошо развивает интеллект, как «фитнес для ума». Если Вы освоили высшую математику, то сможете разобраться в любом предмете, в любой профессиональной деятельности. А может, и станете олигархом, или председателем кабинета министров, как Сергей Юльевич Витте, который имел математическое высшее образование.

Что самое трудное в математике?

Самым трудным при решении математических задач бывает правильно сформулировать вопрос. Правильно поставленный вопрос - это больше чем половина решения, часто это единственное, для чего требуется находчивость, тогда как для получения ответа требуются лишь общеизвестные способы вычисления, которыми тоже должен владеть студент. Кроме изобретения способов вычисления, математики заменили длинные описания определений короткими формулами.

Что такое абстракция?

Конкретные вещи мы видим, осязаем. Абстрактные понятия (например, свобода) требуют соответствующего определения. Нужно знать и понимать определения математических абстрактных понятий.

Попробуем разобраться, что же такое абстракция в математике. Например, само вычисление есть уже определенный вид абстракции, обычный для мышления примитивных людей, хотя они не отдают себе в этом отчета. Пастух, пересчитывающий стадо, заботится только о том, сколько овец в наличии. Ему безразлично, каковы овцы - молодые или старые, белые или черные, действует принцип «штука, как штука».

Именно в этом существо абстракции: обращаем внимание только на некоторые особенности наблюдаемых предметов, отвлекаясь (абстрагируясь) от остальных. Математика безучастна к особенным свойствам предметов и изучает только их пространственные формы (геометрия) и количественные соотношения (анализ), т.е. то, что неизменно в самых различных областях. При изучении математических объектов обнаруживается родство между явлениями, на первый взгляд, совершенно различными.

В соответствии с ГОС, предшествующий уровень образования абитуриента должен быть не ниже (полного) среднего общего образования.

Абитуриент должен иметь документ государственного образца о среднем (полном) общем образовании, или среднем профессиональном образовании, или начальном профессиональном образовании, если в нем есть запись о получении предъявителем среднего (полного) общего образования, или высшего профессионального образования.

Курс содержит множество новых для студента объектов и понятий. Установление логических взаимосвязей между ними вызывает у студентов экономических и юридических специальностей определенные затруднения и проходит не в полной мере. Поэтому в этом курсе выбран классический порядок изложения: от разделов о простых объектах – к составным, и от общих разделов - к частным понятиям.

Наиболее приемлемыми формами для эффективного освоения курса «Математика» признаны основные лекционные и семинарские занятия. Они предусматривают последующее самостоятельное изучение студентом основной и дополнительной литературы, а также различные формы занятий в кружках, проводимых профессорско-преподавательским составом, для изучения дополнительных возможностей и практических приложений курса.

Методика изучения курса «Математика» предусматривает в дальнейшем проведение лекционных и семинарских занятий, в том числе в программных средах MathCAD, MS Excel, VBA и др., компьютерных рубежных тестирований на знание основных понятий, контрольных работ и сдачу зачётов и экзаменов.

Вопросы и задания для самостоятельной работы определяются перечнями контрольных вопросов к экзаменам по разделам курса.


1. Алгебра высказываний

1.1. Аксиоматический метод и его понятийный аппарат

Основные понятия. Определение. Аксиома. Аксиоматический метод. Теорема. Доказательство. Основные методы доказательств

 Определение. 

В любой науке, в математике тоже, существуют некоторые понятия, которые мы принимаем за исходные, или начальные понятия. Это так называемые основные понятия, определить которые достаточно сложно (именно потому, что они основные) и содержание которых можно выяснить только из опыта. Таковы, например, понятия: точки в геометрии, прямой в планиметрии, плоскости в стереометрии, материи в физике, информации в информатике.

Все остальные понятия мы объясняем, выражая их через начальные понятия. Такие объяснения называются определениями. Таким образом, каждое математическое определение опирается либо непосредственно на начальные понятия, либо на понятия, определённые прежде.

Однако здесь невозможно обеспечить всеобщего согласия. Дело в том, что одно и то же, например, геометрическое понятие можно определять различно. Диаметр окружности, например, можно определить как хорду, проходящую через центр, или как хорду наибольшей длины. Приняв за определение одно из этих свойств, можно доказать другое. Отметим, что обычно за определение берут простейшее свойство.

 Аксиома. Аксиоматический метод.

При построении любой теории выделяется некоторый набор высказываний, истинность которых постулируется. Такие принимаемые без доказательства высказывания, называются аксиомами. В физике аксиомы называют постулатами, которые являются обобщением опытных данных.

Аксиомы также возникли из опыта, и опыт же проверяет истинность аксиом в их совокупности.

 Аксиоматический метод – это способ построения научной (математической) теории, основу которого составляют некоторые исходные положения (аксиомы), а все остальные положения теории получаются как логические следствия аксиом.

 Доказательство. Теорема.

Последовательность высказываний рассматриваемой теории, каждое из которых либо является аксиомой, либо выводится из одного или более предыдущих высказываний этой последовательности по логическим правилам вывода, называется доказательством.

Высказывание, которое можно доказать, называется теоремой. Как было указано выше, опыт проверяет истинность аксиом в их совокупности. Проверка состоит в том, что все теоремы математики оказываются согласными с опытом. Этого не случилось бы, если бы система аксиом была ложной.

Каждая теорема может быть выражена в формализованной математической форме вида:

(читается: «для любого элемента х из А(х) следует В(х), где х принадлежит множеству М»).

Посылка А называется условием теоремы, а следствие В – заключением. Теорема верна, если выражающая её логическая связка, в данном случае это импликация  (читается: «из А следует В», или «если А, то В»), обеспечивает истинное высказывание.

Рассмотрим примеры:

 Теорема 1. Если сумма цифр натурального числа делится на 3, то и само число делится на 3.

 Теорема 2. Если четырёхугольник является прямоугольником, то его диагонали конгруэнтны.

 Теорема 3. Диагонали ромба взаимно перпендикулярны.

Из-за краткости формулировки теоремы 3 о диагоналях ромба может показаться, что эта теорема не имеет формы . На самом деле это не так. Полная формулировка этой теоремы такова (напомним, что ромбом называется параллелограмм, у которого все стороны равны): «Для любого параллелограмма верно утверждение: если параллелограмм – ромб, то его диагонали взаимно перпендикулярны».

 Особенность аксиоматического метода.

Ни одно математическое высказывание (или свойство), взятое в отдельности, не является аксиомой, так как его всегда можно доказать на основании других высказываний (свойств). Например, в геометрии обычно принимается за аксиому следующее свойство параллельных прямых линий: «Через одну и ту же точку нельзя провести две различные прямые, параллельные одной и той же прямой» (аксиома параллельности). На основании этой аксиомы (и ряда других) доказывается такое свойство треугольника, как: «Сумма углов треугольника равна 180о». Между тем, можно было бы это свойство принять за аксиому вместо аксиомы параллельности (оставив остальные аксиомы прежними). Тогда свойство параллельности прямых линий можно доказать, и оно станет теоремой.

Таким образом, систему аксиом можно выбирать различными способами. Нужно только, чтобы взятых аксиом было достаточно для вывода всех прочих высказываний.

Отметим, что при построении доказательств число аксиом стремятся, по возможности, уменьшить.

 Основные методы доказательств.

Метод цепочек импликаций состоит в том, что из посылки А выстраивается цепочка из n импликаций, последним высказыванием в которой является заключение теоремы В, т.е.

.

В основе этого метода лежит закон цепного высказывания, или закон силлогизма:

.

Символ  означает логический союз «и», а выражение  читается, как «А и В».

Метод от противного.

Этот метод основан на законе контрапозиций, который имеет вид:

.

Символ () соответствует логическому союзу «не»,

выражение  читается, как: «не А», или «не верно, что А».

Символ () соответствует любому из трёх логических высказываний:

1) «необходимо и достаточно»,

2) «тогда и только тогда»

3) «эквивалентно»

Метод необходимого и достаточного.

Например, теорема формулируется так: «Чтобы имело место А, необходимо и достаточно выполнение В».

Доказательство такого вида теоремы распадается на две части: сначала доказывается, что если имеет место А, то справедливо В (В необходимо для А), затем доказывается, что если имеет место В, то имеет место и А (В достаточно для А).

Доказательство таким методом базируется на законе тавтологии:

.

Упражнения для самостоятельного анализа к Разделу 1:

 Упражнение 1. 

Установите правильное соответствие между математическим утверждением и его формулировкой.

1. «В любой треугольник можно вписать окружность».

А. Определение

B. Аксиома

C. Теорема

2. «Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник».

3. «Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна».

 Упражнение 2. 

Выберите правильный ответ. К неопределяемым понятиям аксиоматического построения геометрии на плоскости относятся …

1) фигура, плоскость, луч

2) луч, треугольник, плоскость

3) точка, прямая, плоскость

4) точка, отрезок, плоскость

 Упражнение 3. 

Среди предложенных математических утверждений евклидовой геометрии аксиомой является…

1) Если две параллельные прямые пересечены секущей, то соответственные углы равны.

2) Две прямые, параллельные третьей прямой, параллельны.

3) Две прямые на плоскости называются параллельными, если они не пересекаются.

4) Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

 Упражнение 4. 

Установите правильное соответствие между математическим утверждением и его формулировкой.

1. «Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны».

А. Определение

B. Аксиома

C. Теорема

2. «На каждой прямой и в каждой плоскости имеются, по крайней мере, две точки».

3. «Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны».

Упражнение 5. 

Среди предложенных математических утверждений аксиомой является…

1) Через любые две точки плоскости можно провести прямую, и притом только одну.

2) В равнобедренном треугольнике углы при основании равны.

3) Диагонали параллелограмма точкой пересечения делятся пополам.

4) Вертикальные углы равны.

1.2. Основные законы математической логики.

Высказывание. Простые высказывания. Составные высказывания.

Операции отрицания, конъюнкции, дизъюнкции, эквивалентности, импликации. Порядок старшинства операций. Основные законы математической логики. Парадоксы логики, или семантические парадоксы

Что есть высказывание

Под высказыванием понимают всякое утверждение, о котором имеет смысл говорить, что оно истинно или ложно.

Например, «» или «В неделе семь дней» - истинные высказывания, а «» или «В современном русском языке 35 букв» - ложные высказывания.

Высказывания могут быть образованы с помощью слов или символов. Синонимами слова «высказывание» считаются «логическое высказывание», «булевское выражение», «суждение» и «утверждение». Однако далеко не каждый набор слов или символов, даже, на первый взгляд, осмысленный, является математическим «высказыванием». Например, фразы: «Ура, у нас математика!» или «Который час?» или выражение «» высказываниями не являются, т.к. судить об их истинности или ложности невозможно.

Таким образом, каждое математическое высказывание или истинно, или ложно; одновременно быть и истинным и ложным высказывание не может.

Если высказывание истинное, то ему предписывается значение «истина» (другие обозначения: «1», «ДА», «И», «+», «true»). Ложному высказыванию предписывается значение «ложь» (другие обозначения: «0», «НЕТ», «Л», «-», «false»).

Для обозначения высказываний обычно используют заглавные буквы латинского алфавита A, B, C и т.д.

Например, пишут

, .

Это означает, что высказывание В заключается в утверждении, что число 6 – простое, а высказывание А – в том, что . Знак  заменяет слова «есть высказывание», или «тождественно равно».

 Простые и составные высказывания

Есть два вида высказываний: 1) простые и 2) составные, или сложные.

Под простым высказыванием будем понимать такое высказывание, которое не может быть разбито на более простые высказывания. Высказывания А и В предыдущего примера – простые высказывания.

Про простое высказывание всегда однозначно можно сказать, что оно истинно или ложно, не интересуясь его структурой.

Из простых высказываний при помощи так называемых логических связок или логических операций, например, союзов «и», «или», слов «если…, то…», «тогда и только тогда, когда…», можно строить сложные высказывания.

Например, из высказываний ; , используя логические операции, можно образовать следующие сложные высказывания:

,

,

 

.

Отметим, что сложные высказывания можно образовывать и из таких высказываний, которые не связаны между собой по смыслу. Например, высказывание:

{если слон – насекомое, то Антарктида покрыта тропическими лесами}

составлено при помощи логической операции «если…, то…» из двух высказываний, между которыми нет никакой смысловой связи.

Сложные высказывания, как и простые, всегда или только истинны, или только ложны. Истинность или ложность сложного высказывания полностью определяется, во-первых, тем, какие логические связки (операции) использованы для образования сложного высказывания. Во-вторых, истинность или ложность сложного высказывания определяется тем, какие из простых высказываний, образующих сложное высказывание, истинны, а какие – ложны.

 Логические операции

Операции над высказываниями – логические операции – обычно задают в виде таблиц, называемых таблицами истинности.

 Операция отрицания, или отрицание высказывания

Для каждого высказывания А может быть сформировано новое высказывание  (читается «не А», или «не верно, что А») – это отрицание высказывания А. Высказывание  истинно, когда А – ложно, и ложно, когда А – истинно.

 Таблица истинности для операции отрицания:

А

1

0

0

1

Операция отрицанияодноместная, или унарная, операция.

Последующие операции – двухместные, или бинарные.

Например, если  - истинное высказывание, то

- ложное высказывание (отрицание А).

Отметим, что если {в комнате холодно}, то {в комнате не холодно}, но при этом высказывание {в комнате жарко} отрицанием высказывания В не является.

Операция конъюнкции, или конъюнкция высказываний

Высказывание С, составленное из двух высказываний А и В при помощи союза «и», называют конъюнкцией (логическим произведением) этих высказываний:  (выражение  читается: «А и В»).

Логическое произведение  истинно только в том случае, когда: «и А, и В одновременно истинны».

 Таблица истинности для операции конъюнкции:

А

В

1

1

1

1

0

0

0

1

0

0

0

0

Пусть, например, , . Тогда высказывание С – истинно, т. к. истинно каждое из высказываний А и В, составляющих высказывание С.

Операцию конъюнкции можно определить и для нескольких высказываний, как связку высказываний, объединённых союзом «и». Конъюнкция из n высказываний – новое высказывание, причём высказывание

А = Аi ;  где i = 1; 2; …; n 

имеет значение «истина», если и А1, и А2, и … Аn одновременно истинны. Во всех других случаях эта конъюнкция имеет значение «ложь».

Пусть, например, А1, А2, А3, А4. Тогда высказывание

А2  А3  А4  {(8 = 3) и (отец старше сына) и (Мурманск севернее Смоленска)} – ложное, в то время как высказывание

А1  А3  А4  {(5 > 3) и (отец старше сына) и (Мурманск севернее Смоленска)} – истинное.

Операция дизъюнкции, или дизъюнкция высказываний

Высказывание С, составленное из двух высказываний А, В при помощи союза «или», называют дизъюнкцией (логической суммой) этих высказываний:  (выражение  читается: «А или В»).

Сумма  является истинным высказыванием тогда, когда, по крайней мере, одно из слагаемых истинно.

 Таблица истинности для операции дизъюнкции:

А

В

1

1

1

1

0

1

0

1

1

0

0

0

Пусть, например, , . Тогда высказывание или  – истинно, т.к. истинно каждое из высказываний А и В, составляющих высказывание С.

Операцию дизъюнкции можно определить и для нескольких высказываний как связку высказываний, объединённых союзом «или»:

А =  Аi ;  где i = 1; 2; …; n 

В этом случае высказывание А истинно, если истинно хотя бы одно из высказываний, входящих в связку.

Операция эквивалентности, или эквивалентность высказываний.

Высказывание С, составленное из двух высказываний А и В при помощи слов «тогда и только тогда, когда…», называют эквивалентностью высказываний А и В: .

Для эквивалентности используют знак (или ).

Эквивалентность  представляет собой истинное высказывание, когда: «высказывания и А, и В - оба истинны или оба ложны».

Таблица истинности для операции эквивалентности:

А

В

1

1

1

1

0

0

0

1

0

0

0

1

Пусть  {число 3n является чётным},  {число n является чётным}.

Высказывание  {число 3n является чётным тогда и только тогда, когда n – чётное число} есть эквивалентность высказываний А и В: .

Операция импликации, или импликация высказываний

Высказывание С, составленное из высказываний А и В при помощи слов «если…, то…», называют импликацией высказываний А и В и 1б1-начают  

(выражение  читается «из А следует В», или «если А, то В»).

Импликация  ложна только в том случае, когда А – истинное высказывание, а В – ложное. Во всех других случаях импликация имеет значение «истина».

Таблица истинности для операции импликации:

А

В

1

1

1

1

0

0

0

1

1

0

0

1

Первый член импликации , – высказывание А, – называется посылкой, или условием, а второй член Взаключением.

Обратите внимание, что таблица истинности для импликации, в отличии от таблиц для конъюнкции, дизъюнкции и эквивалентности, изменяется при перестановке столбцов для А и В.

Отметим также, что импликация не полностью соответствует обычному пониманию слов «если…, то…» и «следует». Из третьей и четвёртой строк таблицы истинности для импликации вытекает, что если А – ложно, то, каково бы ни было В, высказывание  считается истинным. Таким образом, из неверного утверждения следует (может следовать) всё, что угодно.

Например, утверждение «если 6 – простое число, то », или утверждение «если , то существуют ведьмы» являются истинными логическими утверждениями. Истинным является и рассмотренное ранее высказывание: «если слон – насекомое, то Антарктида покрыта тропическими лесами».

Как говорил Р. Декарт: «Если 2 х 2 = 5, то я докажу, что из трубы вылетает ведьма».

Для иллюстрации содержательного смысла импликации рассмотрим ещё один пример.

Пусть {папа завтра получит премию},

{папа завтра купит сыну велосипед}.

Импликация  может быть сформулирована так:

«если папа завтра получит премию, то купит сыну велосипед».

Пусть А и В – истинны. Тогда папа, получив премию, покупает сыну велосипед. Естественно считать это истинным высказыванием.

Если же папа, получив премию (А – истинно), не купит сыну велосипед (В – ложно), то это, можно сказать, – не логичный поступок, и импликация имеет значение «ложь».

Если папа не получит премию (А – ложно), но купит велосипед (В – истинно), то результат положителен (импликация истинна).

Наконец, в том случае, если, не получив премии (А – ложно), папа не купит велосипед (В – ложно), то обещание не нарушено, импликация истинна.

Задача 1. Даны два высказывания  и . В чём заключаются высказывания , , , ? Какие из этих высказываний истинны и какие ложны?

Решение.

1) Высказывание , очевидно, ложно. Для того чтобы произведение двух высказываний было истинным, нужно чтобы оба высказывания были истинными.

2) Высказывание истинно, т.к. одно из слагаемых является истинным высказыванием.

Высказывание  можно записать в виде одного верного нестрогого неравенства .

3) Эквивалентность ( тогда и только тогда, когда ) представляет собой ложное высказывание, т.к. А – ложно, а В – истинно.

4) Импликация то  является истинным высказыванием.

В самом деле, импликация  согласно определению ложна только тогда, когда А – истинно, а В – ложно.

 Порядок старшинства операций

Новые высказывания могут быть образованы при помощи нескольких или даже всех пяти логических операций, причём каждая из операций может применяться несколько раз.

Если в выражении встречаются различные логические операции, то порядок старшинства операций (их приоритет) следующий (понижение приоритета слеванаправо): . Это означает, что сначала выполняются операции отрицания, затем конъюнкции и т.д. Для нарушения порядка выполнения логических операций служат скобки.

Истинность или ложность сложного высказывания можно установить, решая задачу «по действиям».

Рассмотрим примеры.

Задача 2. Пусть высказывания А и В имеют значения «истина», а высказывания C и D – «ложь». Какое значение имеет высказывание?

Решение.

В соответствии с порядком старшинства логических операций будем решать задачу «по действиям», используя таблицы истинности логических операций.

1)  - «истина».

2)  - «ложь».

3)  - «истина».

4)  - «ложь».

5)  - «ложь».

Задача 3. Пусть высказывания А и В имеют значения «истина», а высказывания C и D – «ложь». Какое значение имеет высказывание ?

Решение.

1)  - «истина».

2)  - «ложь».

3)  - «ложь».

4)  - «истина».

5)  - «истина».

Если в выражении присутствуют арифметические операции, операции сравнения и логические операции, то приоритет следующий:

  •  сначала выполняются арифметические операции; порядок старшинства арифметических операций (слеванаправо): умножение, деление, сложение, вычитание;
  •  затем – операции =, и операции сравнения (<, , , >) в том порядке, в каком они встречаются в выражении;
  •  и, наконец, выполняются логические операции в соответствии с приоритетом

(понижение приоритета слева направо): .

 Основные законы математической логики

  •  Коммутативность: , .
  •  Ассоциативность: , .
  •  Дистрибутивность: , .
  •  Законы де Моргана: , .
  •  Закон поглощения: .
  •  Закон идемпотентности: .
  •  «истина» = А, «ложь» = «ложь»
  •  «истина» = «истина», «ложь» = А.
  •  Закон противоречия: «ложь».
  •  Закон исключения третьего: «истина».
  •  Закон двойного отрицания: .

Парадоксы логики 

Парадоксы логики или семантические парадоксы - это «правдоподобные» рассуждения, приводящие к противоречивым результатам.

Хотя логика и является основой всех остальных наук, тем не менее, присущее ей, наряду с фундаментальностью, свойство самоочевидности привело к отсутствию глубоких исследований вплоть до XIX столетия, когда интерес к логике оживился под влиянием неевклидовых геометрий (геометрии Лобачевского), а также необходимости строгого обоснования математического анализа. Особый же всплеск внимания к логике возник на исходе XIX века: мир был поражён открытием парадоксов логики, то есть рассуждений, приводящих к противоречиям. Эти парадоксы обычно называют семантическими парадоксами.

 Парадокс лжеца. Некто утверждает: «Я лгу». Если утверждение «я лгу» истинно («я лгу» = «истина»), то это означает, что он действительно лжёт о том, что лжёт, т.е. утверждение «я лгу» –  ложно. Получается, что высказывание «я лгу» и истинно, и ложно одновременно.

 Парадокс брадобрея. Командир полка назначает одного из солдат брадобреем, приказывая при этом брить тех и только тех солдат, которые не бреются сами. Что же делать брадобрею с самим собой? Если он – брадобрей – будет бриться сам, то это означает, что брадобрей бреет того, кто бреется сам. Он нарушит приказ командира. Но если он не будет сам бриться, значит, его должен побрить брадобрей, т.е. он сам. Получается, что он должен брить и не брить себя одновременно.

 Основная цель математической логики

Основной целью математической логики является обеспечение системы формальных обозначений для рассуждений, встречающихся не только в математике, но и в повседневной жизни.

Решим следующую задачу, используя законы сложения и умножения высказываний.

Задача 4. Брауну, Джонсу и Смиту предъявлено обвинение в соучастии в ограблении банка. Похитители скрылись на поджидавшем их автомобиле. На следствии Браун показал, что преступники были на синем «Бьюике»; Джонс сказал, что это был чёрный «Крайслер», а Смит утверждал, что это был «Форд Мустанг» и ни в коем случае не синий. Стало известно, что, желая запутать следствие, каждый из них указал правильно либо только марку машины, либо только её цвет. Какого цвета был автомобиль и какой марки?

Решение:

1) Перечислим все имеющиеся высказывания:

A{машина синего цвета} – 1-е показание Брауна,

B{машина марки «Бьюик»} – 2-е показание Брауна,

C{машина чёрного цвета} – 1-е показание Джонса,

D{машина марки «Крайслер»} – 2-е показание Джонса,

Eмашина марки «Форд Мустанг»} – 1-е показание Смита,

– 2-е показание Смита.

2) По условию задачи каждый из подозреваемых сказал правду или только про марку машины, или только про её цвет.

Т.к. Браун дал показания А, В, то А или В – правда, что в записи математической логики будет выглядеть:  «истина».

Джонс дал показания C, D, т.е. С или D – правда, что есть  «истина».

Смит дал показания E, , т.е. Е или  – правда, что есть  «истина».

3) Следствие имеет показания Брауна и Джонса и Смита, т.е.

и  и ,

что в записи математической логики есть

«истина»,

т.к. истинно каждое из высказываний , , .

4) Имеем:  «истина».

Перепишем последнее выражение, учитывая, что является логической суммой, а есть логическое произведение:

«истина».

Раскроем скобки:

«истина».

5) Проанализируем каждое из слагаемых полученного выражения:

«ложь», т.к. в этом выражении одновременно утверждается, что машина и синего  и не синего  цвета;

«ложь», т.к. в этом выражении одновременно утверждается, что машина и синего  и чёрного  цвета;

«ложь», т.к. в этом выражении одновременно утверждается, что машина и синего  и не синего  цвета;

«ложь», т.к. в этом выражении одновременно утверждается, что машина «Крайслер» (D) и машина «Форд Мустанг» (E);

{машина марки «Бьюик»; и машина чёрного цвета; и машина не синего цвета}

– в этом выражении внутренних противоречий нет, но мы пока что не знаем, истинно оно или ложно;

«ложь», т.к. в этом выражении одновременно утверждается, что машина «Бьюик»  и машина «Форд Мустанг» ;

«ложь», т.к. в этом выражении одновременно утверждается, что машина «Бьюик»  и машина «Крайслер» ;

«ложь», т.к. в этом выражении одновременно утверждается, что машина «Бьюик»  и машина «Крайслер» .

6) Получили:

«ложь» «ложь» «ложь» «ложь»   «ложь» «ложь» «ложь» =

=   «ложь» =  «истина».

Значит = «истина», т.е. преступники скрылись на чёрном «Бьюике».

Задачи для самостоятельного решения

Задача 1.

Докажите формулу: .

Задача 2.

На вопрос, кто из трёх студентов изучал логику, был известен правильный ответ: «Если изучал первый, то изучал и второй, но неверно, что если изучал третий, то изучал и второй». Кто из студентов изучал логику?

Задача 3.

«Вернувшись домой, комиссар Мегрэ позвонил в полицейский отдел на набережную Орфевр.

- Говорит Мегрэ. Есть новости?

- Да, шеф. Поступили сообщения от инспекторов. Торранс установил, что если Франсуа был пьян, то либо Этьен убийца, либо Франсуа лжёт. Жуссье считает, что или Этьен убийца, или Франсуа не был пьян и убийство произошло после полуночи. Инспектор Люка просил передать Вам, что если убийство произошло после полуночи, то либо Этьен убийца, либо Франсуа лжёт. Затем звонила …

- Всё. Спасибо. Этого достаточно. – Комиссар положил трубку. Он знал, что трезвый Франсуа никогда не лжёт. Теперь он знал всё». Какой вывод сделал Мегрэ?

Указания:

1. Рассмотрите следующие высказывания:

A  {Франсуа был пьян},

B  {Этьен убийца},

C  {Франсуа лжёт},

D  {убийство произошло после полуночи}.

2. Запишите, используя логические операции, высказывания инспекторов Торранса, Жуссье и Люка. Составьте произведение этих трёх высказываний и упростите его.

Задача 4.

Разбирается дело Брауна, Джонса и Смита. Один из них совершил преступление. На следствии каждый из них сделал два заявления.

Браун: «Я не делал этого. Смит сделал это».

Джонс: «Смит не виновен. Браун сделал это».

Смит: «Я не делал этого. Джонс не делал этого».

Суд установил, что один из них дважды солгал, другой – дважды сказал правду, третий – один раз солгал, один раз сказал правду.

Кто совершил преступление?

2. Матрицы.

2.1. Алгебра матриц

Матрицы, их свойства и действия над матрицами введены в математику для разработки методов решения систем линейных уравнений. В этом разделе Вы научитесь выполнять действия с матрицами: сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы.

Весь материал изложен в доступной форме, приведены соответствующие примеры, так что человек, знакомый с арифметическими действиями для действительных чисел, сможет научиться выполнять действия с матрицами.

Мы минимизировали теоретические выкладки, что-то объясняем «на пальцах» и используем «ненаучные термины». Здесь наша задача – научиться выполнять действия с матрицами. Рассматриваем основы раздела «Алгебра матриц».

Определение: Матрица – это упорядоченная прямоугольная таблица каких-либо элементов, каждый из которых характеризуется двумя натуральными числами: номером строки и столбца, на пересечении которых в матрице он находится.

В качестве элементов матрицы будем рассматривать числа. Мы рассматриваем числовые матрицы. Элемент – это термин. А элементом «матрицы окон» дома, расположенного напротив Вашего окна, может быть семья, проживающая за данным окном на данном этаже в данном вертикальном ряду.

Обозначения: Матрицы обычно обозначают прописными латинскими буквами, например, как Am x n, справа внизу которых встречаются индексы в виде произведения натуральных чисел (m x n, или mn), читается: «m на n». Здесь m – число строк, а n – число столбцов в матрице A. Если m = n, то обозначают An n = A n и называют её «квадратная матрица n –го порядка».

Обозначения: Краткая запись выражения «матрица типа A, имеющая m строк и n столбцов, состоящая из таких элементов типа aij, что i изменяется от 1 до m, а j изменяется от 1 до n» имеет вид:

Am n = {aij | i = 1…m; j = 1…n}.

Здесь, для элемента aij , читается: «а и жи», но не «а и на жи»!

Пример: 

Рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов:

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях.

У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов.

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например: 

– это матрица «три на три».

Если в матрице один столбец

или одна строка , то такие матрицы также называют векторами.

Теперь переходим непосредственно к изучению действий с матрицами:

1) Вынесение минуса из матрицы (внесение минуса в матрицу).

Вернемся к нашей матрице

.

Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Проведем «тождественное преобразование» матрицы, которое её не изменит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример:

.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак:

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок.

2) Умножение матрицы на число.

Пример: 

Преобразовать:

Как видим, чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Пример: 

Преобразовать:

применив умножение матрицы на дробь.

Сначала рассмотрим то, чего делать НЕ НАДО (это правильно, но усложняет вид):

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если  – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.

Пример: 

В этом случае можно и НУЖНО умножить все элементы матрицы на (1/2), так как все числа матрицы делятся на 2 без остатка.

Примечание: В теории высшей математики школьным понятием «деление» обычно не пользуются. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». Любое деление – это частный случай умножения.

3) Транспонирование матрицы

Определение: Чтобы транспонировать матрицу, нужно строки исходной матрицы записать в столбцы транспонированной матрицы. А именно: строку номер «m» исходной матрицы в столбец номер «m» транспонированной матрицы. После транспонирования новой матрице выдают особый знак: к символу исходной матрицы справа сверху добавляют большую букву T, или штрих.

Следствие: Если исходная матрица Am n – порядка (размером) «m на n», то матрица, транспонированная к исходной матрице, будет размером «n на m» и иметь вид ATn∙т.

Следствие: При операции транспонирования элементы на главной диагонали матрицы (от верхнего левого до нижнего правого) остаются неизменными.

Пример: 

Транспонировать матрицу .

Внимание: не «транспортировать», не «трансвестировать», а «транспонировать»!

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

.

Таким образом, DT – это матрица, транспонированная к исходной матрице D.

Подчеркнём, что исходная матрица A и транспонированная матрица AT - это две различные, в общем случае, матрицы.

A = AT только в особых случаях: если A – симметричная матрица, когда элементы, симметричные относительно главной диагонали исходной матрицы, равны.

Пример пошаговый: 

Транспонировать матрицу   

Примечание: В матрице B на главной диагонали расположены элементы: {-1; 4; -6}.

Заполняем места элементов транспонированной матрицы BT. Другими словами, строим эту самую транспонированную матрицу.

Сначала переписываем первую строку B - в первый столбец BT.:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Примечание: Транспонировать – это значит прибить матрицу в левом верхнем элементе и повернуть её (исходную матрицу) вокруг главной диагонали на 180°.

4) Сумма (разность) матриц.

Сумма матриц - действие несложное.

НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой.

- Такое действие не определено для этих матриц!

Определение: Для того чтобы получить матрицу, равную сумме (разности) двух исходных матриц, необходимо сложить (вычесть) их соответствующие элементы:

Пример: 

Сложить матрицы  и 

В соответствии с определением, запишем:

.

Для разности матриц, аналогично, находим разность соответствующих элементов:

Пример: 

Найти разность матриц  и .

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу H:

 

Примечание: В теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Умножение матриц.

Скажем сразу, правило умножения матриц (есть в любом учебнике по алгебре) выглядит очень странно для неподготовленного слушателя, но мы объясним это на конкретных примерах. Прежде всего: «Какие матрицы можно умножать?»

Следствие (из строгого определения): Для умножения матрицы K на матрицу L слева необходимо, чтобы число столбцов матрицы K равнялось числу строк матрицы L.

Пример: 

Можно ли умножить матрицу

 на матрицу  ?

, значит, умножать данные матрицы можно.

А вот если, в данном случае, матрицы переставить местами, то умножение уже невозможно!

, значит, выполнить умножение нельзя, и, вообще, такая запись не имеет смысла:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так, но с разным результатом, т. к. в общем случае KL  LK. Например, для матриц

и  существует как произведение , так и .

Как умножать матрицы?

Умножение матриц лучше объяснить на конкретных примерах, так как строгое определение введет в замешательство (или помешательство) большинство читателей.

Начнем с самого простого:

Пример: 

Умножить матрицу  на матрицу
Мы будем сразу приводить формулу для каждого случая:

– попытайтесь сразу уловить закономерность. Поэтому:

Пример сложнее: 

Умножить матрицу  на матрицу

Формула: . В таком случае произведение:

.

В результате мы получили так называемую нулевую матрицу.

Попробуйте самостоятельно выполнить умножение . Правильный ответ - .

Обратите внимание, что ! Это почти всегда так!

Таким образом, переставлять матрицы в произведении нельзя! Если в задании предложено умножить матрицу M на матрицу N, то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.

Примеры с матрицами третьего порядка: 

Умножить матрицу  на матрицу .

Формула умножения очень похожа на предыдущие формулы:

.

А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:

Умножьте матрицу  на матрицу .

Вот готовое решение, но постарайтесь сначала в него не заглядывать!

.

6) Нахождение обратной матрицы

Смотри, после вычисления определителей, раздел 2.3.

2.2. Вычисление определителей

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы. Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись.

Мы не будем давать строгое математическое определение определителя, и, вообще, будем стараться минимизировать математическую терминологию, так как большинству читателей легче от этого не станет. Наша задача – научить Вас решать определители второго, третьего и четвертого порядка.

Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

Определение: Определитель, или детерминант матрицы, – это единственное для данной матрицы число, оно определяется всеми элементами матрицы и характеризует всю матрицу. Определитель можно вычислить только для квадратной матрицы. 

Для вектора таким характерным числом является модуль вектора. Для действительного числа произвольного знака таким характерным числом является абсолютное значение, или модуль числа. Но, в отличие от модуля ненулевого вектора или числа, определитель матрицы может иметь любой знак и быть равным нулю, в том числе для ненулевой исходной матрицы.

Обозначение: Определитель матрицы обозначается символом данной матрицы в прямых (одинарных, или двойных) скобках, как у модуля вектора, или D, или Δ, или det(A). Т. е., как |A|, или ||A||, или латинской буквой D, или греческой буквой Δ, или det(A) для матрицы A. При этом вместо A в новые скобки может быть вписана вся таблица.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка  встречается значительно реже, но о нем тоже поговорим.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании в строке или столбце D речи не идет. Менять местами числа нельзя! Но если очень хочется, то можно... (На самом деле, есть десяток теорем о детерминантах, об условиях, при которых можно переставлять строки и столбцы, но не отдельные элементы, определителя со сменой (или без смены) знака определителя).

Таким образом, если дан определитель, то ничего внутри него не трогаем!

1) Что значит вычислить (найти, раскрыть, решить) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса (?) в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число. Как Вы догадываетесь, для этого нужно применить определенные правила, формулы и алгоритмы.

Определитель матрицы «два на два», его формула:

.

ЭТО НУЖНО ЗАПОМНИТЬ, по крайней мере, на время изучения высшей математики в ВУЗе. Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три», его формула: 

Пример: 

Приведенная формула определителя «три на три» длинная и допустить ошибку по невнимательности проще простого. Как избежать промахов? Определитель «три на три» можно раскрыть 10 способами (10-ю способами получить приведённую формулу). Четыре из них – «простые», и шесть – «нормальные».

Начнем с четырёх простых способов «параллельных полосок» Саррюса:

1) два способа дополнительных столбцов;

2) два способа дополнительных строк.

Первый способ дополнительных столбцов состоит в том, что справа от определителя приписывают первый и второй столбцы и аккуратно карандашом проводят линии:

.

Заметим, что элементы на «красных» диагоналях входят в формулу со знаком «плюс», а элементы на «синих» диагоналях входят в формулу со знаком минус.

Пример:

Второй способ дополнительных столбцов состоит в том, что слева, перед определителем приписывают второй и третий (ближе к определителю) столбцы и проводят линии, начиная с главной диагонали.

Первый способ дополнительных строк состоит в том, что снизу от определителя приписывают первую (ближе к определителю) и вторую строки и проводят линии, начиная с главной диагонали.

Второй способ дополнительных строк состоит в том, что сверху от определителя приписывают вторую и третью (ближе к определителю) строки и проводят линии, начиная с главной диагонали.

Во всех четырёх простых способах элементы матрицы, находящиеся на «красных» диагоналях, параллельных главной диагонали, входят в формулу со знаком «плюс». Элементы матрицы, находящиеся на «синих» диагоналях, входят в формулу со знаком минус. Вычисления по остальным простым способам проведите самостоятельно.

Сравните решение «по формуле» и «простые решения». Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим 6 «нормальных» способов для вычисления определителя. Почему «нормальных» Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки. Вычислить определитель можно, разложив его по любой строке или по любому столбцу. Таким образом, получается 6 способов, при этом во всех случаях используется алгоритм одного и того же типа (смотрите в книгах по высшей алгебре теорему Лапласа о разложении определителя матрицы по любой строке или столбцу, но мы обещали нашим студентам «не докучать моралью строгой»).

Теорема Лапласа: Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно?

Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке.

Для этого нам понадобится «матрица знаков»: . Легко заметить, что знаки расположены в шахматном порядке.

Примечание: Внимание! «Матрица знаков» – это изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает вам понять алгоритм вычисления определителя.

Сначала приведём полное решение. Снова берем наш подопытный определитель и проводим вычисления по теореме Лапласа, разложив его по первой строке:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:

?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или, как их еще называют, МИНОРОВ. Термин надо запомнить. Минор – маленький, точнее, по смыслу в данном случае, - определитель уменьшенной матрицы.

Коль скоро выбран способ разложения определителя по первой строке, очевидно, что всё вращается вокруг неё. Запишем рядом исходную матрицу и «матрицу знаков», одинаковую для любой матрицы «три на три»:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец). Сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Переходим к третьему элементу первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым. В этом и состоит ценность теоремы Лапласа!

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм. При этом матрица знаков у нас увеличится:

В следующем примере раскроем определитель по четвертому столбцу:

Пример:

А как это получилось, попробуйте разобраться самостоятельно. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше будет также раскрыть определитель по какому-нибудь другому столбцу или другой строке.

2.3. Вычисление обратной матрицы

Что такое обратная матрица? Прежде определим единичную матрицу.

Определение: Единичной матрицей n-го порядка называется такая матрица En, что для любой квадратной матрицы n-го порядка An выполняется соотношение

.

Можно показать, что у единичной матрицы на главной диагонали расположены единицы, а все остальные элементы равны нулю.

Определение: Обратной матрицей для матрицы An с неравным нулю определителем (|An|0) называется такая матрица An-1, для которой выполняется соотношение

.

Что необходимо знать и уметь для успешного изучения данного материала? Ответ. Вы должны уметь вычислять определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые операции с матрицами.

Обратную матрицу A-1  можно найти по следующей формуле:

где |A| – определитель матрицы A, Ãматрица алгебраических дополнений исходной матрицы, а ÃTприсоединённая матрица, или транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A.

(Обозначение Ã читаем «A с тильдой»)

Понятие обратной матрицы, как и понятие определителя, существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.

Обозначения: Как Вы уже, наверное, заметили, обратная матрица обозначается добавлением надстрочного индекса (-1) к символу исходной матрицы.

Начнем с простейшего случая – матрицы «два на два». Чаще, конечно, требуется найти обратную матрицу для матрицы «три на три», но мы настоятельно рекомендуем изучить более простое задание, чтобы усвоить общий принцип решения.

Пример: 

Найти обратную матрицу для матрицы .

Решаем. Последовательность действий удобно разложить по пунктам.

1) Сначала находим определитель матрицы.

.

Важно! У матрицы, определитель которой равен НУЛЮ, обратной матрицы НЕ СУЩЕСТВУЕТ (Это следствие из основной теоремы об обратной матрице).

В рассматриваемом примере, как выяснилось, |A| = -2 0, а значит, всё в порядке.

2) Находим матрицу миноров элементов.

Матрица миноров элементов имеет такие же размеры, как и матрица A, то есть, в данном случае,

.

Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице . Сначала рассмотрим левый верхний элемент

.

Как найти минор этого элемента матрицы?

А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшееся число в данном случае и является минором данного элемента, которое записываем в нашу матрицу миноров:

Рассматриваем следующий элемент матрицы :

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:

То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:

Аналогично рассматриваем элементы второй строки и находим их миноры:

Готово.

– это и есть матрица миноров соответствующих элементов матрицы A.

3) Находим матрицу алгебраических дополнений соответствующих элементов.

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:

. Именно у тех чисел, которые обведены в кружок! Получим:

- это матрица Ã алгебраических дополнений соответствующих элементов матрицы A.

4) Находим транспонированную матрицу алгебраических дополнений.

- это транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A.

5) Ответ.

Вспоминаем нашу формулу  

Всё найдено!

Таким образом, искомая обратная матрица:

Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа.

Как проверить решение? По определению обратной матрицы, необходимо выполнить матричное умножение  либо .

6) Проверка:

Получена так называемая единичная матрица (с единицами по главной диагонали и нулями в остальных местах). Таким образом, обратная матрица найдена правильно.

Перейдём к более распространенному на практике случаю – матрице «три на три».

Пример: 

Найти обратную матрицу для матрицы

.

Алгоритм точно такой же, как и для случая «два на два».

Обратную матрицу найдем по формуле: , где  – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы B.

1) Находим определитель матрицы.

Здесь определитель раскрыт по первой строке. Также не забываем, что |B| = -1 0, а значит, всё нормально – обратная матрица существует.

2) Находим матрицу миноров.

Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел. Подробно рассмотрим парочку миноров.

Рассмотрим элемент матрицы в первой строке и первом столбце:

МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшиеся четыре числа записываем в определитель «два на два»

Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:

Всё, минор найден, записываем его в нашу матрицу миноров:

Как Вы, наверное, догадались, подобным образом необходимо вычислить 9 определителей «два на два». Процесс, конечно, мучительный, но случай не самый тяжелый, бывает хуже. Для закрепления – нахождение еще одного минора в картинках:

Остальные миноры попробуйте вычислить самостоятельно. Окончательный результат:

– это матрица миноров соответствующих элементов матрицы B.

То, что все миноры получились отрицательными – чистая случайность.

3) Находим матрицу алгебраических дополнений.

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:

В данном случае:  – это матрица алгебраических дополнений соответствующих элементов матрицы B.

4) Находим транспонированную матрицу алгебраических дополнений .

– это транспонированная матрица алгебраических дополнений соответствующих элементов матрицы B.

5) Ответ:

Проверка:

Таким образом, обратная матрица найдена правильно.

Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист. Это чтобы студент вычислил 1 определитель «четыре на четыре» и 16 определителей «три на три».

В ряде учебников, методических указаниях можно встретить несколько другой подход к нахождению обратной матрицы, но мы Вам рекомендуем пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что в этом случае вероятность запутаться в вычислениях и знаках – гораздо меньше.

3. Решение системы линейных уравнений

Рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходиться иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что обозначает математическое слово «линейных»? Это значит, что в уравнениях системы все переменные (зависимые и независимые) входят в первой степени: x, y, z без всяких причудливых вещей в виде x2, y3, x4y, xyz, sin(xy),… и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы x, y, z. Довольно популярный вариант – переменные с индексами: x1, x2, x3, … . Либо начальные буквы латинского алфавита, маленькие и большие: a, b, c, …, A, B, C. Нередко можно встретить греческие буквы: α, β, γ, δ, … – это известные многим «альфа, бета, гамма, дельта». А также набор с индексами, скажем, с буквой «мю»: μ1, μ2, μ3. Но, как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются.

Таким образом, если Вам встретится что-нибудь страшное в виде ξ11, ξ12, ξ13, … , то не спешите в страхе закрывать задачник. В конце концов, вместо ξ11 можно нарисовать солнце, вместо ξ12 – птичку, а вместо ξ13 – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

3.1. Решение системы линейных уравнений методом подстановки

Этот метод также можно назвать «школьным методом», или методом исключения неизвестных. Образно говоря, его можно также назвать «недоделанным методом Гаусса».

Пример 1: 

Решить систему линейных уравнений:

.

Здесь дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные (без x и y), члены (числа 5 и 7) расположены в левой части уравнения. Решение системы не зависит от того, где они изначально находятся, слева или справа. И эта запись не должна приводить в замешательство, при необходимости систему всегда можно записать, «как обычно»:

.

Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений?

Решить систему уравнений – значит найти такие значения переменных, которые обращают КАЖДОЕ уравнение системы в тождество (очевидное равенство).

Это утверждение справедливо для любых систем уравнений с любым количеством неизвестных.

Решаем. Из первого уравнения выражаем: x = y – 5.

Полученное выражение (x = y – 5) подставляем во второе уравнение:

2(y – 5) + y +7 = 0.

Раскрываем скобки, приводим подобные слагаемые и находим значение y:

Далее вспоминаем про то, от чего плясали: x = y – 5.

Значение y нам уже известно, осталось найти: x = 1 – 5 = -4.

Ответ: x = -4, y = 1.

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендуем выполнить проверку на черновике или калькуляторе. 

1) Подставляем найденный ответ (x = -4, y = 1) в первое уравнение:

-4-1+5 = 0; 0 = 0 – получено верное равенство.

2) Подставляем найденный ответ (x = -4, y = 1) во второе уравнение:

.

0 = 0 – получено верное равенство. Или, если говорить проще, «всё сошлось».

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить y, а не x. Можно, наоборот, что-нибудь выразить из второго уравнения (2x + y = -7) и подставить в первое уравнение. Кстати, заметьте, что в данном случае самый невыгодный из четырех способов – выразить x из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаем Ваше внимание на то, КАК записано выражение.  Не так: , и ни в коем случае не так: .

Если в математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных правильных и неправильных дробях.

Именно , а не  или ! Запятую можно использовать лишь иногда, в частности, если 3,5 – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

«Любое задание следует стремиться выполнить самым рациональным способом».

Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не снизит оценку за использование «школьного метода». Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2: 

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции. Рассматриваемая система взята как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов A, B, C, а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак  обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить A или B.

Далее, выражение для C подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

 

Третье уравнение делим на 2:

Из второго уравнения выразим B и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим: 4A+4=0 => A =-1.

Из второго уравнения: B = A – 4 = -1 - 4 = -5. Из первого уравнения: C = 1+5 = 6.

Ответ: A =-1; B = -5; C = 6.

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)  

2)  

3)  . Получены соответствующие правые части уравнений. Таким образом, решение найдено.

Пример 3: 

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

3.2. Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, как сейчас увидите.

Пример 4: 

Решить систему линейных уравнений:

Мы взяли ту же систему, что и в первом примере.

Анализируя систему уравнений, замечаем, что коэффициенты при переменной y одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО. Как видите, в результате почленного сложения у нас пропала переменная y.

В этом и состоит суть метода – избавиться от одной из переменных.

Теперь всё просто:  – подставляем в первое уравнение системы (можно и во второе, но это не так выгодно – там числа больше):

.

В чистовом оформлении решение должно выглядеть примерно так:

Ответ: x = -4, y = 1.

Пример 5: 

Решить систему линейных уравнений:

В данном примере можно использовать «школьный» метод, но большой минус состоит в том, что когда мы будем выражать какую-либо переменную из любого уравнения, то получим решение в обыкновенных дробях. А возня с дробями займет время, к тому же, если у Вас не «набита рука» на действиях с дробями, то велика вероятность допустить ошибку.

Поэтому целесообразно использовать почленное сложение (вычитание) уравнений. Анализируем коэффициенты при соответствующих переменных:

Как видим, числа в парах (3 и 4), (4 и –3) – разные, поэтому, если сложить (вычесть) уравнения прямо сейчас, то от переменной мы не избавимся. Хотелось бы видеть в одной из пар одинаковые по модулю числа, например, 20 и 20 либо 20 и –20.

Будем рассматривать коэффициенты при переменной  x:

Подбираем такое число, которое делилось бы и на 3 и на 4, причем оно должно быть как можно меньше. В математике такое число называется наименьшим общим кратным. Если Вы затрудняетесь с подбором, просто перемножьте коэффициенты: 3∙4 = 12.

Далее первое уравнение умножаем на число

.

Второе уравнение умножаем на число . В результате система придет к виду:

Вот теперь из первого уравнения почленно вычитаем второе.

На всякий случай приведём еще раз действия, которые проводятся мысленно:

Следует отметить, что можно было бы сделать и наоборот – из второго уравнения вычесть первое, это ничего не меняет. Начисто запишем:

.

Теперь подставим вычисленное значение переменной (y) в одно из уравнений системы. Например, в первое:

.

Ответ: .

Решим систему другим способом. Рассмотрим коэффициенты при переменной (y):

.

Очевидно, что вместо пары коэффициентов (4 и –3) нам нужно получить 12 и –12.

Для этого первое уравнение умножаем на 3, второе уравнение умножаем на 4:

.

Почленно складываем уравнения и находим значения переменных:

Ответ: 

Пример 6: 

Решить систему линейных уравнений:

Это пример для самостоятельного решения (ответ в конце урока).

3.3. Решение системы по правилу Крамера

Ранее мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Далее разберём правило Крамера и решение системы линейных уравнений с помощью обратной матрицы (матричный метод).

Для того, чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите раздел Вычисление определителей.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Во-первых, пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера.

Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

.

На первом шаге вычислим определитель, который называют главным определителем системы.

.

Если , то система имеет бесконечно много решений или не имеет решений (несовместна). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса. Если , то система имеет единственное решение, и для нахождения двух неизвестных мы должны вычислить еще два определителя:

 и  .

На практике вышеуказанные определители также могут обозначаться латинской буквой D с соответствующими индексами. Корни уравнения находим по формулам:

, .

Пример 7: 

Решить систему линейных уравнений

.

Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – редкий гость в практических заданиях по математике, эту систему мы взяли из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби. Что делать? В подобных случаях и приходят на помощь формулы Крамера. Прежде всего, вычислим определитель системы:

,

значит, система имеет единственное решение. Вычислим ещё два определителя:

;

; Ответ: , 

Как видите, корни получились иррациональными, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики. Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс.

Когда используете данный метод, обязательным фрагментом оформления задания является следующий: «Δ ≠ 0 , значит, система имеет единственное решение». В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения  и  в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8: 

Решить систему по формулам Крамера. Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:. Если D = 0, то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса.

Если D ≠ 0, то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:

,  ,  

И, наконец, ответ рассчитывается по формулам: , , .

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два».

Здесь столбец свободных членов  последовательно «прогуливается» слева направо по столбцам главного определителя.

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по такому же принципу.

Пример 9: 

Решить систему по формулам Крамера.

.

Решение: Вычислим определитель системы

, - значит, система имеет единственное решение.

Ответ: .

Время от времени встречаются системы, в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель, в данном случае он имеет вид:

.

Здесь на месте отсутствующих переменных ставятся нули.

Примечание: Определители рационально раскрывать по той строке (столбцу), в которой есть ноль, или максимальное число нулей, так как вычислений получается меньше.

Пример 10: 

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (ответ в конце урока).

3.4. Решение системы с помощью обратной матрицы

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение.

Пример 11: 

Решить систему с матричным методом

.

Решение: Запишем систему в форме матричного произведения: , где

.

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаем, всем понятно.

Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице  нужно поставить нули.

Решение системы найдем по формуле: . Согласно формуле нам нужно найти обратную матрицу  и выполнить матричное умножение .

Алгоритм нахождения обратной матрицы подробно разобран на уроке Вычисление обратной матрицы. Обратную матрицу найдем по формуле: где |A| – определитель матрицы A, Ãматрица алгебраических дополнений исходной матрицы, а ÃTприсоединённая матрица, или транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A.

Сначала разбираемся с определителем:

.

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае для получения соотношений между неизвестными применяется метод исключения неизвестных (метод Гаусса).

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров 

.

Как мы уже обозначали, первая цифра в символе элемента – это номер строки, в которой находится данный элемент, а вторая цифра – это номер столбца, в котором находится данный элемент:

Так, например, элемент M13 находится на пересечении первой строки и третьего столбца, а элемент M32 находится на пересечении третей строки и второго столбца.

,  ,

, ,  , ,  

Порядок расчета миноров совершенно не важен, здесь мы их вычислили слева направо по строкам. Таким образом:

– это матрица миноров соответствующих элементов матрицы A;

– матрица алгебраических дополнений, а

– транспонированная матрица алгебраических дополнений.

Выполненные шаги мы подробно разбирали на уроке Вычисление обратной матрицы. Теперь записываем обратную матрицу:

Не вносим  в матрицу, это серьезно затруднит дальнейшие вычисления. Деление нужно было бы выполнить, если бы все числа матрицы делились на 60 без остатка. А вот внести минус в матрицу в данном случае нужно, это, наоборот – упростит дальнейшие вычисления. Осталось провести матричное умножение.

Обратите внимание, что деление на 60 выполняется в последнюю очередь.

Пример 12: 

Решить систему с помощью обратной матрицы.

 

Это пример для самостоятельного решения (ответ в конце урока).

Ответы:

Пример 3: .

Пример 6: .

Пример 8: , .

Примеры 10, 12:  

3.5. Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное – просто! Кстати, портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА. Про миноры и алгебраические дополнения можно на время забыть! Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах.

Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и мы постараемся в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.

2) Иметь бесконечно много решений.

3) Не иметь решений (быть несовместной).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы вновь рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№ 2-3 отведена статья Несовместные системы и системы с общим решением. Заметим, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе

и решим ее методом Гаусса.

На первом этапе запишем так называемую расширенную матрицу системы:

.

По какому принципу записаны коэффициенты, думаем, всем видно.

Примечание: Расширенная матрица системы получается из исходной с помощью «операции наращивания строк / столбцов». В данном случае матрицу нарастили за счёт столбца свободных членов исходной системы уравнений.

Примечание: Кроме перечисленных ранее 6-и алгебраических операций с матрицами и «операции наращивания» существует ещё «операция отбрасывания строк/столбцов». С помощью «операции отбрасывания строк/столбцов» составляют, например, подматрицы, определители которых являются минорами элементов матрицы.

Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто линия отчёркивания для удобства оформления.

Определение: Матрица системы – это матрица, составленная только из коэффициентов при неизвестных переменных системы линейных уравнений.

Определение: Расширенная матрица системы – это  матрица системы, которую нарастили справа на столбец свободных членов.

В данном примере . – это матрица системы, а - это расширенная матрица системы. Любую из них можно для краткости называть просто матрицей.

После того, как записана расширенная матрица системы, с ней необходимо выполнить некоторые новые алгебраические действия, которые с лёгкой руки Гаусса называются также элементарными преобразованиями матрицы. Преобразования называют элементарными, потому что показано (будем считать это определением), что

Определение: После каждого элементарного преобразования расширенной матрицы получается совершенно другая матрица, но решения для этой новой системы линейных уравнений остаются теми же, что и для исходной матрицы.

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной.

Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них:

.

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. Рисовать не будем, понятно, нулевая строка – это строка, в которой одни нули.

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля.

Рассмотрим нашу матрицу из практического примера: . Сначала распишем преобразование очень подробно.

Умножаем первую строку на (-2): , далее ко второй строке прибавляем первую строку, оставляя первую без изменений: . Теперь первую строку можно разделить «обратно» на (–2): .

Как видите, строка, которую ПРИБАВЛЯЛИ  не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.

На практике так подробно, конечно, не расписывают, а пишут короче:

Еще раз: ко второй строке прибавили первую строку, умноженную на (–2). Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0.

Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: (-1∙(-2) = 2). Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку:

»

«И третий столбец. Вверху –5 умножаю на –2: (-5∙(-2) = 10). Ко второй строке прибавляю первую: (–7 + 10 = 3). Записываю результат во вторую строку:

»

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Повторим: «Элементарные преобразования не изменяют решение системы»

ВНИМАНИЕ!: рассмотренные манипуляции нельзя использовать, если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя!

Вернемся к нашей системе . Она уже почти решена.

Что просит Гаусс? Он говорит: «Запишите расширенную матрицу системы и с помощью элементарных преобразований приведите ее к ступенчатому виду». 

В данном случае для этого

(1) Ко второй строке прибавьте первую строку, умноженную на –2. Кстати, почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Разделите вторую строку на 3. Почему? Чтобы вторая строка давала сразу значение второй переменной.

Цель элементарных преобразований  привести матрицу к ступенчатому виду:

.

В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид.

В результате элементарных преобразований получена система уравнений, эквивалентная исходной системе линейных уравнений, которая приняла вид:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса.

В нижнем уравнении у нас уже готовый результат: . Рассмотрим первое уравнение системы  и подставим в него уже известное значение «игрек»:

Ответ: 

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас мы сразу нарисуем результат, к которому мы придём в ходе решения:

.

Повторимся, что наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число:

.

Почти всегда здесь должна находиться единица. Вообще говоря, устроит и (–1), а иногда и другие числа, но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения. Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2. Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18).

И последовательно проводим (опять же мысленно или на черновике) сложение, т. е. ко второй строке прибавляем первую строку, уже умноженную на –2:

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3.

Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3:

Результат записываем в третью строку:

.

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно. Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО и ВНИМАТЕЛЬНО:

.

А мысленный ход самих расчётов мы уже рассмотрели выше.

Далее нужно получить единицу на следующей «ступеньке»:

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2:

Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на (–2) и проведите сложение. Последнее выполненное действие – причёска результата, для этого делим третью строку на 3.

В результате элементарных преобразований получена система, эквивалентная исходной системе линейных уравнений:

Теперь в действие вступает «обратный ход» метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат: 

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:

Ответ: 

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса. Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами.

Поступим так:

(1) К первой строке прибавляем вторую строку, умноженную на (–1). То есть, мысленно умножили вторую строку на (–1) и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху (–1), что нас вполне устроит. Кто хочет получить (+1), может выполнить дополнительное телодвижение: умножить первую строку на (–1), сменив у неё знак. Дальше алгоритм работает уже по накатанной колее:

.

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на (–1). В принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:

Ответ:  .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваш ход решения может отличаться от нашего хода решения.

Рассмотрим некоторые особенности алгоритма Гаусса.

Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например:

Как правильно записать расширенную матрицу системы? Об этом моменте мы уже рассказывали на уроке Правило Крамера. Матричный метод. В расширенной матрице системы на месте отсутствующих переменных ставим нули:

Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему:

.

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка.

И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на (–1); к третьей строке прибавить первую строку, умноженную на (–3). Таким образом, мы получим нужные нули в первом столбце. Или еще такой условный пример:

.

Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на (–4), в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жёсткий алгоритм. Но вот, чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 десять систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического. Для желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему 4-х линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением. Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Решения и ответы:

Пример 2: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на (–2). К третьей строке прибавили первую строку, умноженную на (–1). Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем!

(2). У второй строки сменили знак, умножили на (–1). Вторую и третью строки поменяли местами. Обратите внимание, что на «ступеньках» нас устраивает не только единица, но еще и (–1), что даже удобнее.

(3). К третьей строке прибавили вторую строку, умноженную на 5.

(4). У второй строки сменили знак, умножили на (–1). Третью строку разделили на 14.

(5). Обратный ход:

Ответ: .

Пример 4: 

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке».

(2). Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6. Со второй «ступенькой» всё хуже, «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо (–1). Преобразования (3) и (4) будут направлены на получение нужной единицы

(3). К третьей строке прибавили вторую, умноженную на (–1).

(4). Ко второй строке прибавили третью, умноженную на (–3). Нужная вещь на второй ступеньке получена.

(5). К третьей строке прибавили вторую, умноженную на 6.

(6). Вторую строку умножили на (–1), третью строку разделили на (-83).

(7). Обратный ход: ,

,

.

Ответ: .

Пример 5: 

Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Первую и вторую строки поменяли местами.

(2). Ко второй строке прибавили первую строку, умноженную на (–2). К третьей строке прибавили первую строку, умноженную на (–2). К четвертой строке прибавили первую строку, умноженную на (–3).

(3). К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1.

(4). У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки.

(5). К четвертой строке прибавили третью строку, умноженную на (–5).

(6). Обратный ход:

Ответ: 

3.6. Несовместные системы. Системы с общим решением. Частные решения

Продолжаем разбираться с системами линейных уравнений. До сих пор мы рассматривали системы, которые имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом, методом Гаусса. Однако на практике широко распространены еще два случая, когда:

1) система несовместна (не имеет решений);

2) система имеет бесконечно много решений.

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса. На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса

Сами элементарные преобразования матрицы – точно такие же, разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Решить систему линейных уравнений

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Есть такая теорема, которая утверждает: «Если количество уравнений в системе меньше количества переменных, то система либо несовместна, либо имеет бесконечно много решений». И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). На левой верхней ступеньке нам нужно получить (+1) или (–1). Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Мы поступили так. К первой строке прибавляем третью строку, умноженную на (–1).

(2). Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую, умноженную на 5.

(3). После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную (–1) на второй ступеньке. Третью строку делим на (–3).

(4). К третьей строке прибавляем вторую строку. Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований:

. Ясно, что так быть не может.

Действительно, перепишем полученную матрицу

 

обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида , где λ – число, отличное от нуля, то система несовместна (не имеет решений).

Как записать концовку задания? Необходимо записать фразу:

«В результате элементарных преобразований получена строка вида , где λ0». Ответ: «Система не имеет решений (несовместна)».

Обратите внимание, что в этом случае нет никакого обратного хода алгоритма Гаусса, решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Снова напоминаем, что Ваш ход решения может отличаться от нашего хода решения, метод Гаусса не задаёт однозначного алгоритма, о порядке действий и о самих действиях надо догадываться в каждом случае самостоятельно.

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же, как только появилась строка вида, где λ0. Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица

.

Эта матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет необходимости, так как появилась строка вида , где λ0. Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок студенту, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия. Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3:

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом и его универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1). Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на (–4). К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–1).

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: к четвертой строке прибавляем первую строку, умноженную на (–1) – именно так!

(2). Последние три строки пропорциональны, две из них можно удалить. Здесь опять нужно проявить повышенное внимание, а действительно ли строки пропорциональны? Для перестраховки не лишним будет вторую строку умножить на (–1), а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них. В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки , где λ0, тоже нет. Значит, это и есть третий оставшийся случай – система имеет бесконечно много решений.

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы.

Общее решение системы найдем с помощью обратного хода метода Гаусса. Для систем уравнений с бесконечным множеством решений появляются новые понятия: «базисные переменные» и «свободные переменные». Сначала определим, какие переменные у нас являются базисными, а какие переменные - свободными. Не обязательно подробно разъяснять термины линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные.

Базисные переменные всегда «сидят» строго на ступеньках матрицы. В данном примере базисными переменными являются x1 и x3.

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: x2 и x4 – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные. Обратный ход алгоритма Гаусса традиционно работает снизу вверх. Из второго уравнения системы выражаем базисную переменную x3:

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную x1 через свободные переменные x2 и x4:

В итоге получилось то, что нужно – все базисные переменные (x1 и x3) выражены только через свободные переменные (x2 и x4):

Собственно, общее решение готово:

.

Как правильно записать общее решение? Прежде всего, свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные x2 и x4 следует записать на второй и четвертой позиции:

.

Полученные же выражения для базисных переменных  и , очевидно, нужно записать на первой и третьей позиции:

Из общего решения системы можно найти бесконечно много частных решений. Это очень просто. Свободными переменные x2 и x4 называют так, потому что им можно придавать любые конечные значения. Самыми популярными значениями являются нулевые значения, поскольку при этом частное решение получается проще всего.

Подставив (x2 = 0; x4 = 0) в общее решение, получим одно из частных решений:

, или  – это частное решение, соответствующее свободным переменным при значениях (x2 = 0; x4 = 0).

Другой сладкой парочкой являются единицы, подставим (x2 = 1 и x4 = 1) в общее решение:

, т. е. (-1; 1; 1; 1) – еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений, так как свободным переменным мы можем придать любые значения.

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение (-1; 1; 1; 1) и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно. Поэтому, прежде всего, более основательна и надёжна проверка общего решения.

Как проверить полученное общее решение ?

Это несложно, но довольно требует длительных преобразований. Нужно взять выражения базисных переменных, в данном случае  и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:

Получена правая часть исходного первого уравнения системы.

В левую часть второго уравнения системы:

Получена правая часть исходного второго уравнения системы.

И далее – в левые части третьего и четвертого уравнение системы. Эта проверка дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют именно проверку общего решения.

Пример 4:

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. 

Пример 5:

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение: Запишем расширенную матрицу системы и, с помощью элементарных преобразований, приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.

(2). К третьей строке прибавляем вторую строку, умноженную на (–5). К четвертой строке прибавляем вторую строку, умноженную на (–7).

(3). Третья и четвертая строки одинаковы, одну из них удаляем. Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому  – базисные переменные.

Свободная переменная, которой не досталось ступеньки здесь всего одна: .

(4). Обратный ход. Выразим базисные переменные через свободную переменную:

Из третьего уравнения:

Рассмотрим второе уравнение  и подставим в него найденное выражение :

,  ,  ,

Рассмотрим первое уравнение  и подставим в него найденные выражения  и :

.

Таким образом, общее решение при одной свободной переменной x4:

Еще раз, как оно получилось? Свободная переменная x4 одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных ,   ,   - тоже на своих местах.

Сразу выполним проверку общего решения.

Подставляем базисные переменные , ,  в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, найдено верное общее решение.

Теперь из найденного общего решения  получим два частных решения. Все переменные выражаются здесь через единственную свободную переменную x4. Ломать голову не нужно.

Пусть x4 = 0, тогда  – первое частное решение.

Пусть x4 = 1, тогда  – еще одно частное решение.

Ответ: Общее решение: . Частные решения:

и .

Далее - похожий заключительный пример для самостоятельного решения.

Пример 6:

Найти общее решение системы линейных уравнений.

Проверка общего решения у нас уже сделана, ответу можно доверять. Ваш ход решения может отличаться от нашего хода решения. Главное, чтобы совпали общие решения. Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановимся на особенностях решения, которые не встретились в прорешанных примерах. В общее решение системы иногда может входить константа (или константы).

Например, общее решение: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных. Однако метод Гаусса работает в самых суровых условиях. Следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Повторимся в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Решения и ответы:

Пример 2: 

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1) Первую и третью строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на (–6). К третьей строке прибавили первую строку, умноженную на (–7).

(3) К третьей строке прибавили вторую строку, умноженную на (–1).

В результате элементарных преобразований получена строка вида , где λ0. Значит, система несовместна. Ответ: решений нет.

Пример 4: 

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньки нет единицы, и преобразование (2) направлено на её получение.

(2). К третьей строке прибавили вторую строку, умноженную на –3.

(3). Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)

(4). К третьей строке прибавили вторую строку, умноженную на 3.

(5). У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход:

(1). Здесь  – базисные переменные (которые на ступеньках), а  – свободные переменные (кому не досталось ступеньки).

(2). Выразим базисные переменные через свободные переменные:

Из третьего уравнения:.

(3). Рассмотрим второе уравнение: .

Подставим в него найденное выражение :

(4). Рассмотрим первое уравнение:

Подставим в него найденные выражения: , :

(5). Общее решение: 

Найдем два частных решения

Если , то

Если , то

Ответ: Общее решение: , частные решения: , .

Проверка: подставим найденное решение (выражения для базисных переменных ,  и ) в левую часть каждого уравнения системы:

Получены соответствующие правые части исходной системы. Таким образом, общее решение найдено верно.

Пример 6: 

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку, умноженную на 2. К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–3).

(2). К третьей строке прибавляем вторую строку. К четвертой строке прибавляем вторую строку.

(3). Третья и четвертая строки пропорциональны, одну из них удаляем.

– базисные переменные,  – свободная переменная. Выразим базисные переменные через свободную переменную:

Ответ: Общее решение: 

4. Комплексные числа

В этом разделе мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять алгебраические действия с «обычными» числа, и помнить тригонометрию.

Сначала вспомним «обычные» Числа. В математике они называются множеством действительных чисел и обозначаются буквой R, либо R (утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой оси обязательно соответствует некоторое действительное число.

4.1. Понятие комплексного числа

«Комплексное число» - это не число в обычном понимании, характеризующееся одним параметром, а математический объект, составленный из двух элементов, каждый из которых - действительное число. Если хотите, комплексное число – двумерное число.

Геометрически комплексное число может быть представлено, как точка на плоскости (элемент плоскости), на которой задана прямоугольная система координат: две взаимно перпендикулярные числовые оси (0X и 0Y) с общей нулевой точкой (0) начала отсчёта. Произвольная точка такой координатной плоскости определяется упорядоченной парой чисел (x; y), где x и y называют обычно координатами точки по соответствующим осям. Пара называется упорядоченной, т. к. при перестановке чисел xy местами в скобках получается другое комплексное число (другая пара): (x; y) (y; x).

Определение: Всякое комплексное число представимо в виде упорядоченной пары действительных чисел: z = (x; y), где и x, и y – действительные числа, а z – «название» этой пары. Первое в паре число x = Re(z) называют действительной частью, а второе в паре число y = Im(z) – мнимой частью комплексного числа.

Определение: Алгебраическим представлением комплексного числа z называют «число» вида: z = a + bi. где a и b – действительные числа, а i - мнимая единица.

Действительные числа после этого определения стали обозначать, как  x  (x; 0), и отмечать их на числовой оси 0X, а мнимые числа (мнимые части комплексных чисел) – как  y  (0; y). Для комплексных чисел ввели особые алгебраические операции, и оказалось, что они представимы как в виде векторов, так и «алгебраически». Например, как: z = x + iy, если пару (комплексную величину)  i  (0; 1) назвать мнимой единицей.

Здесь действительное число  a = Re(z) – действительная (реальная, real) часть z, а действительное число  b = Im(z) - это мнимая (воображаемая, imagine) часть z.

А вот произведение числа b на упорядоченную пару (0; 1): bi = b(0; 1) = (0; b) является чисто мнимым числом.

Здесь a + bi – это обозначение единого комплексного числа, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:  или переставить мнимую единицу:  – от этого комплексное число не изменится.

Но стандартно в большинстве случаев комплексное число принято записывать именно в таком порядке: z = a + bi.

Чтобы всё было понятнее, приведём геометрическую интерпретацию. Комплексные числа изображаются в виде двумерных точек на комплексной плоскости:

Как упоминалось выше, буквой R принято обозначать множество действительных чисел. Множество же комплексных чисел принято обозначать «жирной» или утолщенной буквой C. Поэтому на чертеже следует поставить букву C, обозначая тот факт, что у нас комплексная плоскость.

Комплексная плоскость задаётся двумя осями:

X = Re(z) - действительная ось; Y = Im(z) – мнимая ось.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать размерность (масштаб оси). Поэтому отмечаем точки:

ноль (0; 0)

единицу 1 по действительной оси (1; 0);

мнимую единицу i по мнимой оси (0; 1).

Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и .

Построим на комплексной плоскости следующие комплексные числа:

,  ,  

,  ,  

,  ,  ,  

По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.

Рассмотрим следующие комплексные числа: , , . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось Re(z) обозначает в точности множество действительных чисел R, то есть на оси Re(z) сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел R является подмножеством множества комплексных чисел C.

Числа , ,  – это комплексные числа с нулевой мнимой частью.

Числа , ,  – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси Im(z).

В числах , , ,  и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не чертят, так как что они сливаются с осями.

4.2. Алгебраическая форма комплексного числа. Алгебра комплексных чисел

Комплексное число, как упорядоченная пара чисел, представимо как в виде точки на комплексной плоскости, так и в виде z = a + bi, – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще и тригонометрическая, и показательная формы комплексного числа, о которых пойдет речь далее.

Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры. Необходимо только помнить, что алгебраические действия должны производиться одновременно с обеими частями упорядоченной пары.

Сложение комплексных чисел

Пример 1:

Сложить два комплексных числа ,

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:

Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях. Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса: , – то есть «от перестановки слагаемых сумма не меняется».

Вычитание комплексных чисел

Пример 2:

Найти разности комплексных чисел  и , если ,

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака: .

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .

Рассчитаем вторую разность:

Здесь действительная часть тоже составная: .

Чтобы не было какой-то недосказанности, приведём пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3:

Найти произведение комплексных чисел , .

Очевидно, что произведение следует записать так:

Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что   и быть внимательным.

Повторим школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена. Распишем подробно:

Надеюсь, всем было понятно, что . Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках. Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .

В учебной литературе легко найти специальную формулу для вычисления произведения комплексных чисел и вывод знаменитого равенства для i. Если хотите, пользуйтесь, но подход с умножением многочленов более понятен. Формулу приводить не буду, считаю, что в данном случае это - забивание головы опилками.

Деление комплексных чисел

Пример 4:

Даны комплексные числа , . Найти частное .

Составим частное:

.

Деление чисел осуществляется методом умножения знаменателя и числителя на комплексно сопряженное знаменателю выражение, чтобы в знаменателе получилось действительное число.

Вспоминаем бородатую формулу  и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому комплексно сопряженным выражением в данном случае является , то есть .

Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, помножить числитель на то же самое число :

.

Далее в числителе нужно раскрыть скобки, т. е. перемножить два числа по правилу, рассмотренному в предыдущем пункте. А в знаменателе воспользоваться формулой  (помним, что i 2=-1, и не путаемся в знаках!!!).

Распишем подробно:

Пример мы подобрали здесь «хороший», если же взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .

В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы:

.

Для любителей упростить это частное приведём правильный ответ: i.

Пример 5:

Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме a + bi).

Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу (a - b)(a + b) = a2 - b2. В знаменателе уже есть (a + b), поэтому знаменатель и числитель нужно помножить на сопряженное выражение (a - b), то есть на :

Пример 6:

Даны два комплексных числа z1 = 5 + 2i, z2 = 2 – 5i. Найти их сумму, разность, произведение и частное. Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Иногда для решения предлагается навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что:  i 2=-1.

4.3. Тригонометрическая и показательная формы комплексного числа

В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже.

Любое комплексное число  (кроме нуля) можно записать в тригонометрической форме: , где  – модуль комплексного числа, а  – аргумент комплексного числа. Не разбегаемся, всё проще, чем кажется.

Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что :

Определение: Модулем комплексного числа  называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа z стандартно обозначают: |z| или r. По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: .

Данная формула справедлива для любых значений «а» и «бэ».

Определение: Аргументом комплексного числа z называется угол φ, проведенный против часовой стрелки между положительной полуосью действительной оси Re(z) и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z =0.

Аргумент комплексного числа z стандартно обозначают: φ или arg(z).

Из геометрических соображений получается следующая формула для нахождения аргумента:

.

Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7:

Представить в тригонометрической форме комплексные числа: , , , .

Выполним чертёж:

На самом деле задание устное. Для наглядности перепишем тригонометрическую форму комплексного числа:

Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол.

1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Очевидно, что  (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме: .

Ясно, как день, обратное проверочное действие: 

2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что .

Формальный расчет по формуле:

.

Очевидно, что  (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: .

Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле:

.

Очевидно, что  (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: .

Проверка: 

4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что . Формальный расчет по формуле: .

Аргумент можно записать двумя способами: Первый способ:  (270°), и, соответственно: . Проверка:

Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла:  (-90°), на чертеже угол отмечен зеленым цветом. Легко заметить, что  и  – это один и тот же угол.

Таким образом, запись принимает вид:

Внимание! Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Аргументы быть одинаковы синуса и косинуса должны быть одинаковы для тригонометрической формы записи комплексного числа.

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче!

В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...». Это действительно очевидно и легко решается устно.

Перейдем к рассмотрению более распространенных случаев. Как уже отмечалось, с модулем проблем не возникает, всегда следует использовать формулу . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число .

При этом возможны три варианта (их полезно переписать к себе в тетрадь):

1) Если  (1-ая и 4-ая координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле .

2) Если  (2-ая координатная четверть), то аргумент нужно находить по формуле .

3) Если  (3-я координатная четверть), то аргумент нужно находить по формуле .

Пример 8

Представить в тригонометрической форме комплексные числа: , , , .

Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить. Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета. Эх, сто лет от руки ничего не чертил, держите:

Мы представим в комплексной форме числа  и , первое и третье числа будут для самостоятельного решения. Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку  (случай 2), то 

– вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:

– это число  в тригонометрической форме.

Расскажу о забавном способе проверки. Если вы будете выполнять чертеж на клетчатой бумаге в том масштабе, который у меня (1 ед. = 1 см), то можно взять линейку и измерить модуль в сантиметрах. Если есть транспортир, то можно непосредственно по чертежу измерить и угол.

Перечертите чертеж в тетрадь и измерьте линейкой расстояние от начала координат до числа . Вы убедитесь, что действительно . Также транспортиром можете измерить угол и убедиться, что действительно .

Представим в тригонометрической форме число . Найдем его модуль и аргумент.

Поскольку  (случай 1), то , или (-60°).

Таким образом:

– число  в тригонометрической форме.

А вот здесь, как уже отмечалось, минусы не трогаем.

Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол  – это в точности табличный угол  (или 300 градусов):

– это число  в исходной алгебраической форме.

Числа  и  представьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока.

В конце параграфа кратко о показательной форме комплексного числа. Любое комплексное число  (кроме нуля) можно записать в показательной форме: , где  – это модуль комплексного числа, а  – аргумент комплексного числа.

Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде . Можно показать, что показательная функция чисто мнимого аргумента равна скобке с косинусом, синусом и i, которая, помноженная на модуль, равна самому комплексному числу.

Например, для числа  предыдущего примера у нас найден модуль и аргумент: , . Тогда данное число в показательной форме запишется следующим образом: .

Число  в показательной форме будет выглядеть так:

Число   – будет выглядеть так: . И т.д.

Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме .


Возведение комплексных чисел в степень

Пример 9:

Возвести в квадрат комплексное число

Здесь можно пойти двумя путями, первый способ это переписать степень как произведение множителей  и перемножить числа по правилу умножения многочленов.

Второй способ состоит в применение известной школьной формулы сокращенного умножения :

Для комплексного числа легко вывести свою формулу сокращенного умножения:
. Аналогичную формулу можно вывести для квадрата разности, а также для куба суммы и куба разности. Но эти формулы более актуальны для
задач комплексного анализа, поэтому на данном уроке я воздержусь от подробных выкладок.

Что делать, если комплексное число нужно возвести, скажем, в 5-ую, 10-ую или 100-ую степень? В алгебраической форме проделать такой трюк практически невозможно, действительно, подумайте, как вы будете решать пример вроде ?

И здесь на помощь приходит тригонометрическая форма комплексного числа и так называемая формула Муавра: Если комплексное число представлено в тригонометрической форме , то при его возведении в натуральную степень n справедлива формула:

Пример 10

Дано комплексное число , найти .

Что нужно сделать? Сначала нужно представить данной число в тригонометрической форме. Внимательные читатели заметили, что в Примере 8 мы это уже сделали:

. Тогда по формуле Муавра:

Не нужно считать на калькуляторе , а вот угол в большинстве случае следует упростить. Как упростить? Образно говоря, нужно избавиться от лишних оборотов, но так, чтобы значения синуса и косинуса не изменились. Один оборот составляет  радиан или 360 градусов. Смотрим сколько у нас оборотов в аргументе :  оборотов, в данном случае можно убавить один оборот: . Надеюсь всем понятно, что  и  – это один и тот же угол.

Таким образом, окончательный ответ запишется так:

Любители стандартов везде и во всём могут переписать ответ в виде:

(т.е. убавить еще один оборот и получить значение аргумента в стандартном виде).

Хотя  – ни в коем случае не ошибка.

Пример 11

Дано комплексное число , найти . Полученный аргумент (угол) упростить, результат представить в алгебраической форме.

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Отдельная разновидность задачи возведения в степень – это возведение в степень чисто мнимых чисел.

Пример 12

Возвести в степень комплексные числа , ,

Здесь тоже всё просто, главное, помнить знаменитое равенство.

Если мнимая единица возводится в четную степень, то техника решения такова:

Если мнимая единица возводится в нечетную степень, то «отщипываем» одно «и», получая четную степень:

Если есть минус (или любой действительный коэффициент), то его необходимо предварительно отделить:

Пример 13

Возвести в степень комплексные числа , 

Это пример для самостоятельного решения.

Извлечение корней из комплексных чисел

Маленький примерчик:

Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень –  можно! А точнее, два корня:

 

Действительно ли найденные корни являются решением уравнения ? Выполним проверку:

 

Что и требовалось проверить.

Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: .

Такие корни также называют сопряженными комплексными корнями. Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно:  , , , ,  и т.д. Во всех случаях получается два сопряженных комплексных корня, которые отличаются знаками мнимых частей.

Пример 14

Решить квадратное уравнение  

Вычислим дискриминант:

Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!

По известным школьным формулам получаем два корня:

– сопряженные комплексные корни

Таким образом, уравнение  имеет два сопряженных комплексных корня: , 

Теперь вы сможете решить любое квадратное уравнение!

И вообще, любое уравнение с многочленом «энной» степени  имеет ровно n корней, часть из которых может быть комплексными. Простой пример для самостоятельного решения:

Пример 15

Найти корни уравнения  и разложить квадратный двучлен на множители.

Разложение на множители осуществляется опять же по стандартной школьной формуле.

Как извлечь корень из произвольного комплексного числа?

Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при  получается квадратный корень . Уравнение вида  имеет ровно  корней , которые можно найти по формуле:

, где  – это модуль комплексного числа ,  – его аргумент, а параметр  принимает значения: 

Пример 16

Найти корни уравнения

Перепишем уравнение в виде

В данном примере , , поэтому уравнение будет иметь два корня:  и .

Общую формулу можно сразу немножко детализировать:

,

Теперь нужно найти модуль и аргумент комплексного числа :

Число  располагается в первой четверти, поэтому:

Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.

Еще более детализируем формулу:

,

На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось.

Подставляя в формулу значение , получаем первый корень:

Подставляя в формулу значение  , получаем второй корень:

Ответ: ,

При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.

И напоследок рассмотрим задание - «хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .

Пример 17

Найти корни уравнения , где

Сначала представим уравнение в виде :

Если , тогда

Обозначим  привычной формульной буквой: .

Таким образом, требуется найти корни уравнения

В данном примере , а значит, уравнение имеет ровно три корня: , ,

Детализируем общую формулу: , 

Найдем модуль и аргумент комплексного числа :

Число  располагается во второй четверти, поэтому:

Еще раз детализирую формулу:

, 

Корень удобно сразу же упростить:

Подставляем в формулу значение  и получаем первый корень:

Подставляем в формулу значение  и получаем второй корень:

Подставляем в формулу значение  и получаем третий корень:

Очень часто полученные корни требуется изобразить геометрически:

Как выполнить чертеж?

Сначала на калькуляторе находим, чему равен модуль корней  и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.

Теперь берем аргумент первого корня  и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром  и ставим на чертеже точку z0.

Берем аргумент второго корня  и переводим его в градусы: . Отмеряем транспортиром  и ставим на чертеже точку .

По такому же алгоритму строится точка 

Легко заметить, что корни расположены геометрически правильно с интервалом  между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж.

Уравнения четвертого  и высших порядков встречаются крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами.

Для чего нужны комплексные числа? Комплексные числа нужны ля выполнения заданий других разделов высшей математики, кроме того, они используются во вполне материальных инженерных расчетах на практике.

Решения и ответы:

Пример 6: Решение:




Пример 8: Решение:

Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку  (случай 1), то . Таким образом:  – число  в тригонометрической форме.

Представим в тригонометрической форме число . Найдем его модуль и аргумент. .

Поскольку  (случай 3), то

. Таким образом:  – число  в тригонометрической форме.

Пример 11: Решение:

Представим число в тригонометрической форме:  (это число  Примера 8). Используем формулу Муавра :

Пример 13: Решение:


Пример 15: Решение:

, 

Разложим квадратный двучлен на:

5. Математические формулы и графики

5.1. Математические формулы

Прежде, чем Вы приступите к изучению наших методических материалов, да и вообще приступите к изучению любых материалов по высшей математике, НАСТОЯТЕЛЬНО РЕКОМЕНДУЕМ прочитать нижеследующее.

Для того чтобы успешно решать задачи по высшей математике НЕОБХОДИМО:

Уметь складывать, вычитать, умножать и делить. Вспомнить, что любая дробь, например , обозначает деление, «три делить на семь» в данном случае. Вспомнить, что такое квадратный корень, например: .

ЗАПАСИТЕСЬ КАЛЬКУЛЯТОРОМ, ещё лучше - научитесь умножать и делить многозначные числа «столбиком».

Есть? Уже хорошо.

 От перестановки слагаемых – сумма не меняется:  .

А вот это - совершенно разные вещи:

 

 

Переставлять «икс» и «четверку» просто так нельзя. Заодно вспоминаем культовую букву «икс», которая в математике обозначает неизвестную или переменную величину.

От перестановки множителей – произведение не меняется: .

С делением такой фокус не пройдет,  и  – это две совершенно разные дроби и перестановка числителя со знаменателем без последствий не обходится.

Также вспоминаем, что знак умножения («точкy») чаще принято не писать: , .

Вспоминаем правила раскрытия скобок:

– здесь знаки у слагаемых не меняются

– а здесь меняются на противоположные.

И для умножения:

Вообще, достаточно помнить, что ДВА МИНУСА ДАЮТ ПЛЮС, а ТРИ МИНУСА – ДАЮТ МИНУС. И, постараться при решении задач по высшей математике в этом НЕ ЗАПУТАТЬСЯ (очень частая и досадная ошибка).

Вспоминаем приведение подобных слагаемых, Вы должны хорошо понимать, что следующее действие:

– это всего лишь обычное сложение.

Вспоминаем, что такое степень:

, , , .

Степень - это, что дроби можно сокращать: (сократили на 2),  (сократили на пять),  (сократили на ).

Вспоминаем действия с дробями:

 

а также, очень важное правило приведения дробей к общему знаменателю:

Если данные примеры малопонятны, смотрите школьные учебники. Без этого ТУГО будет.

СОВЕТ: все ПРОМЕЖУТОЧНЫЕ вычисления в высшей математике лучше проводить в ОБЫКНОВЕННЫХ ПРАВИЛЬНЫХ И НЕПРАВИЛЬНЫХ ДРОБЯХ, даже если будут получаться страшные дроби вроде . Вот эту вот дробь НЕ НАДО представлять в виде , и, тем более, НЕ НАДО делить на калькуляторе числитель на знаменатель, получая 4,334552102….

ИСКЛЮЧЕНИЕМ из правила является конечный ответ задания, вот тогда как раз лучше записать    или  .

Уравнение. У него есть левая часть и правая часть. Например:

,

то можно перенести любое слагаемое в другую часть, сменив у него знак: Перенесем, например, все слагаемые в левую часть:  Или в правую:

Обратите внимание, что можно безболезненно переставить части уравнения местами:
, а равно, как и перетасовать слагаемые в пределах ОДНОЙ части.

 Правило пропорции:

, , , , , ,  – это одно и то же.

То, что находится внизу одной части – можно переместить наверх другой части.

То, что находится вверху одной части – можно переместить вниз другой части.

 И, наконец, стОит вспомнить о существовании некоторых функций. Таких, как синус, косинус, тангенс, котангенс и логарифм. При этом в качестве аргумента функции может выступать не только буковка «хэ» (например, ), но и сложное выражение, например , и, рвать функцию на части категорически нельзя!

Не лишним будет вспомнить графики основных функций, предаться воспоминаниям можно на странице Графики и свойства элементарных функций. Там же освежаем в памяти актуальный технический вопрос – Как правильно построить график любой функции?

Вот, пожалуй, и все основные вещи школьного курса математики, которые нужно помнить. Если какие-либо моменты непонятны, или понятны смутно, отсылаю Вас к школьным учебникам по математике. Перед решением заданий по высшей математике весьма полезно ознакомиться со справочным материалом Горячие формулы высшей математики.

Далее методический материал представляет собой обзор графиков основных элементарных функций и их свойств. Будет полезен при изучении практически всех разделов высшей математики, более того, поможет вам лучше и качественнее разобраться в некоторых темах. Также вы сможете узнать, какие значения функций следует знать наизусть, чтобы не получить «два автоматом» при ответе на простейший вопрос экзаменатора. Содержит много графиков функций, которые также желательно помнить.

5.2. Графики и основные свойства элементарных функций

Данный методический материал носит справочный характер и его нельзя отнести к какой-либо определенной теме. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график. В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций.

Мы не претендуем на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практику – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики. Графики для чайников? Можно сказать и так.

Как правильно построить координатные оси?

На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

Любой чертеж графика функции начинается с координатных осей.

Чертежи бывают двухмерными и трехмерными.

Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат:

1) Чертим координатные оси. Чертить всегда стараемся аккуратно и не криво. Стрелочки тоже не должны быть похожи на бороду Папы Карло.

2) Подписываем оси. Не забываем подписывать оси.

3) Задаем размерность по осями: рисуем ноль и две единички. При выполнении чертежа самая удобная и часто встречающаяся размерность: 1 единица = 2 клеточки (чертеж слева). Я рекомендую Вам по возможности всегда придерживаться именно такой размерности. Но, время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда размерность уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко-редко, но бывает, что размерность чертежа приходиться уменьшать (или увеличивать) еще больше.

НЕ НУЖНО по осям проставлять все значения: …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Лобачевскому, а студент – не голубь. Ставим ноль и две единицы по осям. Как говорят математики, это необходимо и достаточно. Размерность можно задать и произвольно, например, поставить 0 и – 1, –1 – по осям, но существуют некоторые стандарты, которых целесообразно придерживаться.

Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа. Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярная размерность 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку  – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж  не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем меньшую размерность 1 единица = 1 клеточка.

Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно.

К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, - это полное безобразие. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая - то мажет, а то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым. Немецкое качество.

Трехмерный случай

Здесь почти всё так же.

1) Чертим координатные оси. Стандарт: ось  – направлена вверх, ось  – направлена вправо, ось  – влево вниз строго под углом 45 градусов.

2) Подписываем оси.

3) Задаем размерность по осям. Размерность по оси OX – в два раза меньше, чем размерность по другим осям. Также обратите, внимание, что на правом чертеже размерность задана нестандартно – по оси OX двойкой, а не единицей. С нашей точки зрения, так точнее, и, главное, быстрее и удобнее – не нужно под микроскопом выискивать середину клеточки.

При выполнении трехмерного чертежа опять же желательно придерживаться размерности 1 единица = 2 клеточки (чертеж слева).

Для чего существует эти правила? Правила, как известно, существуют для того, чтобы их нарушать! Чем я сейчас и займусь. Дело в том, что все последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Можно было бы начертить все графики от руки, но MS Excel их начертит гораздо точнее.

График линейной функции

Линейная функция задается уравнением . График линейной функций представляет собой прямую линию. Для того, чтобы построить прямую, достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:

А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:


При оформлении чертежа всегда подписываем графики.

Не лишним будет вспомнить частные случаи линейной функции:


Обратите внимание, как расположены подписи, подписи не должны допускать разночтений при изучении чертежа. В данном случае крайне нежелательно было постаить подпись рядом с точкой пересечения прямых ,  или справа внизу между графиками.

1) Линейная функция вида  () выражает прямую пропорциональную зависимость. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида  задает прямую, параллельную оси , в частности, сама ось  задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись  следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида  задает прямую, параллельную оси , в частности, сама ось  задается уравнением . График функции также строится сразу. Запись  следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде  или .

Построение прямой – самое распространенное действие при выполнении чертежей.

График квадратичной, кубической функции, график многочлена

Парабола. График квадратичной функции  () представляет собой параболу. Рассмотрим канонический случай:

Вспоминаем некоторые свойства функции .

Область определения этой функции – любое действительное число. Какую бы точку на оси  мы не выбрали – для каждого «икс» существует значение функции . Область определения стандартно обозначается как , или . В данном случае область определения – все множество действительных чисел D(y) = R.

Область значений – это множество всех значений, которые может принимать переменная «игрек». В данном случае это  – множество всех положительных значений, включая ноль. Область значений стандартно обозначается как , или .

Функция  является чётной. Если функция является чётной, то ее график симметричен относительно оси . Это очень полезное свойство, которое заметно упрощает построение графика, в чём мы скоро убедимся. Аналитически чётность функции выражается условием . Как проверить любую функцию на чётность? Нужно вместо  подставить в уравнение . В случае с параболой проверка выглядит так: , значит, функция  является четной.

Функция  не ограничена сверху. Аналитически свойство записывается так: . Вот вам, кстати, и пример геометрического смысла предела функции: если мы будет уходить по оси  (влево или вправо) на бесконечность, то ветки параболы (значения «игрек») будут неограниченно уходить вверх на «плюс бесконечность». При изучении пределов функций желательно понимать геометрический смысл предела.

Пример 2

Построить график функции .

В этом примере мы рассмотрим важный технический вопрос: Как быстро построить параболу? В практических заданиях необходимость начертить параболу возникает очень часто, в частности, при вычислении площади фигуры с помощью определенного интеграла. Поэтому чертеж желательно научиться выполнять быстро, с минимальной потерей времени. Я предлагаю следующий алгоритм построения.

Сначала находим вершину параболы. Для этого берём первую производную и приравниваем ее к нулю:

Если с производными плохо, следует ознакомиться с уроком 

Как найти производную?

Итак, решение нашего уравнения: ; – именно в этой точке и находится вершина параболы. Рассчитываем соответствующее значение «игрек»:

Таким образом, вершина находится в точке

Теперь находим другие точки, при этом пользуемся симметричностью параболы. Следует заметить, что функция  – не является чётной, но, тем не менее, симметричность параболы никто не отменял.

В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

Выполним чертеж:

Из рассмотренных графиков вспоминается еще один полезный признак:

Для квадратичной функции  () справедливо следующее:

Если , то ветви параболы направлены вверх.

Если , то ветви параболы направлены вниз.

Кубическая парабола

Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


Перечислим основные свойства функции

Область определения – любое действительное число:.

Область значений – любое действительное число:.

Функция  является нечётной. Если функция является нечётной, то ее график симметричен относительно начала координат. Аналитически нечётность функции выражается условием . Выполним проверку для кубической функции, для этого вместо «икс» подставим «минус икс»

, значит, функция  является нечетной.

Функция  не ограничена. На языке пределов функции это можно записать так: ,

Кубическую параболу тоже эффективнее строить с помощью таблички:

Наверняка, вы заметили, в чем ещё проявляется нечетность функции. Если мы нашли, что , то при вычислении  уже не нужно ничего считать, автоматом записываем, что . Эта особенность справедлива для любой нечетной функции.

Теперь немного поговорим о графиках многочленов.

График любого многочлена третьей степени  () принципиально имеет следующий вид:

В этом примере коэффициент при старшей степени , поэтому график развёрнут «наоборот». Принципиально такой же вид имеют графики многочленов 5-ой, 7-ой, 9-ой и других нечетных степеней. Чем выше степень, тем больше промежуточных «загибулин».

Многочлены 4-ой, 6-ой и других четных степеней имеют график принципиально следующего вида:

Эти знания полезны при исследовании графиков функций.

График функции 

Выполним чертеж:

Основные свойства функции :

Область определения:.

Область значений: .

То есть, график функции полностью находится в первой координатной четверти.

Функция  не ограничена сверху. Или с помощью предела: 

При построении простейших графиков с корнями также уместен поточечный способ построения, при этом выгодно подбирать такие значения «икс», чтобы корень извлекался нацело:

На самом деле хочется разобрать еще примеры с корнями, например, , но они встречаются значительно реже. Мы ориентируемся на более распространенные случаи, и, как показывает практика, что-нибудь вроде  приходиться строить значительно чаще. Если возникнет необходимость выяснить, как выглядят графики с другими корнями, то, рекомендую заглянуть в школьный учебник или математический справочник.

График гиперболы

Основные свойства функции :

Область определения: .

Область значений: .

Запись  обозначает: «любое действительное число, исключая ноль»

В точке  функция терпит бесконечный разрыв. Или с помощью односторонних пределов: , . Немного поговорим об односторонних пределах. Запись  обозначает, что мы бесконечно близко приближаемся по оси к нулю слева. Как при этом ведёт себя график? Он уходит вниз на минус бесконечность, бесконечно близко приближаясь к оси . Именно этот факт и записывается пределом . Аналогично, запись  обозначает, что мы бесконечно близко приближаемся по оси  к нулю справа. При этом ветвь гиперболы уходит вверх на плюс бесконечность, бесконечно близко приближаясь к оси . Или коротко: .

Прямая, к которой бесконечно близко приближается график какой-либо функции, называется асимптотой.

В данном случае ось  является вертикальной асимптотой для графика гиперболы при .

Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.

Также односторонние пределы ,  говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу.

Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси  влево (или вправо) на бесконечность, то  «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близкоприближаться к оси .

Таким образом, ось  является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

Функция  является нечётной, а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

График функции вида  () представляют собой две ветви гиперболы.

Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

Если , то гипербола расположена во второй и четвертой координатных четвертях.

Пример 3

Построить правую ветвь гиперболы .

Используем поточечный метод построения, при этом, значения  выгодно подбирать так, чтобы делилось нацело:

Выполним чертеж:


Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

График показательной функции

В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

Напоминаю, что  – это иррациональное число: , это потребуется при построении графика, который мы, собственно, и пострем. Трёх точек, пожалуй, хватит:

График функции  пока оставим в покое, о нём позже.

Основные свойства функции :

Область определения: – любое «икс».

Область значений: . Обратите внимание, что ноль не включается в область значений. Экспонента – функция положительная, то есть для любого «икс» справедливо неравенство , а сам график экспоненты полностью расположен в верхней полуплоскости.

Функция не ограничена сверху: , то есть, если мы начнем уходить по оси  вправо на плюс бесконечность, то соответствующие значения «игрек» стройным шагом будут тоже уходить вверх на  по оси . Кстати, график экспоненциальной функции будет «взмывать» вверх на бесконечность очень быстро и круто, уже при ; .

Исследуем поведение функции на минус бесконечности: . Таким образом, ось  является горизонтальной асимптотой для графика функции, если .

Принципиально такой же вид имеет любая показательная функция , если . Функции , ,  будут отличаться только крутизной наклона графика, причем, чем больше основание, тем круче будет график.

Обратите внимание, что во всех случаях графики проходят через точку , то есть . Это значение должен знать даже «двоечник».

Теперь рассмотрим случай, когда основание . Снова пример с экспонентой , – на чертеже соответствующий график прочерчен малиновым цветом.

Что произошло? Ничего особенного – та же самая экспонента, только она «развернулась в другую сторону». Принципиально так же выглядят графики функций ,  и т. д.

График логарифмической функции

Рассмотрим функцию с натуральным логарифмом .

Выполним поточечный чертеж:

Если позабылось, что такое логарифм, отсылаю вас к школьным учебникам.

Основные свойства функции :

Область определения:

Область значений: .

Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.

Исследуем поведение функции вблизи нуля справа: . Таким образом, ось  является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

Обязательно нужно знать и помнить типовое значение логарифма: .

Принципиально так же выглядит график логарифма при основании : , ,  (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

Случай  рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде  в задачах высшей математики ооочень редкий гость.

В заключение параграфа скажем еще об одном факте: Экспоненциальная функция  и логарифмическая функция  – это две взаимно обратные функции. Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

Графики тригонометрических функций

С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

Построим график функции

Данная линия называется синусоидой.

Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

Основные свойства функции :

Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

Область определения:, то есть для любого значения «икс» существует значение синуса.

Область значений: .

Функция  является ограниченной: , то есть, все «игреки» сидят строго в отрезке . Такого, как  или , не бывает. Точнее говоря, бывает, но указанные уравнения не имеют решения на множестве действительных чисел.

Синус – это функция нечетная, синусоида симметричная относительно начала координат, и справедлив следующий факт: . Таким образом, если в вычислениях встретится, например, , то минус терять здесь ни в коем случае нельзя! Он выносится: .

Как ведет себя синус на бесконечности? Попробуем провести исследование с помощью пределов: ,  Чему равны такие пределы? Запомните, данных пределов не существует. По вполне понятным причинам, график синуса болтается как неприкаянный, то дойдет единицы, то уйдет к минус единице и так до бесконечности.

Вот вам пример, когда предела не существует. В высшей математике это можно встретить не очень часто, но такое понятие, как «предела не существует» – существует!

В практических вычислениях желательно (и даже обязательно) знать и помнить следующие значения синуса: , , .

Другие значения синуса (а также остальных тригонометрических функций) можно найти в методическом материале Тригонометрические таблицы.

График косинуса

Построим график функции

   

График косинуса – это та же самая синусоида, сдвинутая вдоль оси  на  влево.

Поэтому почти все свойства синуса справедливы и для косинуса. За некоторым, но существенным исключением.

Косинус – это функция четная, ее график симметричен относительно оси , и справедлив следующий факт: . То есть, минус перед аргументом косинуса можно безболезненно убирать (или наоборот, ставить).

В отличие от синуса в косинусе минус «бесследно пропадает».

Для решения практических задач нужно знать и помнить следующие значения косинуса: , , .

Графики тангенса и котангенса

Построим график функции


Основные свойства функции :

Данная функция является периодической с периодом . То есть, достаточно рассмотреть отрезок , слева и справа от него ситуация будет бесконечно повторяться.

Область определения:  – все действительные числа, кроме , , , … и т. д. или коротко: , где  – любое целое число. Множество целых чисел (… -4, -3, -2, -1, 0, 1, 2, 3, 4, …) в высшей математике обозначают жирной буквой Z.

Область значений: . Функция  не ограничена. В этом легко убедиться и аналитически:

– если мы приближаемся по оси  к значению  справа, то ветка тангенса уходит на минус бесконечность, бесконечно близко приближаясь к своей асимптоте .

– если мы приближаемся по оси  к значению  слева, то «игреки» шагают вверх на плюс бесконечность, а ветка тангенса бесконечно близко приближается к асимптоте .

Тангенс – функция нечетная, как и в случае с синусом, минус из-под тангенса не теряется, а выносится: .

В практических вычислениях полезно помнить следующие значения тангенса: , , , а также те точки, в которых тангенса не существует (см. график).

График котангенса – это почти тот же самый тангенс, функции связаны тригонометрическим соотношением . Вот его график:


Свойства попробуйте сформулировать самостоятельно, они практически такие же, как и у тангенса.


Графики обратных тригонометрических функций

Построим график арксинуса

Перечислим основные свойства функции :

Область определения:, не существует значений вроде  или

Область значений: , то есть, функция  ограничена.

Арксинус – функция нечетная, здесь минус опять же выносится: .

В практических вычислениях полезно помнить следующие значения арксинуса: , , . Другие распространенные значения арксинуса (а также других «арков») можно найти с помощью таблицы значений обратных тригонометрических функций.

Построим график арккосинуса 

Очень похоже на арксинус, свойства функции сформулируйте самостоятельно. Остановлюсь на единственном моменте. В данной статье очень много разговоров шло о четности и нечетности функций, и, возможно, у некоторых сложилось впечатление, что функция обязательно должна быть четной или нечетной.

В общем случае, это, конечно, не так. Чаще всего, функция, которая вам встретится на практике – «никакая». В частности, арккосинус не является четной или нечетной функцией, он как раз «никакой», или, строго говоря – это «функция общего вида по отношению к свойству чётности».

Построим график арктангенса

Всего лишь перевернутая ветка тангенса.

Перечислим основные свойства функции :

Область определения:, или «множество всех действительных чисел»

Область значений: , то есть, функция  ограничена.

У рассматриваемой функции есть две асимптоты: , .

Арктангенс – функция нечетная: .

Самые «популярные» значения арктангенса, которые встречаются на практике, следующие:  ,  .

К графику арккотангенса  приходиться обращаться значительно реже, но, тем не менее, вот его чертеж:

Свойства арккотангенса вы вполне сможете сформулировать самостоятельно. Отметим, что арккотангенс, как и арккосинус, не является четной или нечетной функцией, а является «функцией общего вида по отношению к свойству чётности».

6. Пределы функций

Теория пределов – это один из разделов математического анализа. Попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Мы не будем рассматривать строгое определение предела, а сделаем две вещи:

* Поймём, что такое предел.

* Научимся решать основные типы пределов.

Итак, что же такое предел?

Пример:  .

Любой предел состоит из трех частей:

1) Всем известный значок предела (это сокращение латинского слова limes - предел).

2) Запись под значком предела, в данном случае . Запись читается: «икс стремится к единице». Чаще всего – именно x, хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().

3) Функции под знаком предела, в данном случае .

Сама запись  читается так: «предел функции  при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?

Понятие предела – это понятие, если так можно сказать, динамическое. Построим последовательность: сначала , затем , , …, , ….

То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.

6.1. Основные методы вычисления пределов

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Готово.

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда  неограниченно возрастает, то есть: сначала , потом , потом , затем  и так далее до бесконечности.

А что в это время происходит с функцией ? 

, , , …

Итак: если , то функция  стремится к минус бесконечности:

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию  бесконечность и получаем ответ.

Еще один пример с бесконечностью:

Опять начинаем увеличивать  до бесконечности, и смотрим на поведение функции:

Вывод: при  функция  неограниченно возрастает

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,

Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.

В том случае, если , попробуйте построить последовательность , , . Если , то , , .

Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом.

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , ,  и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций. После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с очень интересными случаями, когда предела функции вообще не существует!

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов.

6.1.1. Пределы с неопределенностью вида  и метод их решения

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример 1

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим  в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим  в старшей степени:

.

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность  необходимо разделить числитель и знаменатель на  в старшей степени.

Разделим числитель и знаменатель на 

Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметить недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел .

Снова в числителе и знаменателе находим  в старшей степени:

Максимальная степень в числителе: 3

Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.

Согласно нашему алгоритму, для раскрытия неопределенности  делим числитель и знаменатель на .

Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на :

Пример 3

Найти предел

Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 ( можно записать как )

Для раскрытия неопределенности  необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью  подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида  у нас может получиться конечное число, ноль или бесконечность.

6.1.2. Пределы с неопределенностью вида  и метод их решения

Группа следующих пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу.

Пример 4

Решить предел  

Сначала попробуем подставить -1 в дробь:

.

В данном случае получена так называемая неопределенность .

Общее правило: если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители.

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики. Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

.

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе. Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель  уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.

Пример 5

Вычислить предел

.

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель: 
Знаменатель:



,
 

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела. Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно 
В ходе решения фрагмент типа  встречается очень часто. Сокращать такую дробь нельзя. Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.

 

6.1.3. Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида 

Следующий тип пределов похож на предыдущий тип. Единственное, что помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел 

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела. Данное действие обычно проводится мысленно или на черновике.

 

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по-возможности, избавляться. Зачем? А без них жизнь проще.

Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности  используют метод умножения числителя и знаменателя на сопряженное выражение.

Вспоминаем нашу нетленную формулу разности квадратов: 
И смотрим на наш предел:
 
Что можно сказать?
  у нас в числителе уже есть. Теперь для применения формулы осталось организовать  (которое в и называется сопряженным выражением).

Умножаем числитель на сопряженное выражение:

Обратите внимание, что под корнями при этой операции мы ничего не трогаем.

Хорошо,  мы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на :

То есть, мы умножили числитель и знаменатель на сопряженное выражение.
В известной степени, это искусственный прием.

Умножили. Теперь самое время применить вверху формулу :

Неопределенность  не пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни:

Число, как уже отмечалось ранее, лучше вынести за значок предела.

Теперь осталось разложить числитель и знаменатель на множители, собственно, это следовало сделать раньше.

Готово.

Как должно выглядеть решение данного примера в чистовом варианте?
Примерно так:

Умножим числитель и знаменатель на сопряженное выражение.

 

Пример 7

Найти предел 

Сначала попробуйте решить его самостоятельно.

Окончательное решение примера может выглядеть так:

Разложим числитель на множители:





Умножим числитель и знаменатель на сопряженное выражение

Спасибо за внимание.

Помимо рассмотренных типов пределов на практике часто встречаются так называемые Замечательные пределы, с которыми Вы можете ознакомиться в соответствующей статье.

6.2. Замечательные пределы.

Продолжаем наш разговор на тему Пределы и способы их решения. Перед изучением материалов данной страницы настоятельно рекомендую ознакомиться со статьей Пределы. Примеры решений. Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы:Замечательные пределы и Тригонометрические формулы. Их можно найти на страницеМатематические формулы, таблицы и справочные материалы. Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходиться мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел, Второй замечательный предел. Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Начнем.

6.2.1. Первый замечательный предел

Рассмотрим следующий предел:  (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

 

Данный математический факт носит название Первого замечательного предела.

Нередко в практических  заданиях функции могут быть расположены по-другому, это ничего не меняет:

 – тот же самый первый замечательный предел.

! Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра  может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю.

Примеры:
,
 , , 

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому-что многочлен  не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел  и получить лёгкий зачет. Все-таки «халявные» математические определения и формулы вроде   лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел 

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ». 
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Готово. Окончательный ответ:
 

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел
 

Пример 2

Найти предел 

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность  и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Далее, по уже знакомой схеме организовываем первые замечательные пределы. Под синусами у нас , значит, в числителе тоже нужно получить :

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел 

Подставляем ноль в выражение под знаком передела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле  (кстати, с котангенсом делают примерно то же самое, см. методический материалГорячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы).

 В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Дальше по накатанной схеме, организуем первый замечательный предел:

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел 

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность  (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

 

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

6.2.2. Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела.

Справка:  – это иррациональное число.

В качестве параметра  может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности.

Пример 6

Найти предел 

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение .

Нетрудно заметить, что при  основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:

Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель.

Далее, отметки карандашом я не делаю, принцип оформления, думаю, понятен.

Пример 7

Найти предел 

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать :

Теперь можно почленно разделить числитель на знаменатель:

Вроде бы основание стало напоминать , но у нас знак «минус» да и тройка какая-то вместо единицы. Поможет следующее ухищрение, делаем дробь трехэтажной:

Таким образом, основание приняло вид , и, более того, появилась нужная нам неопределенность . Организуем второй замечательный предел .
Легко заметить, что в данном примере . Снова исполняем наш искусственный прием: возводим основание степени в , и, чтобы выражение не изменилось – возводим в обратную дробь :

Наконец-то долгожданное  устроено, с чистой совестью превращаем его в букву :

Но на этом мучения не закончены, в показателе у нас появилась неопределенность вида , раскрывать такую неопределенность мы научились на уроке Пределы. Примеры решений. Делим числитель и знаменатель на :

Готово.

А сейчас мы рассмотрим модификацию второго замечательного предела. Напомню, что второй замечательный предел выглядит следующим образом: . Однако на практике время от времени можно встретить его «перевёртыш», который в общем виде записывается так:

Пример 8

Найти предел 

Сначала (мысленно или на черновике) пробуем подставить ноль (бесконечно малое число) в выражение, стоящее под знаком предела:

В результате получена знакомая неопределенность . Очевидно, что в данном примере . С помощью знакомого искусственного приема организуем в показателе степени конструкцию :

Выражение  со спокойной душой превращаем в букву :

Еще не всё, в показателе у нас появилась неопределенность вида . Раскладываем тангенс на синус и косинус (ничего не напоминает?):

Косинус нуля стремится к единице (не забываем помечать карандашом), поэтому он просто пропадает в произведении:

А что такое  и к чему оно стремится, нужно уже знать, иначе «двойка»!

Как видите, в практических заданиях на вычисление пределов нередко требуется применять сразу несколько правил и приемов.

В 90-95% на зачете, экзамене Вам встретится первый замечательный предел или второй замечательный предел. Как быть, если попался «экзотический» замечательный предел? (со списком всех замечательных пределов можно ознакомиться в соответствующей методичке). Ничего страшного, практически все выкладки, приёмы решения для первого замечательного предела справедливы и для остальных замечательных пределов. Нужно решать их по аналогии.

Да, так чему же равен предел ?

Если у Вас получился ответ , значит в понимании высшей математики не всё так безнадежно = ).

7. Производные функций

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на страницеМатематические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные совсем не обязательно знать и понимать, что такое производная. Если Вас интересует теоретическое определение производной функции, математический, физический, геометрический смысл производной – поищите в Интернете, информации море. Наша же задача научиться находить эти самые производные. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.

7.1. Производные функций одной переменной.

Рекомендую следующий порядок изучения темы: во-первых, эта статья. Затем следует прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещьПростейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Пример 1

Найти производную функции 

Решение: 

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя.Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначают  или 

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где
  – постоянное число;

производную степенной функции:
,  в частности:
 , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с  производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

7.1.1. Правила дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где  – постоянное число (константа)

Пример 2

Найти производную функции 

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Решаем:

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:

Готово.


2) Производная суммы равна сумме производных

Пример 3

Найти производную функции 

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида  желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Пример 4

Найти производную функции 

Попробуйте решить данный пример самостоятельно (ответ в конце урока)


3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Я не буду объяснять, почему именно так, наша задача научиться решать производные, а не разбираться в теории.

Пример 5

Найти производную функции 

Здесь у нас произведение двух функций, зависящих от . 
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Пример 6

Найти производную функции 

В данной функции содержится сумма  и произведение двух функций –  квадратного трехчлена   и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки  используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:


Готово.

При определенном опыте нахождения производных, простые производные вроде  не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

Пример 7

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока)

 

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк. 
А вот это вот суровая действительность:

Пример 8

Найти производную функции 

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны. 
Вообще говоря, постоянные множители при нахождении производной можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

 

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Пример 9

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

Время от времени встречаются хитрые задачки:

Пример 10

Найти производную функции 

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула
  достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель.
Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Готово.

Пример 11

Найти производную функции 

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-таки дифференцировать проще:

Пример 12

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).


Решения и ответы:

Пример 4: . В ходе решения данного примера следует обратить внимание, на тот факт, что  и  – постоянные числа, не важно чему они равны, важно, что это - константы. Поэтому  выносится за знак производной, а .

 

Пример 7:

Пример 9:

Пример 12:  

7.1.2. Производная сложной функции

На данном уроке мы научимся находить производную сложной функции. Урок является логическим продолжением занятия Как найти производную?, на котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь  изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

 

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции –  и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию  я буду называть внешней функцией, а функцию  – внутренней (или вложенной) функцией.

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим:

Пример 1

Найти производную функции 

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя: 

В данном примере уже из моих объяснений интуитивно понятно, что функция  – это сложная функция, причем многочлен  является внутренней функцией (вложением), а  – внешней функцией.

Первый шаг, который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней.

В случае простых примеров вроде  понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения  при  (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет выполнить следующее действие: , поэтому многочлен  и будет внутренней функцией :
 
Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как  мы
 РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. С урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции  (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением, в данном случае:

Обратите внимание, что внутренняя функция  не изменилась, её мы не трогаем.

Ну и совершенно очевидно, что 

Результат применения формулы  в чистовом оформлении выглядит так:

Далее мы берем производную внутренней функции, она очень простая:

Постоянный множитель обычно выносят в начало выражения:

Готово

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Пример 2

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

Пример 3

Найти производную функции 

Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение выражения  при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание: , значит, многочлен  – и есть внутренняя функция:

И, только потом выполняется возведение в степень
 , следовательно, степенная функция – это внешняя функция:

Согласно формуле
 , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения. Таким образом, результат применения правила дифференцирования сложной функции   следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция  у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Готово.

Пример 4

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

Пример 5

а) Найти производную функции 

б) Найти производную функции 

Пример 6

Найти производную функции 

Здесь у нас корень, а для того, чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Пример 7

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования частного , но такое решение будет выглядеть как извращение забавно. Вот характерный пример:

Пример 8

Найти производную функции 

Здесь можно использовать правило дифференцирования частного , но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция. 
Используем наше правило
 :

Находим производную внутренней функции, косинус сбрасываем обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Пример 9

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую,  вложены сразу 3, а то и 4-5 функций.

Пример 10

Найти производную функции 

Разбираемся во вложениях этой функции. Пробуем вычислить выражение  с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень  :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Начинаем решать

Согласно правилу  сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции:  Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции   следующий:

Под штрихом у нас снова сложная функция! Но она уже проще. Легко убедиться, что внутренняя функция – арксинус, внешняя функция – степень. Согласно правилу дифференцирования сложной функции сначала нужно взять производную от степени:

Теперь все просто, находим по таблице производную арксинуса и немного «причесываем» выражение:

Готово.

Пример 11

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

На практике правило дифференцирования сложной функции почти всегда применяется в комбинации с остальными правилами дифференцирования.

Пример 12

Найти производную функции 

Сначала используем правило дифференцирования суммы , заодно в первом слагаемом выносим постоянный множитель за знак производной по правилу :

В обоих слагаемых под штрихами у нас находится произведение функций, следовательно, нужно дважды применить правило :

Замечаем, что под некоторыми штрихами у нас находятся сложные функции , . Каламбур, но это простейшие из сложных функций, и при определенном опыте решения производных Вы будете легко находить их устно.
А пока запишем подробно, согласно правилу
 , получаем:

Готово.

! Обратите внимание на приоритет (порядок) применения правил: правило дифференцирования сложной функции применяется в последнюю очередь.

Пример 13

Найти производную функции 

Это пример для самостоятельного решения (ответ в конце урока).

Пожалуй, хватит на сегодня. Хочется еще привести пример с дробью и сложной функцией, но такой пример принципиально ничем не отличается от двух последних заданий, единственное отличие – вместо правила  применяем правило .

Для закрепления темы рекомендую статью Сложные производные. Логарифмическая производная. Помимо рассмотрения дополнительных примеров, есть и новый материал! После изучения третьего урока вы будете очень уверенно себя чувствовать в ходе дальнейшего изучения математического анализа. Если задания покажутся слишком трудными (у всех разный уровень подготовки), то сначала посетите страницу Простейшие типовые задачи с производной, там рассмотрено ещё порядка 15-ти производных.

Желаю успехов!

Решения и ответы:

Пример 2: 

Пример 4:  Указание: перед дифференцированием необходимо перенести степень наверх, сменив у показателя знак .

Пример 7: 

Пример 9: 

Пример 11: 

Пример 13: 

7.1.3. Сложные производные. Логарифмическая производная. Производная степенно-показательной функции

Продолжаем повышать свою технику дифференцирования. На данном уроке мы закрепим пройденный материал, рассмотрим более сложные производные, а также познакомимся с новыми приемами и хитростями нахождения производной, в частности, с логарифмической производной.

Тем читателям, у кого низкий уровень подготовки, следует обратиться к статье Как найти производную? Примеры решений, которая позволит поднять свои навыки практически с нуля. Далее необходимо внимательно изучить страницу Производная сложной функции, понять и прорешать все приведенные мной примеры. Данный урок логически третий по счету, и после его освоения Вы будете уверенно дифференцировать достаточно сложные функции. Нежелательно придерживаться позиции «Куда еще? Да и так хватит!», поскольку все примеры и приёмы решения взяты из реальных контрольных работ и часто встречаются на практике.

Начнем с повторения. На уроке Производная сложной функции мы рассмотрели ряд примеров с подробными комментариями. В ходе изучения дифференциального исчисления и других разделов математического анализа – дифференцировать придется очень часто, и не всегда бывает удобно (да и не всегда нужно) расписывать примеры очень подробно. Поэтому мы потренируемся в устном нахождении производных. Самым подходящими «кандидатами» для этого являются производные простейших из сложных функций, например:

По правилу дифференцирования сложной функции :

При изучении других тем матана в будущем такая подробная запись чаще всего не требуется, предполагается, что студент умеет находить подобные производные на автомате. Представим, что в 3 часа ночи раздался телефонный звонок, и приятный голос спросил: «Чему равна производная тангенса двух икс?». На это должен последовать почти мгновенный и вежливый ответ:

.

Первый пример будет сразу предназначен для самостоятельного решения.

Пример 1

Найти следующие производные устно, в одно действие, например: . Для выполнения задания нужно использовать только таблицу производных элементарных функций (если она еще не запомнилась). Если возникнут затруднения, рекомендую перечитать урок Производная сложной функции.

, , , 
,
 , , 
,
 , ,

, , ,

, , ,

, , ,

, , 

Ответы в конце урока

Сложные производные

После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой. 

Пример 2

Найти производную функции 

Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильно РАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например,  и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».

1) Сначала нам нужно вычислить выражение  , значит, сумма  – самое глубокое вложение.

2) Затем необходимо вычислить логарифм: 

3) Далее косинус: 

4) Потом косинус возвести в куб: 

5) На пятом шагу разность: 

6) И, наконец, самая внешняя функция – это квадратный корень: 

Формула дифференцирования сложной функции  применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:

Вроде без ошибок….

(1) Берем производную от квадратного корня.

(2) Берем производную от разности, используя правило 

(3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).

(4) Берем производную от косинуса.

(5) Берем производную от логарифма.

(6) И, наконец, берем производную от самого глубокого вложения .

Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.

Следующий пример для самостоятельного решения.

Пример 3

Найти производную функции 

Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения

Полное решение и ответ в конце урока.

Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, и трёх функций. Как найти производную от произведения трёх множителей?

Пример 4

Найти производную функции 

Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.

В таких случаях необходимо последовательно применить правило дифференцирования произведения  два раза

Фокус состоит в том, что за «у» мы обозначим произведение двух функций: , а за «вэ» – логарифм: .  Почему так можно сделать? А разве  – это не произведение двух множителей и правило не работает?! Ничего сложного нет:

Теперь осталось второй раз применить правило  к скобке :

Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде – легче будет проверять.

Готово.

Рассмотренный пример можно решить вторым способом:

Оба способа решения абсолютно равноценны.

Пример 5

Найти производную функции 

Это пример для самостоятельного решения, в образце он решен первым способом.

Рассмотрим аналогичные примеры с дробями.

Пример 6

Найти производную функции 

Здесь можно пойти несколькими путями:


или так:

Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за  весь числитель:

В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить?

Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.

Более простой пример для самостоятельного решения:

Пример 7

Найти производную функции 

Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм

Пример 8

Найти производную функции 

Тут можно пойти длинным путём, используя правило дифференцирования сложной функции:

 

Но первый же шаг сразу повергает в уныние – предстоит взять неприятную производную от дробной степени , а потом ещё и от дроби .

Поэтому перед тем как брать производную от «навороченного» логарифма, его предварительно упрощают, используя известные школьные свойства:

 
 

! Если под рукой есть тетрадь с практикой, перепишите эти формулы прямо туда. Если тетради нет, перерисуйте их на листочек, поскольку оставшиеся примеры урока буду вращаться вокруг этих формул.

Само решение можно оформить примерно так:

Преобразуем функцию:

Находим производную:

Предварительное преобразование самой функции значительно упростило решение. Таким образом, когда для дифференцирования предложен подобный логарифм, то его всегда целесообразно «развалить».

А сейчас пара несложных примеров для самостоятельного решения:

Пример 9

Найти производную функции 

Пример 10

Найти производную функции

Все преобразования и ответы в конце урока.

Логарифмическая производная

Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.

Пример 11

Найти производную функции 

Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.

Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:

Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:




Собственно приступаем к дифференцированию. 
Заключаем под штрих обе части:

Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.

Как быть с левой частью?

В левой части у нас сложная функция. Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».

Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции :

В левой части как по мановению волшебной палочки у нас «нарисовалась» производная .  Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части  наверх правой части:

А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие: 

Окончательный ответ:

Пример 12

Найти производную функции 

Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.

С помощью логарифмической производной можно было решить любой из примеров №№4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.

Производная степенно-показательной функции

Данную функцию мы еще не рассматривали. Степенно-показательная функция – это  функция, у которой и степень и основание зависят от «икс». Классический пример, который вам приведут в любом учебнике или на любой лекции:

Как найти производную от степенно-показательной функции?

Необходимо использовать только что рассмотренный приём – логарифмическую производную. Навешиваем логарифмы на обе части:

Как правило, в правой части из-под логарифма выносится степень:

В результате в правой части у нас получилось произведение двух функций, которое будет дифференцироваться по стандартной формуле .

Находим производную, для этого заключаем обе части под штрихи:

Дальнейшие действия несложны:

Окончательно: 

Если какое-то преобразование не совсем понятно, пожалуйста, внимательно перечитайте объяснения Примера №11.

В практических заданиях степенно-показательная функция всегда будет сложнее, чем рассмотренный лекционный пример.

Пример 13

Найти производную функции 

Используем логарифмическую производную.

В правой части у нас константа и произведение двух множителей – «икса» и «логарифма логарифма икс» (под логарифм вложен еще один логарифм). При дифференцировании константу, как мы помним, лучше сразу вынести за знак производной, чтобы она не мешалась под ногами; и, конечно, применяем знакомое правило :



Как видите, алгоритм применения логарифмической производной не содержит в себе каких-то особых хитростей или уловок, и нахождение производной степенно-показательной функции обычно не связано с «мучениями».

Заключительные два примера предназначены для самостоятельного решения.

Пример 14

Найти производную функции 

Пример 15

Найти производную функции 

Образцы решения и оформления совсем близко.

Не такое и сложное это дифференциальное исчисление

Решения и ответы:

Пример 1: 
, , ,
, , ,  
, , , 
, , , 
, , , 
, , , 
, , 

Пример 3:

Пример 5: 

Примечание: перед дифференцированием можно было раскрыть скобки  и использовать правило  один раз.

Пример 7: 

Пример 9: Сначала преобразуем функцию. Используем свойства логарифмов:

Найдем производную. Используем правило дифференцирования сложной функции:

Пример 10: Сначала преобразуем функцию:
 
Найдем производную:

Пример 12: Используем логарифмическую производную. Преобразуем функцию:




Находим производную:

Пример 14: Используем логарифмическую производную:



Пример 15: Используем логарифмическую производную:



7.1.4. Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Поскольку данный курс носит практическую направленность, мы стараемся избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?

Функция одной переменной – это правило, по которому каждому значению независимой переменной  соответствует одно и только одно значение функции .

Переменная  называется независимой переменной или аргументом.

Переменная  называется зависимой переменной или функцией.

Грубо говоря, буковка «игрек» в данном случае – и есть функция.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию .

Мы видим, что слева у нас одинокий «игрек» (функция), а справа – только «иксы». То есть, функция y в явном виде выражена через независимую переменную x.

Рассмотрим другую функцию: .

Здесь переменные x и y расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство  и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: , – пример неявной функции.

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права неявной функции соблюдены.

На этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму (без камня перед тремя дорожками).

Пример 1

Найти производную от функции, заданной неявно .

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной:

3) Проводим непосредственное дифференцирование. 

Как дифференцировать  и  - совершенно понятно. Но что делать там, где под штрихами есть «игреки»?

– просто до безобразия, это производная от функции, равная её производной: .

Как дифференцировать .

Здесь у нас сложная функция. Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, y – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что  – это тоже сложная функция, и любой «игрек с наворотами» – это сложная функция:

Само оформление решения должно выглядеть примерно так:

Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную  за скобки:

.

6) По правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию  можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму.

На самом деле фразы: «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» - более общая. Например (до преобразований),  – это функция, заданная в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под выражением «неявная функция» понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные. Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт, иначе в голове будет полная каша.

Найдем производную неявной функции  вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле .

Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с  в левую часть, остальные – в правую часть:

В левой части выносим  за скобку:

Окончательный ответ:

Пример 3

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Пример 4

Найти производную от функции, заданной неявно .

Заключаем обе части под штрихи и используем правило линейности:

Дифференцируем, используя правило дифференцирования сложной функции  и правило дифференцирования частного :

Раскрываем скобки:

Теперь нам нужно избавиться от дроби. Это можно сделать и позже, но рациональнее сделать сразу же. В знаменателе дроби находится . Умножаем каждое слагаемое каждой части на . Если подробно, то выглядеть это будет так:

Иногда после дифференцирования появляется 2-3 дроби. Если бы у нас была еще одна дробь, например,

, то операцию нужно было бы повторить – умножить

каждое слагаемое каждой части на .

Далее алгоритм работает стандартно, после того, как все скобки раскрыты, все дроби устранены, слагаемые, где есть «игрек штрих» собираем в левой части, а в правую часть переносим всё остальное:

В левой части выносим  за скобку:

Окончательный ответ:

.

Пример 5

Найти производную от функции, заданной неявно .

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

7.1.5. Производная функции, заданной параметрически.

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, сразу запишем конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно:, .

Переменная t называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение t =1 и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку (4; 1), и эта точка будет соответствовать значению параметра t =1. Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев и для параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д.

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр:  – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях, для которых и придумана параметрическая запись, такой фокус не проходит. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы t, таким образом, какой-то новизны в самом процессе нахождения производных нет. Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра t.

Что касается обозначений, то в формуле вместо записи  можно было просто записать  без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому не будем отклоняться от стандарта.

Пример 6

Найти производную от функции, заданной параметрически

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать. Так, в рассмотренном примере при нахождении  я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке  и  в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.

Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

Для параметрически заданной функции также можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того, чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.

Используем формулу

В данном случае:

Подставляет найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :

В задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы. Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем?

Сейчас нам предстоит взять производную от , и это явно лучше, чем находить производную от .

Найдем вторую производную.

Используем формулу: .

Посмотрим на нашу формулу. Знаменатель  уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:

Осталось воспользоваться формулой:

Готово.

Для закрепления материала предлагаем еще пару примеров для самостоятельного решения.

Пример 9

Найти  и  для функции, заданной параметрически

Пример 10

Найти  и  для функции, заданной параметрически .

Надеюсь, это занятие было полезным, и Вы теперь с лёгкость сможете находить производные от функций, заданных неявно и от параметрических функций

Решения и ответы:

Пример 3: Решение:






Таким образом: 

Пример 5: Решение:






Пример 7: Решение:

Используем формулу 

В данном случае:

Таким образом:

Пример 9: Решение: Найдем первую производную.

Используем формулу: . В данном случае:

Найдем вторую производную, используя формулу .

Пример 10: Решение:

Используем формулу: . В данном случае:


Таким образом:

.

Вторая производная:


.

7.2. Простейшие типовые задачи с производной. Примеры решений

Помимо нового материала у вас есть возможность дополнительно «набить руку» на нахождении производных. Действительно, если речь пойдет о типовых задачах на производную, то, как минимум, во всех примерах нужно будет найти эту самую производную. Мы рассмотрим приёмы решения и хитрости, которые не встречались в других статьях. Рассмотрим приложения:

1) Производная функции в точке.

2) Уравнение касательной к графику прямой.

3) Дифференциал функции одной переменной.

4) Вторая производная.

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Вычислить производную функции  в точке .

Справка: Следующие способы обозначения функции эквивалентны:

В одних задания удобно обозначить функцию «игреком», а в других - через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке :

Готово.

Небольшой разминочный пример для самостоятельного решения:

Пример 2

Вычислить производную функции  в точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции, исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др. Со временем, надеюсь, вы обо всём этом прочитаете.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции  в точке .

Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение . Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке :

.

Пример 4

Вычислить производную функции  в точке .

Это пример для самостоятельного решения.

Уравнение касательной к графику функции

Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной к графику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.

Рассмотрим «демонстрационный» простейший пример.

Составить уравнение касательной к графику функции  в точке с абсциссой . Сразу приведём готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):

Строгое определение касательной дается с помощью определения самой производной функции, и с этим пока повременим. Наверняка практически всем интуитивно понятно, что такое касательная.

Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственной точке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.

Применительно к нашему случаю: при  касательная с угловым коэффициентом k (стандартное обозначение) касается графика функции в единственной точке .

И наша задача состоит в том, чтобы найти уравнение прямой k.

Как составить уравнение касательной в точке с абсциссой ?

Общая формула знакома нам еще со школы:

Значение  нам уже дано в условии.

Теперь нужно вычислить, чему равна сама функция в точке :

.

На следующем этапе находим производную:

Находим производную в точке (задание, которое мы недавно рассмотрели):

Подставляем значения ,  и  в формулу :

Таким образом, уравнение касательной:

Это «школьный» вид уравнения прямой с угловым коэффициентом. В высшей математике уравнение прямой принято записывать в так называемой общей форме , поэтому перепишем найденное уравнение касательной в соответствии с традицией:

Очевидно, что точка  должна удовлетворять данному уравнению:

– верное равенство.

Следует отметить, что такая проверка является лишь частичной. Если мы неправильно вычислили производную в точке , то выполненная подстановка нам ничем не поможет.

Рассмотрим еще два примера.

Пример 5

Составить уравнение касательной к графику функции  в точке с абсциссой

Уравнение касательной составим по формуле

1) Вычислим значение функции в точке :

2) Найдем производную. Дважды используем правило дифференцирования сложной функции:

3) Вычислим значение производной в точке :

4) Подставим значения ,  и  в формулу :

Готово.

Выполним частичную проверку:

Подставим точку  в найденное уравнение:

;

; – верное равенство.

Пример 6

Составить уравнение касательной к графику функции  в точке с абсциссой

Полное решение и образец оформления в конце урока.

В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду.

Дифференциал функции одной переменной для приближенных вычислений

Коль скоро мы не объяснили (на данный момент) строго, что такое производная функции, то не имеет смысла объяснять, и что такое дифференциал функции. В самой примитивной формулировке дифференциал – это «почти то же самое, что и производная». Точнее – это производная, умноженная на приращение аргумента функции.

Производная функции чаще всего обозначается через .

Дифференциал функции стандартно обозначается через  (так и читается – «дэ игрек»)

Дифференциал функции одной переменной записывается в следующем виде:

Другой вариант записи:

Простейшая задача: Найти дифференциал функции

1) Первый этап. Найдем производную:

2) Второй этап. Запишем дифференциал:

Готово.

Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений.

Помимо других задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции. Кроме того, как и для производной, для дифференциала существует понятие дифференциала в точке. И такие примеры мы тоже рассмотрим.

Пример 7

Найти дифференциал функции .

Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:

 (корень пятой степени относится именно к синусу).

Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:

Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции  два раза:

Запишем дифференциал, при этом снова представим  в первоначальном «красивом» виде:

Готово.

Когда производная представляет собой дробь, значок  обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).

Пример 8

Найти дифференциал функции .

Это пример для самостоятельного решения.

Следующие два примера на нахождение дифференциала в точке.

Пример 9

Вычислить дифференциал функции  в точке

Найдем производную:

Производная вроде бы найдена. Но в это всё предстоит еще подставлять число, поэтому результат максимально упрощаем:

Труды были не напрасны, записываем дифференциал:

Теперь вычислим дифференциал в точке :

В значок дифференциала  единицу подставлять не нужно, он немного из другой оперы.

Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:

Пример 10

Вычислить дифференциал функции  в точке . В ходе решения производную максимально упростить.

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

Вторая производная

Всё очень просто. Вторая производная – это производная от первой производной:

Стандартные обозначения второй производной: ,  или  (дробь читается так: «дэ два игрек по дэ икс квадрат»).

Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите  функции…». А студент сидит и битый час чешет репу, что это вообще такое, и почему в дроби d не сокращены.

Рассмотрим простейший пример. Найдем вторую производную от функции .

Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Готово.

Рассмотрим более содержательные примеры.

Пример 11

Найти вторую производную функции

Найдем первую производную:

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :

Находим вторую производную:

Готово.

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отметим, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Пример 12

Найти вторую производную функции . Найти .

Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но значительно реже.

Решения и ответы:

Пример 2: Найдем производную:

Вычислим значение функции в точке :

Пример 4: Найдем производную:

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле

1) Вычислим значение функции в точке :

2) Найдем производную. Перед дифференцированием функцию выгодно упростить:

3) Вычислим значение производной в точке :

4) Подставим значения ,  и  в формулу :

Пример 8: Преобразуем функцию:

Найдем производную:

Запишем дифференциал:

Пример 10: Найдем производную:

Запишем дифференциал:

Вычислим дифференциал в точке :

.

Пример 12: Найдем первую производную:

Найдем вторую производную:


Вычислим: .

7.3. Частные производные. Примеры решений

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные ,  называются независимыми переменными или аргументами.

Пример:  - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы  используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной  соответствует определенная линия на плоскости, например,  – всем знакомая школьная парабола. Любая функция двух переменных  с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

или  – частная производная по «икс»

или  – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменная  считается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом.

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием  (сразу откусить часть балла за невнимательность).

Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме.

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как  считается константой, а любую константу можно вынести за знак производной, то  мы выносим за скобки. То есть в данной ситуации  ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как  константа, то  – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные  и .

(4) Упрощаем ответ.

Теперь определим . Когда мы находим частную производную по «игрек», то переменная  считается константой (постоянным числом).

(1) Используем те же правила дифференцирования ; . В первом слагаемом выносим константу  за знак производной, во втором слагаемом ничего вынести нельзя поскольку  – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для  (и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид:  и .

Итак, частные производные первого порядка найдены

Особенности вычисления частных производных

Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной:

1) Когда мы находим частную производную , то переменная  считается константой.

2) Когда мы находим частную производную , то переменная  считается константой.

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (,  либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения:

или  – вторая производная по «икс»

или  – вторая производная по «игрек»

или  – смешанная производная «по икс игрек»

или  – смешанная производная «по игрек икс»

В понятии второй производной нет ничего сложного. Говоря простым языком, вторая производная – это производная от первой производной.

Для наглядности я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную  и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

Для практических примеров, когда все частные производные непрерывны, справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».

Никаких изобретений, берем  и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении ,  нужно проявить повышенное внимание, так как никаких чудесных равенств для проверки не существует.

Пример 2

Найти частные производные первого и второго порядка функции

Это пример для самостоятельного решения (ответ в конце урока).

При определенном опыте частные производные из примеров №№1,2 будут решаться Вами устно.

Переходим к более сложным примерам.

Пример 3

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что  – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае  и , а, значит, и их произведение  считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что  – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

, значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

.

В данном случае:

То есть, в формулу нужно просто подставить уже найденные частные производные первого порядка. Значки дифференциалов  и  в этой и похожих ситуациях по возможности лучше записывать в числителях:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Рассмотрим серию примеров, включающих в себя сложные функции.

Пример 5

Найти частные производные первого порядка функции .

Записать полный дифференциал .

Решение:

(1) Применяем правило дифференцирования сложной функции . С урока Производная сложной функции следует помнить очень важный момент: когда мы по таблице превращаем синус (внешнюю функцию) в косинус, то вложение  (внутренняя функция) у нас не меняется.

(2) Здесь используем свойство корней: , выносим константу  за знак производной, а корень  представляем в нужном для дифференцирования виде.

Аналогично:

Запишем полный дифференциал первого порядка:

Пример 6

Найти частные производные первого порядка функции .

Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы.

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении  нет ничего, зависящего от «икс» – только «игреки».

(Знаете, всегда приятно, когда дробь удается превратить в ноль).

Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в алгоритме ничего бы не изменилось, если бы вместо  была дана функция  – важно, что здесь мы имеем произведение двух функций, КАЖДАЯ из которых зависит от «икс», поэтому нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

Найдем теперь частную производную по y:

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит,  считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки.

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

(Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Пример 9

Дана функция двух переменных . Найти все частные производные первого и второго порядков.

Это пример для самостоятельного решения. Полное решение и образец оформления где-то рядом.

Решения и ответы:

Пример 2: 

,  ,  ,   

Пример 4: Ссылка для просмотра ниже.

Пример 6:

,  ,  

7.4. Приближенные вычисления с помощью дифференциала

Рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала.

Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости часто будем говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, в разделе присутствуют формулы нахождения абсолютной и относительной погрешностей вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах.

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с нахождения производной в точке и с нахождения дифференциала в точке. Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать возможности MS Excel, но в данном случае он менее удобен.

Урок состоит из двух частей:

– Приближенные вычисления с помощью дифференциала значения функции одной переменной в точке.

– Приближенные вычисления с помощью полного дифференциала значения функции двух переменных в точке.

Рассматриваемое задание тесно связано с понятием дифференциала, но, поскольку урока о смысле производной и дифференциала у нас пока нет, ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

Приближенные вычисления с помощью дифференциала функции одной переменной

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через y или через f(x). Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала:

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: .

Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:

– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве x0 подбираем «хорошее» значение, чтобы корень извлекался нацело. Естественно, это значение x0 должно быть как можно ближе к 67.

В данном случае x0 = 64. Действительно, .

Примечание: Когда с подбором x0 всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор x0 = 64.

Если x0 = 64, то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Далее работаем с правой частью формулы .

Сначала вычислим значение функции в точке x0 = 64. Собственно, это уже сделано ранее:

.

Дифференциал в точке находится по формуле:

– эту формулу тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке x0:

.

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению 4,06154810045, вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение  на микрокалькуляторе, чтобы выяснить, какое число принять за x0, а какое – за Δx. Следует отметить, что Δx в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из одного из институтов году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физфаке, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =).

Пример 3

Вычислить приближенно с помощью дифференциала значение функции  в точке x = 1,97. Вычислить более точное значение функции в точке x = 1,97 с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически, это задание запросто можно переформулировать так: «Вычислить приближенное значение  с помощью дифференциала»

Решение: Используем знакомую формулу:

В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать f(x).

Значение x = 1,97 необходимо представить в виде x0 = Δx. Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается x0 = 2. И, следовательно: .

Вычислим значение функции в точке x0 = 2:

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке x0 = 2:

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Абсолютная и относительная погрешности вычислений

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:

, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без умножения на 100%, но на практике почти всегда используют вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции  с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:

, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность:

Вычислим относительную погрешность:

, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений .

Следующий пример для самостоятельного решения:

Пример 4

Вычислить приближенно с помощью дифференциала значение функции  в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции ; в точке .

Этот коротенький, но познавательный пример тоже для самостоятельного решения.

Теперь рассмотрим особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах.

Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например,  и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение  нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций. Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.

Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам, а именно: . Таким образом: .

После предварительного анализа градусы необходимо перевести в радианы. Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы:  (формулы можно найти в той же таблице). Дальнейшее шаблонно:

.

Таким образом:  (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ: .

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендуем просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка, куда ж без них. На вышеупомянутом уроке функция двух переменных обозначена через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и мы постараемся рассмотреть все встречающиеся формулировки.

Пример 8

Вычислить приближенное значение функции  в точке  с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы

 

предыдущего параграфа. Переменная только прибавилась. Сам же алгоритм решения будет принципиально таким же.

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Здесь, очевидно:

, 

Число 3,95 представим в виде , что верно при:

, .

Вычислим значение функции в точке :

Дифференциал функции в точке  найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле 

приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: ,

абсолютная погрешность: ,

относительная погрешность: .

Пример 9

Вычислить приближенное значение функции  в точке  с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными.

Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность такова – чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки  приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения:

.

Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

.

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: .

Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .

Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке  найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

.

.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

.

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527.

Найдем относительную погрешность вычислений:

.

Ответ: . .

Как иллюстрация к вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

И заключительный простой пример:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если . Решение смотрите ниже.

Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения. Задачи вычислительной математики обычно не очень сложны, не очень интересны. Самое важное здесь - не допустить ошибку в обычных расчётах.

Решения и ответы:

Пример 2: Решение: Используем формулу:

В данном случае: , , .

.

Таким образом: .

Ответ: .

Пример 4: Решение: Используем формулу: 

В данном случае: , ,

Таким образом: .

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:

.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений .

Пример 5: Решение: Используем формулу: .

В данном случае: , ,

.

Таким образом:

Ответ:

.

Пример 7: Решение: Используем формулу: .

В данном случае: , ,

.

.

Таким образом: .

Ответ: .

Пример 9: Решение: Используем формулу:

В данной задаче:

, , , , .  

Вычислим частные производные первого порядка

в точке (2; 1):

 .

Полный дифференциал в точке (2; 1): .

Таким образом: .

С помощью калькулятора вычислим точное значение функции в данной точке:

Абсолютная погрешность:

.

Относительная погрешность:

.

Ответ: ,

абсолютная погрешность: ,

относительная погрешность: .

Пример 11: Решение: С помощью полного дифференциала вычислим данное выражение приближенно:

.

В данной задаче:

, ,

, .

.

.

Вычислим частные производные первого порядка

в точке (1; 1):

..

.

Полный дифференциал в точке (1; 1):

Таким образом, приближенное значение данного выражения:

.

Значение, вычисленное с помощью микрокалькулятора: 2,007045533.

Найдем относительную погрешность вычислений:

.

Ответ: , .

Пример 12: Решение: Используем формулу: .

В данной задаче: , , , , .

.

.

Вычислим частные производные первого порядка

в точке (5; 0):

.

Полный дифференциал в точке (5; 0):

.

Таким образом:

.

Ответ: .

7.5. Частные производные функции трёх переменных

Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных: первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Производные функций одной переменной. Во-вторых, очень важно прочитать статью Частные производные функции двух переменных, осмыслить и прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то пойдём уверенной походкой, будет интересно, даже удовольствие получите!

Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных. Функция двух переменных, напоминаю, имеет вид z = f(x; y), где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных представляет собой некоторую поверхность в нашем трёхмерном пространстве.

Функция трёх переменных имеет вид u = f(x; y; z), при этом переменные x; y; z называются независимыми переменными или аргументами, а переменная u называется зависимой переменной или функцией. Например:

– это функция трёх переменных.

А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь это или нет?

Ведь функция трёх переменных  подразумевает тот факт, что все дела происходят в четырехмерном пространстве (действительно, переменных же четыре). График функции трёх переменных представляет собой так называемую гиперповерхность.

Представить её невозможно, поскольку мы живём в трехмерном пространстве (длина / ширина / высота). Чтобы вам со мной не было скучно, предлагаю викторину. Я задам несколько вопросов, а желающие могут попробовать на них ответить:

– Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина / ширина / высота)?

– Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

– Возможно ли путешествие в прошлое?

– Возможно ли путешествие в будущее?

– Существуют ли инопланетяне?

На любой вопрос можно выбрать один из четырёх ответов:

Да / Нет (наукой это запрещено) / Наукой это не запрещено / Не знаю

Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью ☺.

Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры! Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных. Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного!

Пример 1

Найти частные производные первого порядка функции трёх переменных

Решение: Нетрудно догадаться, что для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом:

или  – частная производная по «икс»;

или  – частная производная по «игрек»;

или  – частная производная по «зет».

В ходу больше обозначение со штрихом, но составители сборников и методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби с круглыми дэ»?

Пример:  следует читать следующим образом: «частная производная дэ у по дэ икс».

Начнём с производной « у по икс»: . Когда мы находим частную производную по , то переменные  и  считаются константами (постоянными числами). А производная любой константы, как известно, равна нулю:

Сразу обратите внимание на подстрочный индекс  – никто вам не запрещает помечать, что  являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться.

(1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом  константу выносить не нужно: так как «игрек» является константой, то  – тоже константа. В слагаемом  за знак производной вынесена «обычная» константа 8 и константа «зет».

(2) Находим простейшие производные, не забывая при этом, что  – константы. Далее причесываем ответ.

Частная производная . Когда мы находим частную производную «у по игрек», то переменные  и  считаются константами:

(1) Используем свойства линейности. И снова заметьте, что слагаемые ,  являются константами, а значит, за знак производной выносить ничего не нужно.

(2) Находим производные, не забывая, что  константы. Далее упрощаем ответ.

И, наконец, частная производная . Когда мы находим частную производную по «у по зет», то переменные  и  считаются константами:

Общее правило очевидно и незатейливо: «Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами».

При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ.

Пример 2

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно.

Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства

(длина / ширина / высота)?

Верный ответ: «Наукой это не запрещено». Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть, гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств и сознание способны на восприятие и осмысление только трёх измерений.

Вернемся к примерам. Помимо простейших Примеров 1-2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Навёрстываем упущенное.

Пример 3

Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка

.

Решение: вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться.

Разберём пример последовательно, чётко и понятно.

Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные y, z считаются константами. Следовательно, показатель нашей функции yz – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу yz на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной:

; или ещё можно записать так: .

Это степенная функция со сложным основанием (синусом).

По правилу дифференцирования сложной функции:

Теперь вспоминаем, что 

, таким образом: .

На чистовике, конечно, решение следует оформить так:

Находим частную производную по «игрек», тогда x, z считаются константами. Если «икс» константа, то  – тоже константа. На черновике проделываем тот же трюк:  заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной:

.

Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции:

.

Теперь вспоминаем нашу замену: .

Таким образом:

На чистовике, понятно, оформление должно выглядеть, благообразно:

И зеркальный случай с частной производной по «зет» (x, y – константы):

При определенном опыте проведенный анализ можно проводить мысленно.

Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле:

В данном случае:

Пример 4

Найти частные производные первого порядка для функции трёх переменных

и составить полный дифференциал первого порядка.

Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите. Такие примеры быстро не решаю даже я.

Отвлекаемся и разбираем второй вопрос викторины: «Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова?». То есть, привести пример такого пространства в нашей жизни.

Верный ответ: Да. Причём, очень легко. Например, добавляем к

(длине / ширине / высоте)

четвёртое измерение – время.

К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, и так далее, и так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве.

Разберём еще пару типовых задач:

Пример 5

Найти частные производные первого порядка в точке M(2, 1, 0) для функции:

.

Решение: Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий:

– нужно найти частные производные первого порядка;

– нужно вычислить значения частных производных 1-го порядка в точке M(2, 1, 0).

Решаем:

(1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса .

По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения):

.

(2) Используем свойства линейности.

(3) И берём оставшиеся производные, не забывая, что y, z – константы.

По условию задания необходимо найти значение найденной частной производной

 

в точке M(2, 1, 0). Подставим координаты точки в найденную производную:

.

Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме:

Как видите, шаблон решения практически такой же.

Вычислим значение найденной частной производной

 

в точке M(2, 1, 0):

.

И, наконец, производная по «зет»:

.

Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке M. Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке.

Интересно отметить, что геометрически точка  – вполне реальная точка нашего трехмерного пространства. Значения же функции u(M) и производных  – уже в четвертом измерении, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял.

Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое? Верный ответ: Нет. Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи ☻. Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Грустная штука, но время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину.

Пример 6

Найти частные производные первого порядка в точке M(1, -1, 0) для функции:

.

Пример 7

Найти частные производные первого порядка в точке M(1, 1, 1) для функции:

.

Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока. Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами:

Пример 8

Найти частные производные первого порядка функции трёх переменных

.

Решение: Найдем частные производные первого порядка:

(1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы .

(2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения .

(3) С производной  сложностей никаких, а вот производная  является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм  

и домножить его на производную от вложения.

(4) Думаю, все уже освоились с простейшими примерами вроде . Тут у нас «живой» только , производная которого 2x.

Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев:

Интереснее с производной по «зет», хотя, всё почти что то же самое:

(1) Выносим константы за знак производной.

(2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще пойти другим путём – найти производную от произведения.

(3) Производная  – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции.

Готово.

Пример 9

Найти частные производные первого порядка функции трёх переменных

.

Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока.

Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, еще раз взбодрю всех четвертым вопросом викторины:

Возможно ли путешествие в будущее?

Верный ответ: Наукой это не запрещено. Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались невероятной фантастикой.

Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.

Частные производные второго порядка функции трёх переменных

Общий принцип нахождения частных производных порядка второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных.

Для того чтобы найти частные производные второго порядка, необходимо сначала найти частные производные первого порядка  или, в другой записи:

.

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:

или  – вторая производная по «икс»;

или  – вторая производная по «игрек»;

или  – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:

или  – смешанная производная «по икс игрек»;

или  – смешанная производная «по игрек икс»;

или  – смешанная производная «по икс зет»;

или  – смешанная производная «по зет икс»;

или  – смешанная производная «по игрек зет»;

или  – смешанная производная «по зет игрек».

Как и для случая функции двух переменных, при решении задач можно ориентироваться на следующие равенства смешанных производных второго порядка:

.

Примечание: строго говоря, это не всегда так. Для равенства смешанных производных необходимо выполнение требования их непрерывности.

На всякий случай несколько примеров, как правильно читать сиё безобразие вслух:

– «у два штриха дважды по игрек»;

– «дэ два у по дэ зет квадрат»;

– «у два штриха по икс по зет»;

– «дэ два у по дэ зет по дэ игрек».

Пример 10

Найти все частные производные первого и второго порядка для функции трёх переменных:

.

Решение: Сначала найдем частные производные первого порядка:

Частные производные второго порядка рекомендую начинать искать со смешанных производных, поскольку это позволит выяснить, а правильно ли вообще найдены производные первого порядка.

Берём найденную производную

 

и дифференцируем её по «игрек»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство  выполнено. Хорошо.

Разбираемся со второй парой смешанных производных.

Берём найденную производную

и дифференцируем её по «зет»:

Берём найденную производную

и дифференцируем её по «икс»:

Равенство  выполнено. Хорошо.

Аналогично разбираемся с третьей парой смешанных производных:

Равенство  выполнено. Хорошо.

После проделанных трудов гарантированно можно утверждать, что, во-первых, мы правильно нашли все частные производные 1-го порядка, во-вторых, правильно нашли и смешанные частные производные 2-го порядка.

Осталось найти ещё три частные производные второго порядка, вот здесь уже во избежание ошибок следует максимально сконцентрировать внимание:

Готово. Повторюсь, задание не столько сложное, сколько объемное. Решение можно сократить и сослаться на равенства смешанных частных производных, но в этом случае не будет проверки. Поэтому лучше потратить время и найти все производные (к тому же это может потребовать преподаватель), или, в крайнем случае, выполнить проверку на черновике.

Пример 11

Найти все частные производные первого и второго порядка для функции трёх переменных

.

Это пример для самостоятельного решения.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение: Найдем частные производные первого порядка.

Составим полный дифференциал первого порядка:

Пример 6: Решение: Вычислим частные производные первого порядка в точке M(1, -1, 0):

Пример 7: Решение: Вычислим частные производные первого порядка в точке M(1, 1, 1):

Пример 9: Решение: Найдем частные производные первого порядка:

 

Пример 11: Решение: Найдем частные производные первого порядка:

Найдем частные производные второго порядка:

.

8. Интегралы

8.1. Неопределенный интеграл. Подробные примеры решений

Начнем изучение темы «Неопределенный интеграл», а также подробно разберем примеры решений простейших (и не совсем) интегралов. Как обычно, мы ограничимся минимумом теории, которая есть в многочисленных учебниках, наша задача – научиться решать интегралы.

Что нужно знать для успешного освоения материала? Для того, чтобы справиться с интегральным исчислением, Вам необходимо уметь находить производные, минимум, на среднем уровне. Не лишним опытом будет, если у Вас за плечами несколько десятков, а лучше – сотня самостоятельно найденных производных. По крайне мере, Вас не должны ставить в тупик задания на дифференцирование простейших и наиболее распространенных функций.

Казалось бы, причем здесь вообще производные, если речь в статье пойдет об интегралах?! А дело вот в чем. Дело в том, что нахождение производных и нахождение неопределенных интегралов (дифференцирование и интегрирование) – это два взаимно обратных действия, как, например, сложение/вычитание или умножение/деление. Таким образом, без навыка и какого-никакого опыта нахождения производных, к сожалению, дальше не продвинуться.

В этой связи нам потребуются следующие методические материалы: Таблица производных и Таблица интегралов.

В чем сложность изучения неопределенных интегралов? Если в производных имеют место строго 5 правил дифференцирования, таблица производных и довольно четкий алгоритм действий, то в интегралах всё иначе. Существуют десятки способов и приемов интегрирования. И, если способ интегрирования изначально подобран неверно (т.е. Вы не знаете, как решать), то интеграл можно «колоть» буквально сутками, как самый настоящий ребус, пытаясь приметить различные приемы и ухищрения. Некоторым даже нравится.

Между прочим, нам довольно часто приходилось слышать от студентов (не гуманитарных специальностей) мнение вроде: «У меня никогда не было интереса решить предел или производную, но вот интегралы – совсем другое дело, это увлекательно, всегда есть желание «взломать» сложный интеграл». Стоп. Хватит чёрного юмора, переходим к этим самым неопределенным интегралам.

Коль скоро способов решения существует много, то с чего же начать изучение неопределенных интегралов чайнику? В интегральном исчислении существуют, на наш взгляд, три столпа или своеобразная «ось», вокруг которой вращается всё остальное. В первую очередь следует хорошо разобраться в простейших интегралах (эта статья).

Потом нужно детально проработать урок Метод замены в неопределенном интеграле. ЭТО ВАЖНЕЙШИЙ ПРИЁМ! Может быть, даже самая важная статья из всех статей, посвященных интегралам. И, в-третьих, обязательно следует ознакомиться с методом интегрирования по частям, поскольку с помощью него интегрируется обширный класс функций. Если Вы освоите хотя бы эти три урока, то уже «не два». Вам могут «простить» незнание интегралов от тригонометрических функций, интегралов от дробей, интегралов от дробно-рациональных функций, интегралов от иррациональных функций (корней), но вот если «сесть в лужу» на методе замены или методе интегрирования по частям – то это будет очень и очень скверно.

Итак, начинаем с простого. Посмотрим на таблицу интегралов. Как и в производных, мы замечаем несколько правил интегрирования и таблицу интегралов от некоторых элементарных функций. Любой табличный интеграл (да и вообще любой неопределенный интеграл) имеет вид:

Сразу разбираемся в обозначениях и терминах:

– значок интеграла.

– подынтегральная функция (пишется с буквой «ы»).

– значок дифференциала. Что это такое, мы рассмотрим совсем скоро. Главное, что при записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.

– подынтегральное выражение или «начинка» интеграла.

первообразная функция.

множество первообразных функций. Не нужно сильно загружаться терминами, здесь самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .

Решить неопределенный интеграл – это значит найти множество первообразных функций от данной подынтегральной функции , пользуясь некоторыми правилами, приемами и таблицей.

Еще раз посмотрим на запись:

Посмотрим в таблицу интегралов.

Что происходит? Левые части  у нас превращаются в другие функции: .

Упростим наше определение:

Решить неопределенный интеграл  – это значит ПРЕВРАТИТЬ его в неопределенную (с точностью до константы) функцию , пользуясь некоторыми правилами, приемами и таблицей.

Возьмем, например, табличный интеграл . Что произошло? Символическая запись  превратилась в множество первообразных функций .

Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, или первообразная функция с теоретической точки зрения. Достаточно просто осуществлять превращения по некоторым формальным правилам. Так, в случае  совсем не обязательно понимать, почему интеграл превращается именно в . Можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.

Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:

Иными словами, если продифференцировать правильный ответ, то обязательно должна получиться исходная подынтегральная функция.

Вернемся к тому же табличному интегралу .

Убедимся в справедливости данной формулы. Берем производную от правой части:

– это исходная подынтегральная функция.

Вот, кстати, стало понятнее, почему к функции  всегда приписывается константа . При дифференцировании константа всегда превращается в ноль.

Решить неопределенный интеграл – это значит найти множество всех первообразных, а не какую-то одну функцию. В рассматриваемом табличном примере , , ,  и т. д. – все эти функции являются решением интеграла . Решений бесконечно много, поэтому записывают коротко:

Таким образом, любой неопределенный интеграл достаточно легко проверить. Это некоторая компенсация за большое количество интегралов разных видов.

Переходим к рассмотрению конкретных примеров. Начнем, как и при изучении производной, с двух правил интегрирования:

– константу C можно (и нужно) вынести за знак интеграла.

– интеграл суммы (разности) двух функций равен сумме (разности) двух интегралов. Данное правило справедливо для любого количества слагаемых.

Как видите, правила, в принципе, такие же, как и для производных. Иногда их называют свойствами линейности интеграла.

Пример 1

Найти неопределенный интеграл.

.

Выполнить проверку.

Решение: Удобнее преобразовать его, как.

(1) Применяем правило . На забываем записать значок дифференциала dx под каждым интегралом. Почему под каждым? dx – это полноценный множитель. Если расписывать детально, то первый шаг следует записать так:

.

(2) Согласно правилу  выносим все константы за знаки интегралов. Обратите внимание, что в последнем слагаемом tg5 – это константа, её также выносим.

Кроме того, на данном шаге готовим корни и степени для интегрирования. Точно так же, как и при дифференцировании, корни надо представить в виде . Корни и степени, которые располагаются в знаменателе – перенести вверх.

Примечание: в отличие от производных, корни в интегралах далеко не всегда следует приводить к виду , а степени переносить вверх.

Например,  – это готовый табличный интеграл, который уже посчитали до Вас, и всякие китайские хитрости вроде  совершенно не нужны. Аналогично:  – это тоже табличный интеграл, нет никакого смысла представлять дробь  в виде . Внимательно изучите таблицу!

(3) Все интегралы у нас табличные. Осуществляем превращение с помощью таблицы, используя формулы: ,  и

для степенной функции - .

Следует отметить, что табличный интеграл  – это частный случай формулы для степенной функции: .

Константу C достаточно приплюсовать один раз в конце выражения

(а не ставить их после каждого интеграла).

(4) Записываем полученный результат в более компактном виде, когда все степени вида

снова представляем в виде корней, а степени с отрицательным показателем сбрасываем обратно в знаменатель.

Проверка. Для того чтобы выполнить проверку нужно продифференцировать полученный ответ:

Получена исходная подынтегральная функция, т. е. интеграл найден правильно. От чего плясали, к тому и вернулись. Хорошо, когда история с интегралом заканчивается именно так.

Время от времени встречается немного другой подход к проверке неопределенного интеграла, когда от ответа берется не производная, а дифференциал:

.

В итоге получаем не подынтегральную функцию, а подынтегральное выражение.

Не стоит пугаться понятия дифференциал.

Дифференциал – это производная, умноженная на dx. 

Однако нам важны не теоретические тонкости, а то, что с этим дифференциалом дальше делать. Дифференциал раскрывается следующим образом: значок d убираем, справа над скобкой ставим штрих, в конце выражения приписываем множитель dx:

Получено исходное подынтегральное выражение, то есть интеграл найден правильно.

Как видите, дифференциал сводится к нахождению производной. Второй способ проверки мне нравится меньше, так как приходиться дополнительно рисовать большие скобки и тащить значок дифференциала dx до конца проверки. Хотя он корректнее, или «солиднее», что ли.

На самом деле можно было умолчать о втором способе проверки. Дело не в способе, а в том, что мы научились раскрывать дифференциал. Еще раз.

Дифференциал раскрывается следующим образом:

1) значок d убираем;

2) справа над скобкой ставим штрих (обозначение производной);

3) в конце выражения приписываем множитель dx.

Например:

.

Запомните это. Рассмотренный приём потребуется нам очень скоро.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Когда мы находим неопределенный интеграл, то ВСЕГДА стараемся сделать проверку, тем более, для этого есть прекрасная возможность. Далеко не все типы задач в высшей математике являются подарком с этой точки зрения. Неважно, что часто в контрольных заданиях проверки не требуется, её никто, и ничто не мешает провести на черновике. Исключение можно сделать лишь тогда, когда не хватает времени (например, на зачете, экзамене). Лично я всегда проверяю интегралы, а отсутствие проверки считаю халтурой и некачественно выполненным заданием.

Пример 3

Найти неопределенный интеграл:

. Выполнить проверку.

Решение: Анализируя интеграл, мы видим, что у нас под интегралом произведение двух функций, да еще и возведение в степень целого выражения. К сожалению, на поприще интегральной битвы нет хороших и удобных формул для интегрирования произведения и частного в виде:  или .

Поэтому, когда дано произведение или частное, всегда имеет смысл посмотреть, а нельзя ли преобразовать подынтегральную функцию в сумму? Рассматриваемый пример – тот случай, когда можно.

Сначала приведём полное решение, комментарии будут ниже.

(1) Используем старую добрую формулу квадрата суммы для любых действительных чисел , избавляясь от степени над общей скобкой.

(2) Вносим  в скобку, избавляясь от произведения.

(3) Используем свойства линейности интеграла (оба правила сразу).

(4) Превращаем интегралы по табличной формуле .

(5) Упрощаем ответ. Здесь следует обратить внимание на обыкновенную неправильную дробь  – она несократима и в ответ входит именно в таком виде.

Не нужно делить на калькуляторе !

Не нужно представлять ее в виде !

Проверка:

Получена исходная подынтегральная функция, а значит, интеграл найден правильно.

В ходе проверки функцию всегда желательно «упаковать» до первоначального вида, вынося, в данном случае,  за скобки и применяя формулу сокращенного умножения в обратном направлении: .

Пример 4

Найти неопределенный интеграл

. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

Пример 5

Найти неопределенный интеграл

. Выполнить проверку.

В данном примере подынтегральная функция представляет собой дробь. Когда мы видим в подынтегральном выражении дробь, то первой мыслью должен быть вопрос: «А нельзя ли как-нибудь от этой дроби избавиться, или хотя бы её упростить?».

Замечаем, что в знаменателе находится одинокий корень из «икс». Один в поле – не воин, значит, можно почленно разделить числитель на знаменатель:

Действия с дробными степенями мы не комментируем, так как о них неоднократно шла речь в статьях о производной функции.

Если Вас все-таки ставит в тупик такой пример, как

,

и ни в какую не получается правильный ответ ,

то рекомендуем обратиться к школьным учебникам. В высшей математике дроби и действия с ними встречаются на каждом шагу.

Также обратите внимание, что в решении пропущен один шаг, а именно, применение правил , . Обычно при определенном опыте решения интегралов данные правила считают очевидным фактом и не расписывают подробно.

Пример 6

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельно решения. Ответ и полное решение в конце урока.

В общем случае с дробями в интегралах не всё так просто, дополнительный материал по интегрированию дробей некоторых видов можно найти в статье: Интегрирование некоторых дробей. Но, прежде чем перейти к вышеуказанной статье, необходимо ознакомиться с уроком: Метод замены в неопределенном интеграле. Дело в том, что подведение функции под дифференциал или метод замены переменной является ключевым моментом в изучении темы, поскольку встречается не только «в чистых заданиях на метод замены», но и во многих других разновидностях интегралов.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

В данном примере мы использовали формулу сокращенного умножения 

Пример 6: Решение:

8.1.1. Метод замены переменной в неопределенном интеграле. Примеры решений

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где объяснено в доступной форме, что такое интеграл и подробно разобраны базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала.

– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному. Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал. Напоминаем пример, который мы приводили:

.

То есть, раскрыть дифференциал – это почти то же самое, что найти производную.

Пример 1

Найти неопределенный интеграл.

.

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: 

.

Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию (3x + 1) под знак дифференциала:

.

Раскрывая дифференциал, легко проверить, что, действительно, проведено тождественное преобразование:

Фактически

и  – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: .

Почему так, а не иначе?

Формула  и все другие табличные формулы справедливы и применимы НЕ ТОЛЬКО для переменной x, но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ (в нашем примере - это 3x + 1) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.

Поэтому мысленное рассуждение при решении должно складываться примерно так:

«Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент (3x + 1) и формулой я сразу воспользоваться не могу. Но если мне удастся получить (3x + 1) и под знаком дифференциала, то всё будет нормально. Если я запишу d(3x + 1), тогда: d(3x + 1) = (3x + 1)’dx = 3dx. 

Но в исходном интеграле

множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо её домножить на (1/3)».

В ходе примерно таких мысленных рассуждений и рождается запись:

.

Теперь можно пользоваться табличной формулой :

Готово. Единственное отличие: у нас не буква «икс», а сложное выражение (3x + 1).

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции .

По сути дела, подведение функции под знак дифференциала и  – это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл

. Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь:

.

Подводим функцию (5 - 2x) под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: .

Получается -2dx, значит, чтобы ничего не изменилось, надо домножить интеграл на (-1/2).

Далее используем табличную формулу

:

Проверка:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 3

Найти неопределенный интеграл

. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 4

Найти неопределенный интеграл

. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

И так далее.

В конце данного параграфа хотелось бы еще остановиться на случае, когда в линейной функции переменная x входит с единичным коэффициентом, например:

.

Строго говоря, решение должно выглядеть так:

.

Как видите, подведение функции (x+3) под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла  в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

.

В качестве примера возьмём интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула ,

и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой.

В данном случае напрашивается:

.

Вторая по популярности буква для замены – это буква z. В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:

 

Но при замене у нас остаётся dx! Наверное, многие догадались, что если осуществляется переход к новой переменной t, то в новом интеграле всё должно быть выражено через букву t, и дифференциалу dx там совсем не место. Следует логичный вывод, что dx нужно превратить в некоторое выражение, которое зависит только от t.

Действие следующее. После того, как мы подобрали замену, в данном примере - это , нам нужно найти дифференциал dt.

Так как 

, то

Окончательный результат рекомендуем переписать максимально коротко: .

Теперь по правилам пропорции выражаем dx:

.

В итоге:

.

Таким образом:

.

А это уже самый что ни на есть табличный интеграл

(таблица, интегралов, естественно, справедлива и для переменной t).

.

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену: , тогда

.

.

Значок  не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

Также всем рекомендую использовать математический знак  вместо фразы «из этого следует это». И коротко, и удобно.

При оформлении примера в тетради надстрочную пометку  обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала  новой переменной расписываться подробно не будет.

Вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же.

Но, с точки зрения оформления задания, метод подведения функции под знак дифференциала гораздо короче.

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

.

Проведем замену:

, тогда

;

.

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл.

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении.

Пример 7

Найти неопределенный интеграл

. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 8

Найти неопределенный интеграл.

.

Решение: Производим замену: .

.

Осталось выяснить, во что превратится xdx? Время от времени в ходе решения интегралов встречается следующий трюк: x мы выразим из той же замены :

.

Готово.

Пример 9

Найти неопределенный интеграл.

.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл .

Наверняка некоторые обратили внимание, что в справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная . Например, как: .

Функции ,  могут быть и не в произведении, а в ином сочетании.

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом Примере 10 замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за t знаменатель, то велики шансы, что и числитель xdx превратится во что-нибудь хорошее:

Замена: .

Кстати, здесь не так сложно подвести функцию под знак дифференциала:

Следует отметить, что для дробей вроде ,  такой фокус уже не пройдет (точнее говоря, применить нужно будет не только прием замены).

Интегрировать некоторые дроби можно научиться на уроке Интегрирование сложных дробей. Вот еще пара типовых примеров для самостоятельного решения на тот же метод.

Пример 11

Найти неопределенный интеграл

.

Пример 12

Найти неопределенный интеграл

.

Решения в конце урока.

Пример 13

Найти неопределенный интеграл

.

Смотрим в таблицу производных и находим наш арккосинус: , поскольку у нас в подынтегральном выражении находится арккосинус и нечто, похожее на его производную.

Общее правило:

За t обозначаем саму функцию (а не её производную).

В данном случае: . Осталось выяснить, во что превратится оставшаяся часть подынтегрального выражения

.

В этом примере нахождение dt распишем подробно, поскольку  – сложная функция:

или, короче:

.

По правилу пропорции выражаем нужный нам остаток: .

Таким образом:

Пример 14

Найти неопределенный интеграл.

.

Пример для самостоятельного решения. Ответ совсем близко.

Внимательные читатели заметили, что мы рассмотрели мало примеров с тригонометрическими функциями. И это не случайно, поскольку под интегралы от тригонометрических функций отведёны отдельные уроки 7.1.5, 7.1.6, 7.1.7. Более того, далее даны некоторые полезные ориентиры для замены переменной, что особенно актуально для чайников, которым не всегда и не сразу понятно, какую именно замену нужно проводить в том или ином интеграле. Также некоторые типы замен можно посмотреть в статье 7.2.

Более опытные студенты могут ознакомиться с типовой заменой в интегралах с иррациональными функциями. Замена при интегрировании корней является специфической, и её техника выполнения отличается от той, которую мы рассмотрели на этом уроке.

Решения и ответы:

Пример 3: Решение:

Пример 4: Решение:

Пример 7: Решение:

Пример 9: Решение:

Замена: ;

;

Пример 11: Решение:

Проведем замену:

Пример 12: Решение:

Проведем замену:

Пример 14: Решение:

Проведем замену:


8.1.2. Интегрирование по частям. Примеры решений

Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете и экзамене студенту почти всегда предлагают решить интегралы следующих типов: простейший интеграл, либо интеграл на замену переменной, либо интеграл как раз на метод интегрирования по частям.

Для эффективного изучения темы необходимо хорошо ориентироваться в материалах двух вышеуказанных уроков. Если Вы чайник, и только-только начинаете погружение в удивительный мир интегралов, то читать далее не имеет особого смысла – следует начать с урока Неопределенный интеграл. Примеры решений.

Как всегда, под рукой должны быть: таблица интегралов и таблица производных.

Какую задачу решает метод интегрирования по частям? Метод интегрирования по частям решает очень важную задачу, он позволяет интегрировать некоторые функции, отсутствующие в таблице, произведение функций, а в ряде случаев – и частное. Как мы помним, нет удобной формулы:

.

Зато есть такая:

– формула интегрирования по частям собственной персоной. С ней мы и будет работать весь урок.

И сразу список в студию. По частям берутся интегралы следующих видов:

1) , ,  – логарифм, логарифм, умноженный на какой-нибудь многочлен.

2) ,  – экспоненциальная функция, умноженная на какой-нибудь многочлен. Сюда же можно отнести интегралы вроде  – показательная функция, умноженная на многочлен, но на практике процентах так в 97, под интегралом красуется симпатичная буква «е».

3) , ,  – тригонометрические функции, умноженные на какой-нибудь многочлен.

4) ,  – обратные тригонометрические функции («арки»), «арки», умноженные на какой-нибудь многочлен.

Также по частям берутся некоторые дроби, соответствующие примеры мы тоже подробно рассмотрим.

8.1.3. Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

.

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере  (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за u, а что-то за dv.

В интегралах рассматриваемого типа за u всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за u мы обозначили логарифм, а за dv оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал du:

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию v. Для того чтобы найти функцию v необходимо проинтегрировать правую часть нижнего равенства dv = dx:

Теперь открываем наше решение и конструируем правую часть формулы: .

Вот кстати, и образец чистового решения с небольшими пометками:

Единственный момент, в произведении uv я сразу переставил местами u и v, так как множитель x принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом, обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям  и формула  – это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл.

.

Подынтегральная функция представляет собой произведение логарифма на многочлен.

Решаем.

Мы еще один раз подробно распишем порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.

Как уже говорилось, за u необходимо обозначить логарифм (то, что он в степени – значения не имеет). За dv обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал du:

Здесь использовано правило дифференцирования сложной функции

.

Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений мы акцентировали внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.

Теперь находим функцию v, для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

.

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью

:

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за u в похожих ситуациях всегда обозначается логарифм.

.

Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Необходимость дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

А сейчас пара примеров для самостоятельного решения:

Пример 3

Найти неопределенный интеграл

.

Этот пример решается методом замены переменной (или подведением под знак дифференциала)! Можете также попробовать взять его по частям, получится забавная вещь.

Пример 4

Найти неопределенный интеграл

.

А вот этот интеграл интегрируется по частям (обещанная дробь).

Это примеры для самостоятельного решения, решения и ответы в конце урока.

В примерах 3, 4 подынтегральные функции похожи, а вот методы решения – разные!

В этом-то и состоит основная трудность освоения интегралов – если неправильно подобрать метод решения интеграла, то возиться с ним можно часами, как с самой настоящей головоломкой. Поэтому чем больше вы прорешаете различных интегралов – тем лучше, тем легче пройдут зачет и экзамен. Кроме того, на втором курсе будут дифференциальные уравнения, а без опыта решения интегралов и производных делать там нечего.

8.1.4. Интегралы от экспоненты, умноженной на многочлен

Общее правило: за u всегда обозначается многочлен.

Пример 5

Найти неопределенный интеграл.

Решение:

Используя знакомый алгоритм, интегрируем по частям:

Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле.

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом ,

или даже .

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Пример 6

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что  – сложная функция.

8.1.5. Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за u всегда обозначается многочлен.

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Пример 8

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Пример 9

Найти неопределенный интеграл

.

Еще один пример с дробью. Как и в двух предыдущих примерах за u обозначается многочлен.

Интегрируем по частям:

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.

8.1.6. Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен

Общее правило: за u всегда обозначается обратная тригонометрическая функция.

Напоминаем, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи мы будем называть их «арками».

Пример 11

Найти неопределенный интеграл.

Решаем.

.

Интегрируем по частям:

Здесь интеграл  найден методом подведения функции под знак дифференциала, можно использовать и метод замены в «классическом» виде. Аналогичный пример разбирался на уроке Метод замены переменной в неопределенном интеграле.

Таким образом, помимо «чистого» интегрирования по частям нередко требуется применять другие методы и приёмы решения.

Пример 12

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

И заключительный пример сегодняшнего урока под счастливым номером тринадцать: «арк», умноженный на многочлен. Он сложнее, и предназначен для маньяков, желающих лучше разобраться в методе интегрирования по частям. Пример, пожалуй, будет тоже для самостоятельного решения, поскольку меня немного утомил тот логарифм в квадрате.

Пример 13

Найти неопределенный интеграл

.

Рассмотренный метод часто применяется в комбинации с другими приёмами решения интегралов. Читатели с хорошими навыками могут ознакомиться с такими примерами на уроке Сложные интегралы.

Решения и ответы:

Пример 3: Решение:

.

Пример 4: Решение:

Интегрируем по частям:

.

Пример 6: Решение:

Дважды интегрируем по частям:

Пример 8: Решение:

Интегрируем по частям:

Пример 10: Решение:

Интегрируем по частям:

Примечание: Здесь мы использовали известную тригонометрическую формулу двойного угла . Её можно было использовать и сразу: , а потом интегрировать по частям.

Похожим способом также решаются интегралы вроде ,  – в них необходимо (сразу или в ходе решения) понизить степень синуса (косинуса) с помощью соответствующих формул.

Более подробно – см. Интегралы от тригонометрических функций.

Пример 12:

Интегрируем по частям:

Пример 13:

Интегрируем по частям:

Примечание: Если возникли трудности с интегралом

,

то следует посетить урок Интегрирование некоторых дробей.

8.1.7. Интегралы от тригонометрических функций. Примеры решений

На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно.

Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.

А сейчас нам потребуются Таблица интегралов, Таблица производных и Справочник тригонометрических формул. Все методические пособия можно найти на странице Математические формулы и таблицы. Рекомендую всё распечатать. Особо заостряю внимание на тригонометрических формулах, они должны быть перед глазами – без этого эффективность работы заметно снизится.

Но сначала о том, каких интегралов в данной статье нет. Здесь не найдется интегралов вида ,  – косинус, синус, умноженный на какой-нибудь многочлен (реже что-нибудь с тангенсом или котангенсом). Такие интегралы интегрируются по частям, и для изучения метода посетите урок Интегрирование по частям. Примеры решений. Также здесь не найдется интегралов с  «арками» – арктангенсом, арксинусом и др., они тоже чаще всего интегрируются по частям.

При нахождении интегралов от тригонометрических функций используется ряд методов, в том числе:

- использование тригонометрических формул;

- понижение степени подынтегральной функции (частный случай п.1);

- метод замены переменной;

- универсальная тригонометрическая подстановка (частный случай п.3).

Следует отметить, что данное разделение весьма условно, поскольку очень часто все вышеперечисленные правила используются одновременно в одном примере.

Пример 1

Найти неопределенный интеграл.

Сначала полное решение, потом комментарии.

Используем формулу:

(1) Мы видим, что в подынтегральном выражении находится произведение двух функций. К сожалению, в интегральном исчислении нет удобной формулы для интегрирования произведения в виде , поэтому приходится прибегать к различным ухищрениям.

В данном случае мы прерываем решение значком  и поясняем, что используется тригонометрическая формула. Данная формула превращает произведение в сумму.

(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.

Справка: При работе с тригонометрическими функциями следует помнить, что:

Косинус – это четная функция, то есть

, - минус исчезает без всяких последствий.

В рассматриваемом примере: .

Синус – функция нечетная: 

, – здесь минус, наоборот, не пропадает, а выносится.

(3) Под интегралами у нас сложные функции (косинусы не просто от x, а от сложного аргумента). Это простейшие из сложных функций, интегралы от них удобнее найти методом подведения под знак дифференциала.

(4) Используем табличную формулу , единственное отличие в том, что вместо «икса» у нас сложное выражение.

Готово.

Пример 2

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Пример 3

Найти неопределенный интеграл

.

Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.

(1) Используем тригонометрическую формулу .

(2) Подводим функцию под знак дифференциала.

(3) Используем табличный интеграл .

Пример 4

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Пример 5

Найти неопределенный интеграл

.

Сначала решение:

(1) Используем формулу

.

(2) Используем основное тригонометрическое тождество , из которого следует, что .

(3) Почленно делим числитель на знаменатель.

(4) Используем свойство линейности неопределенного интеграла.

(5) Интегрируем с помощью таблицы.

Пример 6

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях. Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.

Понижение степени подынтегральной функции

Данный приём работает, когда подынтегральные функции нафаршированы синусами и косинусами в чётных степенях. Для понижения степени используют тригонометрические формулы ,  и

, причем последняя формула чаще используется в обратном направлении, как: .

Пример 7

Найти неопределенный интеграл.

Решение:

В принципе, ничего нового здесь нет, за исключением того, что мы применили формулу , понизив степень подынтегральной функции. Обратите внимание, что мы сократили решение. По мере накопления опыта интеграл от cos2x можно находить устно, это экономит время и вполне допустимо при чистовом оформлении заданий. В данном случае целесообразно не расписывать и правило , сначала устно берем интеграл от 1, затем – от cos2x.

Пример 8

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Далее – пример с повышением степени:

Пример 9

Найти неопределенный интеграл

.

Сначала решение, потом комментарии:

(1) Готовим подынтегральную функцию для применения формулы .

(2) Собственно применяем формулу.

(3) Возводим знаменатель в квадрат и выносим константу за знак интеграла. Можно было поступить несколько иначе, но так удобнее.

(4) Используем формулу .

(5) В третьем слагаемом снова понижаем степень, но уже с помощью формулы .

(6) Приводим подобные слагаемые (здесь мы почленно разделили  и выполнили сложение ).

(7) Собственно берём интеграл, правило линейности  и метод подведения функции под знак дифференциала выполняем устно.

(8) Причесываем ответ.

В неопределенном интеграле нередко ответ можно записать несколькими способами.

В только что рассмотренном примере окончательный ответ  

можно было записать иначе – раскрыть скобки и даже сделать это до интегрирования выражения. То есть вполне допустима следующая концовка примера:

Пример 10

Найти неопределенный интеграл

.

Это пример решается двумя способами, и у Вас могут получиться два разных ответа (точнее, они будут выглядеть совершенно по-разному, но с математической точки зрения являться эквивалентными). Скорее всего, Вы не увидите наиболее рациональный способ и помучаетесь с раскрытием скобок, использованием других тригонометрических формул. Наиболее эффективное решение приведено в конце урока.

Подытоживая параграф, сделаем вывод: любой интеграл вида , где n и mчётные числа, решается методом понижения степени подынтегральной функции.

На практике мне встречались интегралы с 8 и 10 степенями, решать их приходилось ужасно долго, понижая степень несколько раз, в результате получались длинные-длинные ответы.

Метод замены переменной

Как уже упоминалось в статье Метод замены переменной в неопределенном интеграле, основной предпосылкой для использования метода замены является тот факт, что в подынтегральном выражении есть некоторая функция  и её производная :

 (функции ,  не обязательно находятся под знаком интеграла в виде произведения).

Пример 11

Найти неопределенный интеграл

.

Смотрим в таблицу производных и замечаем формулы , , то есть, в нашем подынтегральном выражении есть функция и её производная. Однако мы видим, что при дифференцировании косинус и синус взаимно превращаются друг в друга, и возникает вопрос: как выполнить замену переменной и что же обозначать за t – синус или косинус?!

Вопрос можно решить методом научного тыка: если мы неправильно выполним замену, то ничего хорошего не получится.

Общий ориентир: в похожих случаях за t нужно обозначить функцию, которая находится в знаменателе.

Итак, запомнили:

.

Прерываем решение и проводим замену

;

.

В знаменателе у нас всё хорошо, всё зависит только от, теперь осталось выяснить, во что превратится .

Для этого находим дифференциал dt:

Или, если короче: 

Из полученного равенства по правилу пропорции получаем нужное нам выражение:

.

Итак:

Теперь всё подынтегральное выражение у нас зависит только от t и можно продолжать решение

Готово. Напоминаем, что цель замены – упростить подынтегральное выражение. В данном случае всё свелось к интегрированию степенной функции по таблице.

А сейчас два примера для самостоятельного решения:

Пример 12

Найти неопределенный интеграл

.

Пример 13

Найти неопределенный интеграл

.

Полные решения и ответы в конце урока.

Пример 14

Найти неопределенный интеграл

.

Здесь опять в подынтегральном выражении находятся синус с косинусом (функция с производной), но уже в произведении, и возникает дилемма – что обозначать за t, синус или косинус?

Можно попытаться провести замену методом научного тыка, и, если ничего не получится, то обозначить за t другую функцию, но есть общий ориентир. 

Общий научный ориентир: за t нужно обозначить ту функцию, которая, образно говоря, находится в «неудобном положении».

Мы видим, что в данном примере, что студент косинус «мучается» от степени, а синус – свободно так сидит, сам по себе…

Поэтому проведем замену:

.

Пример 15

Найти неопределенный интеграл

.

Анализируем подынтегральную функцию. Что нужно обозначить за t?

Вспоминаем наши ориентиры:

1) Функция, скорее всего, находится в знаменателе;

2) Функция находится в «неудобном положении».

Кстати, эти ориентиры справедливы не только для тригонометрических функций.

Под оба критерия (особенно под второй) подходит синус, поэтому напрашивается замена .

В принципе, замену можно уже проводить, но сначала неплохо было бы разобраться, а что делать с ? Во-первых, «отщипываем» один косинус:

.

Произведение  мы резервируем под наш «будущий» дифференциал dt. А  выражаем через синус с помощью основного тригонометрического тождества:

. Проводим преобразования:

Вот теперь замена: 

Готово.

Общее правило: Если в подынтегральной функции одна из тригонометрических функций (синус или косинус) находится в нечетной степени, то нужно от нечетной степени «откусить» одну функцию, а за t – обозначить другую функцию. 

Речь идет только об интегралах, где есть косинусы и синусы. В рассмотренном примере в нечетной степени у нас находился косинус, поэтому мы отщипнули от степени один косинус, а за t обозначили синус.

Пример 16

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Универсальная тригонометрическая подстановка

Универсальная тригонометрическая подстановка – это частый случай метода замены переменной. Её можно попробовать применить, когда «не знаешь, что делать». Но на самом деле есть некоторые ориентиры для ее применения. Типичными интегралами, где нужно применить универсальную тригонометрическую подстановку, являются следующие интегралы: , , ,  и т.д. Приведём примеры использования универсальной тригонометрической подстановки.

Пример 17

Найти неопределенный интеграл

.

Универсальная тригонометрическая подстановка в данном случае реализуется следующим способом. Проведем замену:

.

Мы используем здесь не букву t, а букву z. Это не какое-то правило, просто привычка.

Здесь удобнее находить дифференциал dx, для этого из равенства , мы выражаем x:

Навешиваю на обе части арктангенс:

.

Справа арктангенс и тангенс взаимно уничтожаются, получаем:

,

.

Таким образом:

.

На практике можно не расписывать так подробно, а пользоваться готовым результатом: .

Последнее выражение справедливо только в том случае, если под синусами и косинусами у нас просто «иксы», для интеграла  (о котором мы еще поговорим) всё будет несколько иначе!

При универсальной тригонометрической подстановке синусы и косинусы у нас превращаются в следующие дроби:

, .

Последние равенства основаны на известных тригонометрических формулах:

, .

Итак, чистовое оформление может быть таким:

Проведем универсальную тригонометрическую подстановку: . Тогда

,

.

Далее, с учётом подстановки:

(1) Производим в исходном интеграле подстановки:

,  ,  .

(2) Приводим знаменатель к общему знаменателю.

(3) Избавляемся от четырехэтажности дроби, при этом  у нас сокращается. Раскрываем скобки в знаменателе, двойку в числителе выносим за знак интеграла.

(4) Приводим подобные слагаемые в знаменателе.

(5) Интеграл  решается методом выделения полного квадрата. Более подробно с этим методом можно ознакомиться на уроке Интегрирование некоторых дробей. Разложение  

является подготовкой для осуществления вышеуказанного приёма.

(6) Выделяем полный квадрат и готовим интеграл для интегрирования.

(7) Интегрируем по табличной формуле .

(8) Проводим обратную замену, вспоминая, что . Готово.

Рассмотрим похожий интеграл: .

Нет, решать мы его не будем, а просто поймем, как проводить замену.

Здесь тоже проводится универсальная тригонометрическая подстановка: .

Обратите внимание, что аргумент под тангенсом должен быть в два раза меньше, чем под синусом и косинусом. Формулы ,  сохраняют статус-кво, а вот дифференциал будет немного другой:

.

Интеграл  решается путем замены  и т.д., всё точно так же, единственное отличие, дифференциал будет опять немного другой.

Пример 18

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

С помощью универсальной тригонометрической подстановки решаются и другие интегралы.

Пример 19

Найти неопределенный интеграл

.

Здесь перед применением универсальной тригонометрической подстановки необходимо понизить степени в знаменателе при помощи формул , . Попробуйте разобраться в данном примере самостоятельно, полное решение и ответ очень близко!

Применение универсальной тригонометрической подстановки часто приводит к длинным и трудоемким вычислениям. Поэтому на практике универсальной тригонометрической подстановки стараются избегать (если возможно). Для этого используют ряд методов и приемов, о которых можно прочитать в статье Сложные интегралы.

Решения и ответы:

Пример 2: Решение:

Используем формулу:

Пример 4: Решение:

Пример 6: Решение:

Пример 8: Решение:

Пример 10: Решение:

Пример 12: Решение:

.

Проведем замену:

.

Примечание: здесь можно было сделать замену , но гораздо выгоднее обозначить за t весь знаменатель.

Пример 13: Решение:

.

Проведем замену:

.

.

Пример 16: Решение:

Проведем замену: .

.

Пример 18: Решение:

.

Проведем универсальную тригонометрическую подстановку:

.

Пример 19: Решение:

.

Универсальная тригонометрическая подстановка:

;

.

8.1.8. Интегрирование некоторых дробей. Методы и приёмы решения

На данном уроке мы научимся находить интегралы от некоторых видов дробей. Для успешного усвоения материала Вам должны быть хорошо понятны выкладки статей Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.

Как уже отмечалось, в интегральном исчислении нет удобной формулы для интегрирования дроби:

.

И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых сейчас и расскажем.

Метод разложения числителя

Пример 1

Найти неопределенный интеграл

. Выполнить проверку.

На уроке Неопределенный интеграл. Примеры решений мы избавлялись от произведения функций в подынтегральном выражении, превращая её в сумму, удобную для интегрирования. Оказывается, что иногда в сумму (разность) можно превратить и дробь!

Анализируя подынтегральную функцию, мы замечаем, что и в числителе и в знаменателе у нас находятся многочлены первой степени: x и (x+3). Когда в числителе и знаменателе находятся многочлены одинаковой степени, то помогает следующий искусственный приём: в числителе мы должны самостоятельно организовать такое же выражение, что и в знаменателе:

.

Рассуждение может быть следующим: «В числителе надо организовать(x + 3), чтобы привести интеграл к табличным, но если я прибавлю к «иксу» тройку, то, для того, чтобы выражение не изменилось – я обязан вычесть такую же тройку».

Теперь можно почленно разделить числитель на знаменатель:

В результате мы добились того, чего и хотели. Используем первые два правила интегрирования:

Готово. Проверку при желании выполните самостоятельно. Обратите внимание, что

во втором интеграле – это «простая» сложная функция. Особенности ее интегрирования обсуждались на уроке Метод замены переменной в неопределенном интеграле.

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

Пример 2

Найти неопределенный интеграл

.

Выполнить проверку

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто.

В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя больше старшей степени знаменателя.

Пример 3

Найти неопределенный интеграл

.

Выполнить проверку.

Начинаем подбирать числитель. Алгоритм подбора числителя примерно такой:

1) В числителе нам нужно организовать 2x-1, но там x2. Что делать? Заключаю 2x-1 в скобки и умножаю на x, как: x(2x-1).

2) Теперь пробуем раскрыть эти скобки, что получится? Получится: (2x2-x). Уже лучше, но никакой двойки при x2 изначально в числителе нет. Что делать? Нужно домножить на (1/2), получим:

.

3) Снова раскрываем скобки, получаем:

.

Получился нужный x2! Но проблема в том, что появилось лишнее слагаемое (-1/2)x. Что делать? Чтобы выражение не изменилось, мы обязаны прибавить к своей конструкции это же (1/2)x:

. Жить стало легче. А нельзя ли еще раз в числителе организовать (2x-1)?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:

. Простите, но у нас было на предыдущем шаге (+1/2)x, а не(+x). Что делать? Нужно домножить второе слагаемое на (+1/2):

.

5) Снова для проверки раскрываем скобки во втором слагаемом:

. Вот теперь нормально: получено (+1/2)x из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое (-1/4), значит, мы обязаны прибавить к своему выражению (1/4):

.

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:

Получился.

Таким образом:

Готово. В последнем слагаемом мы применили метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция

.

Рассмотренный метод разложения x2 в сумму есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно.

Помимо алгоритма подбора можно использовать деление столбиком многочлена на многочлен, но, боюсь, объяснения займут еще больше места, поэтому - как-нибудь в другой раз.

Пример 4

Найти неопределенный интеграл

.

Выполнить проверку.

Это пример для самостоятельного решения.

Метод подведения под знак дифференциала для простейших дробей

Переходим к рассмотрению следующего типа дробей:

, , ,  (коэффициенты a и c не равны нулю).

На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на уроке Метод замены переменной в неопределенном интеграле. Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:

Пример 5

Пример 6

Тут целесообразно взять в руки таблицу интегралов и проследить, по каким формулам и как осуществляется превращение. Обратите внимание, как и зачем выделяются квадраты в данных примерах. В частности, в Примере 6 сначала необходимо представить знаменатель (2x2-5) в виде , а потом подвести  под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой .

Попробуйте самостоятельно решить примеры №№ 7 и 8, тем более, что они достаточно короткие.

Пример 7

Найти неопределенный интеграл:

.

Пример 8

Найти неопределенный интеграл:

.

Если Вам удастся выполнить еще и проверку данных примеров, то Ваши навыки дифференцирования на высоте.

Метод выделения полного квадрата

Интегралы вида

,

(коэффициенты a и b не равны нулю) решаются методом выделения полного квадрата.

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

или .

Формулы применяются именно в таком направлении, то есть идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения  либо , а затем преобразовать их, соответственно, в  либо .

Пример 9

Найти неопределенный интеграл

.

Это простейший пример, в котором при слагаемом x2 – единичный коэффициент (а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю . Начинаем преобразование знаменателя:

.

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Теперь можно применить формулу :

После того, как преобразование закончено ВСЕГДА желательно выполнить обратный ход: , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл

.

Что делать, когда перед x2 находится минус? В этом случае нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: . Константу («двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку прибавить:

Тут получилась формула , применяем:

ВСЕГДА выполняем на черновике проверку:

что и требовалось проверить.

Чистовое оформление примера выглядит примерно так:

Усложняем задачу.

Пример 12

Найти неопределенный интеграл:

Здесь при слагаемом x2 уже не единичный коэффициент, а «пятёрка».

(1) Если при x2 находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сводится к формуле .

Надо разобраться в слагаемом 2ab, а точнее, найти величину b получить «двойку».

(4) Как видим, здесь b = (2/5). Значит, к выражению прибавляем (2/5)2 = (4/25), и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить (7/5)-(4/25), но здесь у нас вырисовывается формула длинного логарифма

,

и действие (7/5)-(4/25) выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу ,

только вместо «икс» у нас x+(2/5), что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию x+(2/5) следовало подвести под знак дифференциала:

,

но, как уже неоднократно отмечалось, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Пример 13

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы, но она рассчитана на весьма подготовленных студентов.

Подведение числителя под знак дифференциала

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид:  или  

(коэффициенты a, b и f не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Пример 14

Найти неопределенный интеграл

.

Пожалуйста, будьте внимательны, сейчас мы рассмотрим типовой алгоритм.

1) Когда дан интеграл вида

или

(где коэффициенты a, b и f не равны нулю), то первое, что мы делаем, это… берём черновик. Дело в том, что сейчас нам предстоит выполнить небольшой подбор.

2) Сформируем числитель подынтегрального выражения тождественными преобразованиями (выразим числитель через знаменатель). Для этого пока просто заключаем выражение, которое находится в данном примере в знаменателе (неважно – под корнем или без корня), под знак дифференциала: .

3) Раскрываем дифференциал:

.

Смотрим на числитель нашего интеграла: 

Немного разные вещи получились…. А теперь нам нужно подобрать множитель для дифференциала , такой, чтобы при его раскрытии получилось, как минимум, 3x. В данном случае с подходящим множителем получится:

.

4) Для самоконтроля снова раскрываем наш дифференциал:

Снова смотрим на числитель нашего интеграла:

. Уже ближе, но у нас получилось не «то» слагаемое (+2), а другое: (+3/2).

5) К нашему дифференциалу

приписываем слагаемое, которое у нас изначально было в подынтегральной функции:

.

– Вычитаем (в данном случае – вычитаем, иногда нужно, наоборот, прибавлять)

наше «не то» слагаемое:

– Обе константы берем в скобки и приписываем справа значок дифференциала:

– Вычитаем (в некоторых примерах нужно сложить) константы:

.

6) Выполняем проверку:

У нас получился в точности числитель подынтегральной функции, значит, подбор выполнен успешно.

Чистовое оформление решения выглядит примерно так:

(1) Выполняем на черновике подбор числителя согласно вышерассмотренному алгоритму. Обязательно выполняем проверку, правильно ли выполнен подбор. При определенном опыте решения интегралов подбор нетрудно выполнить и в уме.

(2) Почленно делим числитель на знаменатель. В практическом решении задач данный шаг можно опускать

(3) Используя свойство линейности, разделяем интегралы. Все константы целесообразно вынести за знаки интегралов.

(4) Первый интеграл фактически является табличным, используем формулу  (константу C припишем позже, когда возьмем второй интеграл). Во втором интеграле выделяем полный квадрат (такой тип интегралов мы рассмотрели в предыдущем параграфе). Остальное дело техники.

И, на закуску, пара примеров для самостоятельного решения – один проще, другой сложнее.

Пример 15

Найти неопределенный интеграл

.

Пример 16

Найти неопределенный интеграл

.

Для решения Примеров 15 и 16 будет полезен частный случай интегрирования степенной функции, которого нет в нашей справочной таблице:

.

Как видите, интегрирование дробей - дело кропотливое, часто приходится применять искусственные приемы и подборы. Но что делать…

Существуют и другие виды дробей, так называемые дробно-рациональные функции, они решаются методом неопределенных коэффициентов. Но это уже тема урока Интегрирование дробно рациональных функций.

Решения и ответы:

Пример 2: Решение:

.

Пример 4: Решение:

.

Пример 7: Решение:

Пример 8: Решение:

.

Пример 10: Решение:

.

Пример 13: Решение:

.

Пример 15: Решение:

Пример 16: Решение:

.

8.1.9. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видом дробей мы уже рассмотрели на уроке Интегрирование некоторых дробей, и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений.

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе) и методе почленного сложения (вычитания) уравнений системы линейных алгебраических уравнений.

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей.

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1

Найти неопределенный интеграл

.

Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и вот как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

.

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем:  – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени больше трёх.

Вывод: Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной.

Сейчас мы будем рассматривать только правильные дробно-рациональные функции. Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

.

Вообще говоря, здесь уже есть произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение, ищем его корни:

Дискриминант уравнения больше нуля, значит, трехчлен действительно раскладывается на множители.

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – НУЖНО разложить на множители.

Начинаем оформлять решение:

.

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

.

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

.

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно.

Только есть одна загвоздочка, коэффициентов A, B, C мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие действия будут направлены на то, чтобы как раз их УЗНАТЬ, то есть выяснить, чему же равны A, B и C.

Итак, начинаем плясать от представления:

.

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы) и составляем уравнение из числителей:

В левой части раскрываем скобки, неизвестные коэффициенты A, B, C при этом пока не трогаем:

Заодно повторяем школьное правило умножения многочленов. Вот оно:

«Для того, чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена».

С точки зрения понятного объяснения коэффициенты A, B, C лучше внести в скобки

(хотя это необязательно в целях экономии времени). Получим:

Составляем систему линейных уравнений для определения коэффициентов A, B и C, приравнивая коэффициенты при равных степенях x в левой и правой частях последнего уравнения.

Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс. Что было бы, если б в правой части вообще не было x2? Скажем, красовалось бы просто -19x+6 без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: A + B + C=0. Почему ноль?

А потому, что в правой части всегда можно приписать этот самый квадрат с нулём:

0∙x2 -19x + 6.

Если в правой части отсутствует какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы для A, B и C ставим нули.

Далее процесс идет по снижающейся траектории, отмечаем все «иксы»:

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, подбираем свободные члены.

Система трёх линейных алгебраических уравнений с тремя неизвестными готова:

.

Решаем систему:

(1) Из первого уравнения выражаем C и подставляем его во 2-ое и 3-е уравнения системы. На самом деле можно было выразить C (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты.

(2) Приводим подобные слагаемые во 2-ом и 3-м уравнениях.

(3) Почленно складываем 2-ое и 3-е уравнение, при этом, получая равенство 12A = -12, из которого следует, что A = -1.

(4) Подставляем A = -1 во второе (или третье) уравнение, откуда находим, что B = -16.

(5) Подставляем A = -1 и B = -16 в первое уравнение, получаем C = 18.

После решения системы всегда полезно сделать проверку – подставить найденные значения A, B и C в каждое уравнение системы, в результате всё должно «сойтись».

Итак, коэффициенты A, B и C найдены, при этом:

.

Чистовое оформление задание должно выглядеть примерно так:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «простая» сложная функция, об особенностях ее интегрирования рассказано на уроке Метод замены переменной в неопределенном интеграле.

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найдем правильно.

В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия.

Пример 2

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Вернемся к дроби из первого примера: .

Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь:

?

Здесь в знаменателе у нас степени, или, математическим языком, кратные множители. Кроме того, есть неразложимый на множители квадратный трехчлен  

(легко убедиться, что дискриминант уравнения  отрицателен, поэтому на множители этот трехчлен никак не разложить). Что делать? Будет ли разложение в сумму элементарных дробей будет выглядеть здесь наподобие  с неизвестными коэффициентами A, B и C вверху, или как -то по-другому?

Пример 3

Представить функцию

в виде суммы элементарных дробей с неизвестными коэффициентами.

Шаг 1. Проверяем, правильная ли у нас дробь? Старшая степень числителя – 2; старшая степень знаменателя - 8. Так как 2<8, то дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен  не раскладывается в произведение по указанным выше причинам. Ну и ладушки. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей. В данном случае разложение имеет вид:

Смотрим на наш знаменатель: .

При разложении подобной дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени, в нашем случае - (x+2), то вверху ставим неопределенный коэффициент (в нашем случае - D). Примеры №№ 1, 2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель xn, то раскладывать нужно так:

,

– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере присутствуют два кратных множителя: x3 и (x+3)2. Еще раз взгляните на приведенное разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае: x2+2x+13), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае: Gx+H, с неопределенными коэффициентами: G и H). На самом деле, есть еще 4-ый случай, но о нём умолчим, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию

в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл

.

Шаг 1. Очевидно, что дробь является правильной, так как 2<3.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов .

Раскладываем знаменатель на множители, используя формулу сокращенного умножения

.

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

.

Обратите внимание, что многочлен  неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию Bx+C с неизвестными коэффициентами, а не просто одну буковку. Приводим сумму дробей к общему знаменателю:

.

Приравниваем числители: .

Составим и решим систему:

.

(1) Из первого уравнения выражаем B и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами A, B, C.

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей.

(3) Еще раз используем свойства линейности.

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

А вот вам еще пара примеров для самостоятельного решения, один похожий, другой – труднее.

Пример 6

Найти неопределенный интеграл

.

Пример 7

Найти неопределенный интеграл

.

Интегрирование неправильной дробно-рациональной функции

Перейдем к рассмотрению случая, когда старшая степень числителя больше либо равна старшей степени знаменателя.

Пример 8

Найти неопределенный интеграл

.

Совершенно очевидно, что данная дробь является неправильной, так как 4>3.

Основной метод решения интеграла с неправильной дробно-рациональной функций – это деление числителя на знаменатель. Да-да, делить будем столбиком, как самые обычные числа в школе.

Напоминаю алгоритм. Сначала рисуем «заготовку» для деления:

.

ВСЕ недостающие степени (и (или) свободные члены) без пропусков записываем в ОБОИХ многочленах с нулевыми коэффициентами.

Теперь маленькая задачка: на какой множитель нужно умножить , чтобы получить ? Очевидно, что на :

Далее умножаем  сначала на , потом – на , потом – на , потом – на 0 и записываем результаты слева:

Проводим черточку и производим вычитание (из верха вычитаем низ):

Старшая степень остатка  равна двум, старшая степень делителя  – больше, она равна трём, значит, больше разделить не удастся. Если бы изначально у нас был в числителе многочлен пятой степени, то алгоритм деления увеличился бы на один шаг.

Итак, наше решение принимает следующий вид:

Делим числитель на знаменатель:

.

(1) Что дало деление? Много хорошего: теперь у нас два слагаемых, первое интегрируется совсем просто, а второе – правильная дробь, которую мы решать уже умеем.

После деления всегда желательно выполнять проверку.

В рассматриваемом примере можно привести к общему знаменателю выражение

,

и в результате получится в точности исходная неправильная дробь

.

(2) От первого слагаемого сразу берем интеграл. Знаменатель дроби раскладываем на множители

Дальше всё идет по накатанной схеме:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

.

Готово.

И, наконец, заключительный пример для самостоятельного решения. Он очень интересен, рекомендуем всем!

Пример 9

Найти неопределенный интеграл

.

Заметим, что во всех примерах урока в ходе решения систем у нас получались «хорошие» целые коэффициенты A, B и C. Это происходило по той причине, что почти все интегралы были взяты из сборника задач по высшей математике для экономистов. На практике же часто будут появляться разные нехорошести.

Таким образом, если в ходе решения интеграла от дробно-рациональной функции у Вас получаются дробные значения коэффициентов A, B, C,…, то в этом нет ничего страшного, ситуация даже обыденна.

Решения и ответы:

Пример 2: Решение:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

;

; ;

.

Комментарий. В правой части у нас нет слагаемого с x2, поэтому в первом уравнении системы ставим справа ноль.

.

Пример 4: Решение:

Шаг 1. Проверяем, правильная ли у нас дробь?

Старшая степень числителя - 6. Старшая степень знаменателя - 8. Так как 6<8, то дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Множитель (x2+4) разложить нельзя, а вот (x2-4) – можно:

.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.

В данном случае, разложение имеет следующий вид:

Пример 6: Решение:

.

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

.

.

.

Пример 7: Решение:

.

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

.

.

Пример 9: Решение:

(1) Здесь неправильная дробь, поскольку старшие степени числителя и знаменателя равны: 3 = 3. Для того чтобы разделить числитель на знаменатель придётся временно раскрыть скобки в знаменателе.

(2)-(3) Теперь можно разделить числитель на знаменатель , но делать этого… я не буду. Можно поступить хитрее. Прибавим и вычтем из числителя выражение: (-x2-x+1).

(4) От первого слагаемого сразу берем интеграл. Знаменатель оставшейся, уже правильной, дроби снова записываем в виде произведения множителей. Тут я немного сокращено разложение, надеюсь, всем понятно, что .

Далее очевидно…

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

.

.

8.1.10. Интегрирование корней (иррациональных функций). Примеры решений

Интегрирование иррациональных функций можно изучать уже при некоторых знаниях и навыках решения неопределенного интеграла. Такие образом, если Вы чайник, и за плечами всего десяток вычисленных интегралов, да и с методом замены переменной в неопределенном интеграле не очень, то лучше начать со статьи Неопределенный интеграл. Примеры решений. Хотя, не пугаемся, не разбегаемся – простейшие примеры с квадратными корнями, думаем, будут понятны широкому кругу студентов. Весь материал мы постараемся изложить максимально подробно и максимально просто.

Мы разберем простейшие неопределенные интегралы от иррациональных функций, чуть более громоздкие, чем были до сих пор (с разными корнями), и закончится повествование биномиальными интегралами, кои уже являются немного дебрями интегралов.

Интегралы от  корней. Типовые методы и приемы решения

Вспоминаем счастливые школьные годы. Пионеры на уроках математики, приступая к изучению корней, в первую очередь знакомились с квадратным корнем. Мы пойдем тем же путем.

Пример 1

Найти неопределенный интеграл

.

Анализируя подынтегральную функцию, приходишь к печальному выводу, что она совсем не напоминает табличные интегралы. Вот если бы всё это добро находилось в числителе – было бы просто. Или бы корня внизу не было. Или многочлена. Никакие методы интегрирования дробей тоже не помогают. Что делать?

Основной приём решения иррациональных интегралов – это замена переменной, которая избавит нас от ВСЕХ корней в подынтегральной функции.

Отметим, что эта замена немного своеобразная, ее техническая реализация отличается от «классического» способа замены, который рассмотрен на уроке Метод замены в неопределенном интеграле.

В данном примере нужно провести замену x = t2, то есть, вместо «икса» под корнем у нас окажется t2. Почему замена именно такая? Потому что , и в результате замены корень пропадёт.

Если бы в подынтегральной функции вместо квадратного корня у нас находился , то мы бы провели замену . Если бы там был , то провели бы  и так далее.

Хорошо,  у нас превратится в . Что произойдет с многочленом ? Сложностей нет: если , то .

Осталось выяснить, во что превратится дифференциал . Делается это так:

Берем нашу замену  и навешиваем дифференциалы на обе части:

(распишем максимально подробно).

Оформление решения должно выглядеть примерно так:

.

Проведем замену: .

.

(1) Проводим подстановку после замены (как, что и куда, уже рассмотрено).

(2) Выносим константу за пределы интеграла. Числитель и знаменатель сокращаем на t.

(3) Получившийся интеграл является табличным, готовим его для интегрирования, выделяя квадрат.

(4) Интегрируем по таблице, используя формулу

.

(5) Проводим обратную замену. Как это делается? Вспоминаем, от чего плясали: если , то .

Пример 2

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то так получилось, что в Примерах 1, 2 «голый» числитель с одиноким дифференциалом . Исправим ситуацию.

Пример 3

Найти неопределенный интеграл

.

Предварительный анализ подынтегральной функции опять показывает, что лёгкого пути нет. А поэтому нужно избавляться от корня.

Проведем замену: .

За  обозначаем ВСЁ выражение под корнем. Замена из предыдущих примеров  здесь не годится (точнее, сделать-то её можно, но это не избавит нас от корня).

Навешиваем дифференциалы на обе части:

С числителем разобрались. Что делать с  в знаменателе?

Берем нашу замену  и выражаем из неё: .

Если , то .

(1) Проводим подстановку в соответствии с выполненной заменой.

(2) Причесываем числитель. Константу здесь я предпочел не выносить за знак интеграла (можно делать и так, ошибкой не будет)

(3) Раскладываем числитель в сумму. Еще раз настоятельно рекомендуем ознакомиться с первым параграфом урока Интегрирование некоторых дробей. Канители с разложением числителя в сумму в иррациональных интегралах будет предостаточно, очень важно отработать это прием.

(4) Почленно делим числитель на знаменатель.

(5) Используем свойства линейности неопределенного интеграла. Во втором интеграле выделяем квадрат  для последующего интегрирования по таблице.

(6) Интегрируем по таблице. Первый интеграл совсем простой, во втором используем табличную формулу высокого логарифма .

(7) Проводим обратную замену. Если мы проводили замену , то, обратно: .

Пример 4

Найти неопределенный интеграл

.

Это пример для самостоятельного решения, если вы невнимательно проработали предыдущие примеры, то допустите ошибку! Полное решение и ответ в конце урока.

Принципиально так же решаются интегралы с несколькими одинаковыми корнями, например

,  и т.д. А что делать, если в подынтегральной функции корни разные?

Пример 5

Найти неопределенный интеграл

Вот и пришла расплата за голые числители. Когда встречается такой интеграл, обычно становится страшно. Но страхи напрасны, после проведения подходящей замены подынтегральная функция упрощается. Задача состоит в следующем: провести удачную замену, чтобы сразу избавиться от ВСЕХ корней.

Когда даны разные корни, удобно придерживаться определённой схемы решения.

Сначала выписываем на черновике подынтегральную функцию, при этом все корни представляем в виде :

.

Нас будут интересовать знаменатели степеней:

Записываем эти знаменатели: 2, 3, 3.

Теперь нужно найти наименьшее общее кратное чисел 2, 3, 3 – это такое число, чтобы оно делилось и на 2 и на 3 (в данном случае), кроме того, это число должно быть как можно меньше.

Очевидно, что наименьшим общим кратным является число 6. Оно делится и на 2 и на 3, кроме того, меньше шестерки ничего не придумать.

Как многие уже догадались, замена в рассматриваемом интеграле будет следующей: .

Оформляем решение:

Проведем замену:

(1) Производим подстановку.

(2) Избавляемся от корней. Выносим константу за знак интеграла. Сокращаем числитель и знаменатель на .

(3) Сокращаем числитель и знаменатель еще на .

(4) Раскладываем числитель в сумму (как это сделать, уже неоднократно упоминалось).

(5) Почленно делим числитель на знаменатель.

(6) Интегрируем по таблице.

(7) Проводим обратную замену. Если , то, обратно: . В ходе обратной замены некоторые корни лучше сразу сократить (обычно это делается устно). В рассмотренном примере сокращение корней встретилось в первом слагаемом:

Как видите, особых сложностей нет, несмотря на то, что сначала интеграл показался трудным и страшным.

Пример 6

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Интегрирование биномиальных интегралов

Так называемый биномиальный интеграл имеет следующий вид:

.

Такой интеграл берётся в трёх случаях.

1) Случай первый. Самый лёгкий. Если степень  – целое число. Например:

.

Представим интеграл в стандартном виде (это лучше делать на черновике):

.

Мы видим, что степень  – целая, а, значит, действительно имеет место первый случай. На самом деле биномиальный интеграл первого типа решается практически так же, как интегралы в примерах 5, 6, поэтому приводить почти такие же решения нет смысла. Просто покажем, какую замену здесь нужно провести. Смотрим на знаменатели дробей в показателях степеней:

.

Записываем знаменатели: 2, 5. Находим наименьшее общее кратное этих чисел. Очевидно, это 10: оно делится и на 2 и на 5, кроме того – десятка самая маленькая в этом смысле.

После замены  все корни гарантировано пропадут. Повторюсь, примеров для первого случая не будет, так как они очень похожи на недавно разобранные интегралы.

2) Случай второй для биномиальных иноегралов

.

Если  – целое число, то необходимо провести замену ,

где  – знаменатель дроби .

Сейчас во всём разберемся.

Пример 7

Найти неопределенный интеграл

.

Представим интеграл в стандартном виде :

.

Вообще говоря, формально правильнее было записать , но перестановка слагаемых в скобках не играет никакой роли.

Выписываем степени:

, , .

Сразу проверяем, не относится ли наш интеграл к первому случаю?

– целое? Нет.

Проверяем второй случай:

– целое.

Значит, у нас второй случай.

Согласно правилу для второго случая, необходимо провести замену , где  – знаменатель дроби p. В рассматриваемом примере p = 1/2, и знаменатель этой дроби равен «двойке». Таким образом, чтобы гарантировано избавиться от корня, нужно провести замену .

Оформляем решение:

.

Проведем замену .

После этой подстановки с корнем у нас будет всё в порядке: .

Теперь нужно выяснить, во что превратится оставшаяся часть подынтегрального выражения ?

Берем нашу замену  и навешиваем дифференциалы на обе части:

.

Но вот незадача, у нас , а нам нужно выразить .

Умножаем обе части на :

Таким образом: . Уже лучше, но хотелось бы выразить  только через , а в правой части  – «икс» в квадрате внизу. Что делать? Вспоминаем нашу замену  и выражаем из неё .

Окончательно:

.

Головоломно, но, увы, другие алгоритмы еще запутаннее.

Собственно, всё готово, продолжаем решение:

(1) Проводим подстановку согласно замене.

(2) Записываем компактно числитель.

(3) Раскладываем знаменатель в сумму.

(4) Почленно делим числитель на знаменатель.

(5) Интегрируем по таблице.

(6) Проводим обратную замену: если , то .

Пример 8

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Полное решение и ответ в конце урока.

3) Случай третий. Самый сложный

.

Если  – целое число, то необходимо провести замену ,

где  – знаменатель дроби .

Пример 9

Найти неопределенный интеграл

.

Представим интеграл в стандартном виде :

.

Выписываем степени и коэффициенты:

, , , , .

1) Не относится ли наш интеграл к первому случаю?

– целое? Нет.

2) Проверяем второй случай:

; – целое? Нет.

3)  – целое! Значит, у нас третий случай.

Согласно правилу для третьего случая, необходимо провести замену , где  – знаменатель дроби p. В рассматриваемом примере p = 1/2, и знаменатель этой дроби равен опять же «двойке». Коэффициенты (будьте внимательны) , .

Таким образом, чтобы гарантировано избавиться от корня, нужно провести замену .

Оформляем решение:

Проведем замену: .

Разбираемся с корнем. Это труднее, чем в предыдущих случаях.

Сначала из нашей замены  нужно выразить «икс квадрат»:

.

Теперь подставляем  под корень:

.

На втором этапе выясняем, во что превратится оставшаяся часть подынтегрального выражения . Берем нашу замену  и навешиваем дифференциалы на обе части:

Опять проблема, в правой части у нас есть «икс», а нам нужно всё выразить через «тэ».

Берем ранее найденное выражение

и выражаем .

Окончательно:

.

В итоге мы выразили через «тэ» и  и , всё готово для продолжения решения:

(1) Проводим подстановку согласно замене.

(2) Упрощаем выражение.

(3) Меняем знак в знаменателе и выносим минус за пределы интеграла (можно было не делать, но так удобнее).

(4) Проводим обратную замену. В третьем случае биномиального интеграла это тоже труднее. Если изначальная замена , то .

(5) Избавляемся от четырехэтажности в логарифме.

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Подсказка: здесь .

Полное решение и ответ только для выживших студентов.

Что делать, если биномиальный интеграл

 

не подходит ни под один из рассмотренных трех случаев? Это грустный четвертый случай. Такой интеграл является неберущимся.

Есть другие разновидности интегралов с корнями, например, когда корень является аргументом какой-либо функции. Или под корнем находится дробь. Найти такие примеры можно на странице Сложные интегралы.

Решения и ответы:

Пример 2: Решение:

Проведем замену:

Пример 4: Решение:

Проведем замену: . Навешиваем дифференциалы на обе части:

.

.

.

Вот почему дифференциалы нужно именно НАВЕШИВАТЬ на обе части и добросовестно раскрывать эти дифференциалы. Немало чайников здесь формально напишет  и допустит ошибку.

Пример 6: Решение:


Замена: 

Примечание: на самом деле данное решение не совсем рационально. Перед тем, как раскладывать числитель в сумму, лучше было поменять у знаменателя знак и сразу вынести минус за пределы интеграла:

 – в таком виде подбирать числитель значительно проще.

Пример 8: Решение:

, , ,

1)  – целое? Нет. 2)  – целое, значит у нас второй случай. Замена: , ,

Если , то .

Окончательно: .

Пример 10: Решение:

, , , , .

1)  – целое? Нет.

2)  – целое? Нет.

3)  – целое!

Замена: , в данном случае:

.

Разбираемся с корнем. Из :

.

Тогда:

.

Оставшаяся часть подынтегрального выражения: 

.

Чему равно ?

.

Окончательно:

Обратная замена. Если  , то .

8.1.11. Сложные интегралы

Данная статья завершает тему неопределенных интегралов. Предполагается, что читатель сего текста хорошо подготовлен и умеет применять основные приемы интегрирования. Людям, которые не очень уверенно разбираются в интегралах, следует обратиться к самому первому уроку – Неопределенный интеграл. Примеры решений, где можно освоить тему практически с нуля. Более опытные студенты могут ознакомиться с приемами и методами интегрирования, которые в этом курсе еще не встречались.

Какие интегралы будут рассмотрены?

Сначала мы рассмотрим интегралы с корнями, для решения которых последовательно используется замена переменной и интегрирование по частям. То есть, в одном примере комбинируются сразу два приёма. И даже больше.

Затем мы познакомимся с интересным и оригинальным методом сведения интеграла к самому себе. Данным способом решается не так уж мало интегралов.

Третьим номером программы пойдут такие интегралы от дробей, которых не было в предыдущих рахдела.

В-четвертых, будут разобраны дополнительные интегралы от тригонометрических функций. В частности, существуют методы, которые позволяют избежать трудоемкой универсальной тригонометрической подстановки.

И в заключении рассмотрим интеграл от корня, под которым находится дробь, а в числителе и знаменателе дроби – линейные функции.

Последовательная замена переменной и интегрирование по частям

Пример 1

Найти неопределенный интеграл

. Подынтегральная функция представляет собой арктангенс, под которым находится кубический корень. Первая же мысль, которая приходит в голову – избавиться бы от этого корня. Данный вопрос решается путем замены переменной, сама техника замены специфична, и она подробно рассмотрена на уроке Интегралы от иррациональных функций.

Проведем замену:

. После такой замены у нас получится вполне симпатичная вещь: .

Осталось выяснить, во что превратится . Навешиваем дифференциалы на обе части нашей замены:

.

И, само собой, раскрываем дифференциалы:

.

На чистовике решение кратко записывается примерно так:

.

Проведем замену:

.

.

В результате замены получим интеграл, который интегрируется по частям:

.

(1) Выносим (1/3) за скобки. К оставшемуся интегралу применяем прием, который рассмотрен в первых примерах урока статьи Интегрирование некоторых дробей.

(2) В подынтегральной функции почленно делим числитель на знаменатель.

(3) Используем свойство линейности неопределенного интеграла. В последнем интеграле сразу подводим функцию под знак дифференциала.

(4) Берём оставшиеся интегралы. Обратите внимание, что здесь в логарифме можно использовать скобки, а не модуль, так как .

(5) Проводим обратную замену, выразив из прямой замены  «тэ»: .

Как видите, в ходе решения пришлось использовать даже больше двух приемов решения, таким образом, для расправы с подобными интегралами нужны уверенные навыки интегрирования и не самый маленький опыт.

На практике, конечно же, чаще встречается квадратный корень, вот три примера для самостоятельного решения.

Пример 2

Найти неопределенный интеграл

.

Пример 3

Найти неопределенный интеграл

.

Пример 4

Найти неопределенный интеграл

.

Данные примеры однотипны, поэтому полное решение в конце статьи будет только для Примера 2, в Примерах 3-4 – одни ответы. Какую замену применять в начале решений - очевидно. Но не всегда, когда под арктангенсом, синусом, косинусом, экспонентой и др. функциями находится корень из линейной функции, приходится применять сразу несколько методов. В ряде случаев удается «легко отделаться», то есть сразу после замены получается простой интеграл, который элементарно берётся. Самым легким из предложенных выше заданий является Пример 4, в нём после замены получается относительно несложный интеграл.

Метод сведения интеграла к самому себе

Остроумный и красивый метод. Немедленно рассмотрим классику жанра:

Пример 5

Найти неопределенный интеграл

.

Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе, не сложно. Если знаешь как.

Обозначим рассматриваемый интеграл латинской буквой I и начнем решение:

.

Интегрируем по частям:

.

.

(1) Готовим подынтегральную функцию для почленного деления.

(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишем подробнее:

.

(3) Используем свойство линейности неопределенного интеграла.

(4) Берём последний интеграл («длинный» логарифм).

Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!

Приравниваем начало и конец:

Переносим I в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Или:

Константу C, строго говоря, надо было добавить ранее, но мы приписали её в конце. Настоятельно рекомендуем прочитать в примечании, в чём тут строгость:

Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу  можно переобозначить через . Почему можно переобозначить? Потому что  всё равно принимает любые значения, и в этом смысле между константами  и  нет никакой разницы.

В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях. Там будем строгими, особенно при определении частных решений. А здесь такая вольность допускается только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.

Пример 6

Найти неопределенный интеграл

.

Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!

Если под квадратным корнем находится квадратный трехчлен, или его часть, то решение в любом случае сводится к двум разобранным Примерам 5 и 6.

Например, рассмотрим интеграл

.

Всё, что нужно сделать – это тождественными преобразованиями предварительно выделить полный квадрат:

.

Далее проводится линейная замена, которая обходится «без всяких последствий»:

, в результате чего получается интеграл . Нечто знакомое, правда (см. Пример 5)?

Или такой пример, с квадратным двучленом:

Выделяем полный квадрат:

И, после линейной замены , получаем интеграл , который также решается по уже рассмотренному алгоритму.

Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:

– интеграл от экспоненты, умноженной на синус;

– интеграл от экспоненты, умноженной на косинус.

В этих перечисленных интегралах по частям придется интегрировать уже два раза:

Пример 7

Найти неопределенный интеграл

.

Подынтегральная функция – экспонента, умноженная на синус.

Дважды интегрируем по частям и сводим интеграл к самому себе:

В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим  в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.

Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За u мы обозначили экспоненту. Возникает вопрос, именно ли экспоненту всегда нужно обозначать за u? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы, что обозначать за u, можно было пойти другим путём:

.

Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).

То есть, за u можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.

Пример 8

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за u, экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.

Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например: 

.

Попутаться в подобном интеграле придется многим. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.

На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Интегрирование сложных дробей

Продолжаем рассматривать интегралы от дробей и корней. Не все они суперсложные, просто по тем или иным причинам примеры были немного «не в тему» в других статьях.

Пример 9

Найти неопределенный интеграл

.

В знаменателе под корнем находится квадратный трехчлен плюс за пределами корня «довесок» в виде «икса». Интеграл такого вида решается с помощью стандартной замены.

Решаем:

.

Замена тут простая:

Смотрим на жизнь после замены:

(1) После подстановки приводим к общему знаменателю слагаемые под корнем.

(2) Выносим  из-под корня.

(3) Числитель и знаменатель сокращаем на . Заодно под корнем мы переставили слагаемые в удобном порядке. При определенном опыте шаги (1), (2) можно пропускать, выполняя прокомментированные действия устно.

(4) Полученный интеграл, как вы помните, решается методом выделения полного квадрата. Выделяем полный квадрат.

(5) Интегрированием получаем заурядный «длинный» логарифм.

(6) Проводим обратную замену. Если изначально , то обратно: .

(7) Заключительное действие направлено на прическу результата: под корнем снова приводим слагаемые к общему знаменателю и выносим из-под корня .

Пример 10

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. Здесь к одинокому «иксу» добавлена константа, и замена почти такая же:

.

Единственное, что нужно, - это дополнительно выразить «икс» из проводимой замены: 

.

Полное решение и ответ в конце урока.

Иногда в таком интеграле под корнем может находиться квадратный двучлен, это не меняет способ решения, оно будет даже еще проще. Почувствуйте разницу:

Пример 11

Найти неопределенный интеграл

.

Пример 12

Найти неопределенный интеграл

.

Краткие решения и ответы в конце урока. Следует отметить, что Пример 11 является в точности биномиальным интегралом, решение которого рассматривалось на уроке Интегралы от иррациональных функций.

Интеграл от неразложимого в знаменателе многочлена 2-ой степени в степени

Более редкий, но, тем не менее, встречающий в практических примерах вид интеграла.

Пример 13

Найти неопределенный интеграл

.

В знаменателе подынтегральной функции находится неразложимый на множители квадратный двучлен. Подчеркиваем, что неразложимость на множители является существенной особенностью. Если многочлен раскладывается на множители, то всё намного понятнее, например:

– и далее применяется стандартный метод неопределенных коэффициентов.

Вернёмся к примеру со счастливым номером 13. Этот интеграл тоже из разряда тех, с которыми можно изрядно промучиться, если не знаешь, как решать.

Решение начинается с искусственного преобразования:

Как почленно разделить числитель на знаменатель, думаю, уже все понимают.

Полученный интеграл берётся по частям:

Готово.

Для интеграла вида

,

где (k ≥ 2) – натуральное число, выведена рекуррентная формула понижения степени:

, где

; –  это интеграл степенью ниже на 1.

Убедимся в справедливости данной формулы для интеграла из Примера 13:

.

В данном случае: k = 2; a2 = 1; используем формулу:

Как видите, ответы совпадают.

Пример 14

Найти неопределенный интеграл

.

Это пример для самостоятельного решения. В образце решения дважды последовательно использована вышеупомянутая формула.

Если под степенью находится неразложимый на множители квадратный трехчлен, то решение сводится к двучлену путем выделения полного квадрата, например:

.

Далее следует «безболезненная» линейная замена

и получается знакомый интеграл 

.

Что делать, если дополнительно в числителе есть многочлен? В этом случае используется метод неопределенных коэффициентов, и подынтегральная функция раскладывается в сумму дробей. Если такой интеграл встретится, смотрите учебник – там всё просто.

Интегрирование сложных тригонометрических функций

На уроке Интегралы от тригонометрических функций мы разобрали интеграл от тангенса в квадрате. В том примере для нахождения интеграла мы применяли тригонометрическую формулу

.

Интеграл от тангенса в четвертой, пятой степени (редко в более высоких степенях) решается с помощью этой же формулы!

Пример 15

Найти неопределенный интеграл

.

Идея решения подобных интегралов состоит в том, чтобы с помощью формулы  «развалить» исходный интеграл на несколько более простых интегралов:

(1) Готовим подынтегральную функцию к применению формулы.

(2) Для одного из множителей используем формулу

(3) Раскрываем скобки и сразу же используем свойство линейности неопределенного интеграла.

(4) В первом интеграле используем метод подведения функции под знак дифференциала, во втором интеграле еще раз используем формулу

, в данном случае .

(5) Берём все три интеграла и получаем ответ.

Пример 16

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Для котангенса существует аналогичная формула:

. Полное решение и ответ в конце урока.

Если возникли затруднения или недопонимание, следует вернуться к уроку Интегралы от тригонометрических функций. На вышеупомянутом уроке мы рассматривали универсальную тригонометрическую подстановку для решения определенного вида интегралов от тригонометрических функций. Недостаток универсальной тригонометрической подстановки заключается в том, что при её применении часто возникают громоздкие интегралы с трудными вычислениями. И в ряде случаев универсальной тригонометрической подстановки можно избежать! Рассмотрим еще один канонический пример - интеграл от единицы, деленной на синус:

Пример 17

Найти неопределенный интеграл

.

Здесь можно использовать универсальную тригонометрическую подстановку и получить ответ, но существует более рациональный путь. Приведём это решение с комментариями к каждому шагу:

(1) Используем тригонометрическую формулу синуса двойного угла

.

(2) Проводим искусственное преобразование: В знаменателе делим и умножаем на

.

(3) По известной формуле в знаменателе превращаем дробь в тангенс.

(4) Подводим функцию под знак дифференциала.

(5) Берём интеграл.

Пример 18

Найти неопределенный интеграл

.

Указание: Самым первым действием следует использовать формулу приведения 

и аккуратно провести аналогичные предыдущему примеру действия.

Пример 19

Найти неопределенный интеграл

.

Ну, это совсем простой пример. Полные решения и ответы в конце урока.

Думаем, теперь ни у кого не возникнет проблем с интегралами:

и т.п.

В чём состоит идея метода? Идея состоит в том, чтобы с помощью тождественных преобразований и тригонометрических формул организовать в подынтегральной функции только тангенсы и производную тангенса

.

То есть, речь идет о замене:

.

В Примерах 17-19 мы фактически и применяли данную замену, но интегралы были настолько просты, что дело обошлось эквивалентным действием – подведением функции под знак дифференциала.

Примечание: аналогичные рассуждения можно провести и для котангенса.

Существует и формальное правило для применения вышеуказанной замены:

Если сумма степеней косинуса и синуса – целое отрицательное число, то интеграл можно свести к тангенсам и его производной.

Для интеграла  – целое отрицательное число.

Для интеграла  – целое отрицательное число.

Для интеграла  – целое отрицательное число.

Рассмотрим пару более содержательных примеров на это правило:

Пример 20

Найти неопределенный интеграл

.

Сумма степеней синуса и косинуса : 2 – 6 = –4 – целое отрицательное число, значит, интеграл можно свести к тангенсам и его производной:

(1) Преобразуем знаменатель.

(2) По известной формуле получаем .

(3) Преобразуем знаменатель.

(4) Используем формулу

.

(5) Подводим функцию под знак дифференциала.

(6) Проводим замену . Более опытные студенты замену могут и не проводить, но все-таки лучше заменить тангенс одной буквой – меньше риск запутаться.

Далее берётся простой интеграл и проводится обратная замена.

Пример 21

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

Пример 22

Найти неопределенный интеграл

.

В этом интеграле изначально присутствует тангенс, что сразу наталкивает на уже знакомую мысль:

.

Пара творческих примеров для самостоятельного решения:

Пример 23

Найти неопределенный интеграл

.

Пример 24

Найти неопределенный интеграл

.

Да, в них, конечно, можно понизить степени синуса, косинуса, использовать универсальную тригонометрическую подстановку, но решение будет гораздо эффективнее и короче, если его провести через тангенсы. Полное решение и ответы в конце урока.

Переходим к заключительному пункту путешествия в мир сложных интегралов:

Интеграл от корня из дроби

Интеграл, который мы рассмотрим, встречается достаточно редко, но я буду очень рад, если единственный пример данного параграфа вам поможет.

Корнями всё начиналось, корнями и закончится. Рассмотрим неопределенный интеграл:

, где a, b, c, d – числа.

Считаем, что все эти числа и коэффициенты не равны нулю.

В подынтегральной функции у нас находится корень, а под корнем – дробь, в числителе и знаменателе которой располагаются линейные функции.

Метод стар – необходимо избавиться от корня. Стар и уныл, но сейчас станет веселее, поскольку придется проводить непростую замену.

Замена, с помощью которой мы гарантированно избавимся от корня, такова:

.

Теперь нужно выразить «икс» и найти, чему равен дифференциал dx.

Выражаем «икс»:

Теперь найдем дифференциал:

Зачем были эти нелепые скучные телодвижения?

Мы вывели готовые формулы, которыми можно пользовать при решении интеграла вида

!

Формулы замены таковы:

.

Заключительный пример:

Пример 25

Найти неопределенный интеграл

.

Проведем замену: 

.

В данном примере: a =-1, b = 2, c = 3, d = 1. Тогда для dx имеем:

.

Таким образом:

.

Такой интеграл, кстати, уже фигурировал в Примере 13. Интегрируем по частям:

Проведем обратную замену. Если изначально

,

то обратно:

.

Преобразуем далее:

.

Некоторым страшно, а я это продифференцировал, ответ верный!

Иногда встречаются интегралы вида

,  ,

но это нужно быть либо слишком умным, либо попасть под раздачу.

Идея та же – избавиться от корня, причем во втором случае, как все догадались, следует проводить подстановку

.

и самостоятельно выводить, чему будет равняться дифференциал dx.

Теперь вам практически любой интеграл по силам, успехов!

Решения и ответы:

Пример 2: Решение:

.

Проведем замену:

Интегрируем по частям:

Пример 3: Ответ:

.

Пример 4: Ответ:

.

Пример 6: Решение:

.

Интегрируем по частям:

Таким образом:

В результате:

Пример 8: Решение:

Дважды интегрируем по частям и сводим интеграл к самому себе:

Таким образом:

Пример 10: Решение:

.

Проведем замену:

Пример 11: Решение:

Замена:

.

Пример 12: Решение:

Замена:

.

Пример 14: Решение:

Дважды используем рекуррентную формулу

Пример 16: Решение:

Пример 18: Решение:

.

Используем формулу приведения:

 

и формулу двойного угла:

.

Далее имеем

Пример 19: Решение:

Пример 21: Решение: –3 – 3 = –6 – целое отрицательное число, значит преобразуем

Пример 23: Решение:

Пример 24: Решение:

.

8.2. Определенный интеграл. Примеры решений

Для того, чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить соответствующие неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того, чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому, если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще не совсем закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом?

Прибавились пределы интегрирования.

Нижний предел интегрирования стандартно обозначается буквой a.

Верхний предел интегрирования стандартно обозначается буквой b.

Отрезок [a; b] включает граничные точки и называется отрезком интегрирования.

Что такое определенный интеграл? Можно посмотреть в учебниках про диаметр разбиения отрезка, предел интегральных сумм и т. д., но урок носит практический характер. Поэтому скажем, что определенный интеграл – это, прежде всего, самое что ни на есть обычное ЧИСЛО.

Есть ли у определенного интеграла геометрический смысл? Есть. И очень хороший. Самая популярная задача вычисления определённого интеграла – вычисление площади с помощью определенного интеграла.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число, равное приращению первообразной функции на отрезке [a; b].

Как решить определенный интеграл? С помощью знакомой со школы формулы Ньютона-Лейбница:

.

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию F(X) (неопределенный интеграл). Обратите внимание, что константа C в определенном интеграле никогда не добавляется.

Обозначение  является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись

?

Это подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: F(b).

3) Подставляем значение нижнего предела в первообразную функцию: F(a).

4) Рассчитываем (без ошибок!) разность F(b)-F(a), то есть, находим число, равное приращению первообразной (от подынтегральной) функции на отрезке [a; b].

Готово.

Всегда ли существует определенный интеграл? Нет, не всегда существует всё, что мы напишем в виде определённого интеграла. Например, интеграла

не существует, поскольку отрезок интегрирования  не входит в область определения подынтегральной функции и значения под квадратным корнем не могут быть отрицательными. А вот менее очевидный пример:

.

Такого интеграла тоже не существует на всём отрезке [-2; 3], так как в точках

,

этого отрезка подынтегральная функция f(x) = tg(x) не существует.

Для того, чтобы определенный интеграл существовал на данном отрезке, необходимо, чтобы подынтегральная функция была непрерывной на отрезке интегрирования.

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования. Бывает так, что подолгу мучаешься с нахождением трудной первообразной, а когда наконец-то ее находишь, то ещё и ломаешь голову над вопросом: «что за ерунда получилась?». Например, если получилось примерно так:

???!!!

то нельзя подставлять отрицательные числа под корень! Если для решения в контрольной работе, на зачете или экзамене Вам предложен несуществующий интеграл вроде

,

то нужно дать ответ, что интеграла не существует и обосновать – почему.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл, коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования? Может, и такая ситуация реально встречается на практике. Интеграл

преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла.

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак:

Например, в определенном интеграле перед интегрированием

целесообразно поменять пределы интегрирования на «привычный» порядок:

.

В таком виде интегрировать значительно удобнее.

Как и для неопределенного интеграла, для определенного интеграла справедливы свойства линейности:

 

Это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования, правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям: .

Пример 1

Вычислить определенный интеграл

.

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы

.

(3) Используем формулу Ньютона-Лейбница

.

Сначала подставляем в x3 верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

Пример 2

Вычислить определенный интеграл

.

Это пример для самостоятельно решения, решение и ответ в конце урока.

Пример 3

Вычислить определенный интеграл

.

Решение:

.

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница.

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряем на третьем слагаемом:

,

т. к. очень часто машинально пишут

.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, так:

.

Здесь устно использованы правила линейности, устно проинтегрированы табличные интегралы. Получилась всего одна скобка с отчёркиванием пределов:

(в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию мы сначала подставили 4, затем –2, опять же выполнив все действия в уме.

При втором способе существует повышенный риск допустить ошибку в вычислениях, поэтому студенту-чайнику лучше использовать первый способ, чтобы не терять знаки.

Несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная.

находится в одной скобке.

Совет: перед тем, как использовать формулу Ньютона-Лейбница, полезно провести проверку: а сама-то первообразная найдена правильно?

Так, применительно к последнему рассматриваемому примеру: перед тем, как в первообразную функцию подставлять верхний и нижний пределы, желательно на черновике проверить, а правильно ли вообще найден неопределенный интеграл?

Дифференцируем:

.

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден верно. Теперь можно и формулу Ньютона-Лейбница применить. Такая проверка будет не лишней при вычислении любого определенного интеграла.

Пример 4

Вычислить определенный интеграл

.

Это пример для самостоятельно решения. Попробуйте решить его коротким и подробным способами.

8.2.1. Замена переменной в определенном интеграле

Для определенного интеграла справедливы все типы замен, что и для неопределенного интеграла. Таким образом, если с заменами у Вас не очень, следует внимательно ознакомиться с уроком Метод замены в неопределенном интеграле. В этом параграфе единственная новизна состоит в том, как поменять пределы интегрирования. В примерах постараемся привести такие типы замен, которые еще нигде не встречались в курсе.

Пример 5

Вычислить определенный интеграл

.

Главный вопрос здесь в том, как правильно провести замену.

Смотрим в таблицу интегралов и прикидываем, на что у нас больше всего похожа подынтегральная функция? Очевидно, что на длинный логарифм:

.

Но есть одна неувязочка, в табличном интеграле под корнем x2, а в нашем – «икс» в четвёртой степени. Из рассуждений следует и идея замены – неплохо бы нашу четвертую степень как-нибудь превратить в квадрат. Это реально.

Сначала готовим наш интеграл к замене:

Из вышеуказанных соображений совершенно естественно напрашивается замена: t=x2. Таким образом, в знаменателе будет всё хорошо: .

Выясняем, во что превратится оставшаяся часть xdx подынтегрального выражения, для этого находим дифференциал dt:

.

По сравнению с заменой в неопределенном интеграле у нас добавляется дополнительный этап, связанный с необходимостью преобразовать пределы интегрирования.

Находим новые переделы интегрирования.

Это достаточно просто. Смотрим на нашу замену  и старые пределы интегрирования ; .

Сначала подставляем в выражение замены t=x2 нижний предел интегрирования, то есть, ноль:

Потом подставляем в выражение замены t=x2 верхний предел интегрирования, то есть, корень из трёх:

.

Продолжаем решение.

(1) В соответствии с выбранной заменой переменных записываем новый интеграл с новыми пределами интегрирования.

(2) Это простейший табличный интеграл, интегрируем по таблице. Константу (1/2) лучше оставить за скобками (можно этого и не делать), чтобы она не мешалась в дальнейших вычислениях.

Справа отчеркиваем линию с указанием новых пределов интегрирования  – это подготовка для применения формулы Ньютона-Лейбница.

(3) Используем формулу Ньютона-Лейбница.

Ответ стремимся записать в максимально компактном виде, здесь использованы свойства логарифмов.

Ещё одно отличие от неопределенного интеграла состоит в том, что, после того, как мы провели замену и подставили числа, никаких обратных замен проводить не надо.

А сейчас пара примеров для самостоятельного решения.

Какие замены проводить – постарайтесь догадаться самостоятельно.

Пример 6

Вычислить определенный интеграл

.

Пример 7

Вычислить определенный интеграл

.

Это примеры для самостоятельного решения. Решения и ответы в конце урока.

8.2.2. Метод интегрирования по частям в определенном интеграле

Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном интеграле в полной мере справедливы и для определенного интеграла. Плюс только одна деталь: в формуле интегрирования по частям добавляются пределы интегрирования и она принимает вид:

.

Формулу Ньютона-Лейбница здесь необходимо применить дважды: для вычисления произведения uv и, после того, как мы возьмем интеграл

.

Тип интеграла для примера опять подбираем такой, который еще нигде не встречался в курсе. Пример не самый простой, но очень и очень познавательный.

Пример 8

Вычислить определенный интеграл

.

Решаем.

Интегрируем по частям:

У кого возникли трудности с интегралом , загляните на урок Интегралы от тригонометрических функций, там он подробно разобран.

(1) Записываем решение в соответствии с формулой интегрирования по частям.

(2) Для произведения применяем формулу Ньютона-Лейбница. Для оставшегося интеграла используем свойства линейности, разделяя его на два интеграла.

(3) Берем два оставшихся интеграла. Не путаемся в знаках! Интеграл от тангенса также был разобран на уроке Интегралы от тригонометрических функций.

(4) Применяем формулу Ньютона-Лейбница для двух найденных первообразных.

Уважаемый студент, распечатай и сохрани:

Что делать, если дан определенный интеграл, который кажется сложным или не сразу понятно, как его решать?

1) Сначала находим неопределенный интеграл (первообразную функцию). Если на первом же этапе ничего не вышло, дальше переходить к Ньютону и Лейбницем бессмысленно. Путь только один – повышать свой уровень знаний и навыков в решении неопределенных интегралов.

2) Проверяем найденную первообразную функцию дифференцированием. Если она найдена неверно, третий шаг будет напрасной тратой времени.

3) Используем формулу Ньютона-Лейбница. Все вычисления проводим ПРЕДЕЛЬНО ВНИМАТЕЛЬНО – тут самое слабое звено задания.

Интеграл для самостоятельного решения.

Пример 9

Вычислить определенный интеграл

.

Решение и ответ где-то рядом.

Решения и ответы:

Пример 2: Решение:

.

Пример 4: Решение:

.

Пример 6: Решение:

Проведем замену переменной: ,

Новые переделы интегрирования:

Примечания: В рассмотренном интеграле – как раз тот случай, когда уместно применить свойство определенного интеграла

.

Пример 7: Решение:

Замена: .

Новые пределы интегрирования:

Пример 9: Решение:

Интегрируем по частям:

8.2.3. Как вычислить площадь фигуры с помощью определенного интеграла

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу вычисления площади плоской фигуры с помощью определенного интеграла. Наконец-то все ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Неопределенный интеграл. Примеры решений.

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому актуальным вопросом будут также ваши знания и навыки построения чертежей. Как минимум, надо уметь строить прямую, параболу и гиперболу.

Начнем с криволинейной трапеции. Криволинейной трапеция - это плоская фигура, ограниченная графиком некоторой функции  y = f(x),  осью OX  и  линиями x = a; x = b.

Площадь криволинейной трапеции численно равна определенному интегралу

.

У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений мы говорили, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ. То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Рассмотрим определенный интеграл

.

Подынтегральная функция

задает на плоскости кривую (её при желании можно начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Вычислить площадь фигуры, ограниченной линиями , , , .

Это типовая формулировка задания. Важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. С техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.

Выполним чертеж (обратите внимание, что уравнение y = 0  задает ось OX):

Штриховать криволинейную трапецию не будем, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке [-2; 1] график функции y = x2 + 2 расположен над осью OX, поэтому:

.

Ответ: .

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница

,

обратитесь к лекции Определенный интеграл. Примеры решений. После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями  xy = 4, x = 2, x = 4 и осью OX.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью OX?

Пример 3

Вычислить площадь фигуры, ограниченной линиями y = e-x, x = 1 и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью OX, то её площадь можно найти по формуле:

.

В данном случае:

.

Ответ: .

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями y = 2xx2, y = -x.

Решение: Сначала нужно выполнить чертеж. При построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y = 2xx2 и прямой y = -x. Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

.

Значит, нижний предел интегрирования a = 0, верхний предел интегрирования b = 3. Часто выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторимся, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматоматически».

А теперь рабочая формула: 

Если на отрезке [a; b] некоторая непрерывная функция f(x) больше либо равна некоторой непрерывной функции g(x), то площадь соответствующей фигуры можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ.

В рассматриваемом примере очевидно, что на отрезке [0; 3] парабола располагается выше прямой, а поэтому из 2xx2 необходимо вычесть –x.

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой  y = 2xx2 сверху и прямой  y = -x  снизу.

На отрезке  [0; 3]  2xx2 ≥ -x. По соответствующей формуле:

.

Ответ: .

На самом деле, школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. пример №3) – частный случай формулы

.

Поскольку ось OX задается уравнением y = 0, а график функции g(x) расположен ниже оси OX, то

.

А сейчас пара примеров для самостоятельного решения

Пример 5

Найти площадь фигуры, ограниченной линиями

,   .

Пример 6

Найти площадь фигуры, ограниченной линиями

,   .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но, по невнимательности,… найдена площадь не той фигуры. 

Далее, реальный случай:

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике, по невнимательности, нередко решают, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке [-1; 1] над осью OX расположен график прямой y = x+1;

2) На отрезке  [1; 3] над осью OX расположен график гиперболы y = (2/x).

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:  

Пример 8

Вычислить площадь фигуры, ограниченной линиями

,   .

Представим уравнения в «школьном» виде

,   .

и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: b = 1.

Но чему равен нижний предел?! Понятно, что это не целое число, но какое?

Может быть, a=(-1/3)? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что a=(-1/4). А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения графиков

  и   .

Для этого решаем уравнение:

.

, .

Следовательно, a=(-1/3).

Дальнейшее решение тривиально. Главное, не запутаться в подстановках и знаках. Вычисления здесь не самые простые. На отрезке

,   ,

по соответствующей формуле:

Ответ:

В заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями

,   ,   .

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды. Вообще, полезно знать графики всех элементарных функций, а также некоторые значения синуса. Их можно найти в таблице значений тригонометрических функций. В ряде случаев (например, в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия:

– «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке [0; π] график функции  y = sin3x  расположен над осью OX, поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях, можно посмотреть на уроке Интегралы от тригонометрических функций. Отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной  t = cos x,  тогда:

Новые переделы интегрирования:

У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.

.

(4) Здесь мы использовали свойство определенного интеграла

,

расположив пределы интегрирования в «привычном» порядке

Ответ: .

Пример 10

Вычислить площадь фигуры, ограниченной линиями

,   ,   .

Это пример для самостоятельного решения. Полное решение и ответ ниже.

Рассмотрим интересный пример с арккотангенсом:

Пример 11

Вычислить площадь фигуры, ограниченной линиями

;   

и координатными осями. Полного решения не будет. Правильный ответ:

.

Решения и ответы:

Пример 2: Решение: Выполним чертеж:

На отрезке [2; 4] график функции  y = 4/x  расположен над осью OX, поэтому:

.

Ответ:

Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.

Пример 5: Решение: Выполним чертеж:

На отрезке  [-1; 3] , , по соответствующей формуле:

.

Ответ:

Пример 6: Решение: Выполним чертеж.

На отрезке  [1; 3],  (4-x)≥(3/x),  по соответствующей формуле:

.

Ответ:

 

Пример 10: Решение: Изобразим данную фигуру на чертеже:

На отрезке  график функции  расположен над осью , поэтому:

.

Ответ:

.

Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества

.

Далее в интегралах использован метод подведения функций под знак дифференциала (можно использовать замену в определенном интеграле, но решение будет длиннее).

8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?

Кроме нахождения площади плоской фигуры с помощью определенного интеграла (см. 7.2.3.) важнейшим приложением темы является вычисление объема тела вращения. Материал простой, но читатель должен быть подготовленным: необходимо уметь решать неопределенные интегралы средней сложности и применять формулу Ньютона-Лейбница в определенном интеграле, нужны также уверенные навыки построения чертежей. Вообще в интегральном исчислении много интересных приложений, с помощью определенного интеграла можно вычислить площадь фигуры, объем тела вращения, длину дуги, площадь поверхности тела и многое другое. Представьте некоторую плоскую фигуру на координатной плоскости. Представили? ... Теперь данную фигуру можно ещё и вращать, причем вращать двумя способами:

– вокруг оси абсцисс ;

– вокруг оси ординат .

Разберём оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс. Начнем с наиболее популярной разновидности вращения.

Вычисление объема тела, образованного вращением плоской фигуры вокруг оси OX

Пример 1

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями ,  вокруг оси .

Решение: Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. То есть, на плоскости XOY необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение  задаёт ось . Чертёж здесь довольно прост:

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси . В результате вращения получается такая немного яйцевидная летающая тарелка с двумя острыми вершинами на оси OX, симметричная относительно оси OX. На самом деле у тела есть математическое название, посмотрите в справочнике.

Как вычислить объем тела вращения? Если тело образовано в результате вращения вокруг оси OX, его мысленно разделяют на параллельные слои малой толщины dx, которые перпендикулярны оси OX. Объём всего тела равен, очевидно, сумме объёмов таких элементарных слоёв. Каждый слой, как круглая долька лимона, - низенький цилиндр высотой dx и с радиусом основания f(x). Тогда объём одного слоя есть произведение площади основания πf 2 на высоту цилиндра (dx), или π∙f 2(x)∙dx. А площадь всего тела вращения есть сумма элементарных объёмов, или соответствующий определённый интеграл. Объем тела вращения можно вычислить по формуле:

.

Как расставить пределы интегрирования «а» и «бэ», легко догадаться из выполненного чертежа. Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы  сверху. Это и есть та функция, которая подразумевается в формуле. В практических заданиях плоская фигура иногда может располагаться и ниже оси OX. Это ничего не меняет – функция в формуле возводится в квадрат: f 2(x), таким образом, объем тела вращения всегда неотрицателен, что весьма логично. Вычислим объем тела вращения, используя данную формулу:

.

Как мы уже отмечали, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ:

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы? Потому что это наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси OX фигуры, ограниченной линиями , , .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями   ,  ,      и   .

Решение: Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение  x = 0  задает ось OY:

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси OX получается плоский угловатый бублик (шайба с двумя коническими поверхностями).

Объем тела вращения вычислим как разность объемов тел. Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси OX получается усеченный конус. Обозначим объем этого усеченного конуса через V1.

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси OX, то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через V2.

Очевидно, что разность объемов,  V = V1 - V2, - это объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

.

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

.

3) Объем искомого тела вращения:

Ответ:

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного о геометрических иллюзиях.

У людей часто возникают иллюзии, связанные с объемами, которую подметил еще Перельман (не тот, что отказался от премии, а еще в 50-60 гг.) в книге Занимательная геометрия. Посмотрите на плоскую фигуру в решённой задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 кв. метров, что, наоборот, кажется слишком маленьким объемом.

Пример 4

Вычислить объем тела, образованного вращением относительно оси OX плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, даны практически готовые пределы интегрирования. Также постарайтесь правильно начертить графики тригонометрических функций. Если аргумент делится на два (x/2), то графики растягиваются по оси OX в два раза. Попробуйте найти хотя бы 3-4 точки по тригонометрическим таблицам и точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Вычисление объема тела, образованного вращением плоской фигуры вокруг оси OY

Второй параграф будет еще интереснее, чем первый. Задание на вычисление объема тела вращения вокруг оси ординат – тоже достаточно частый гость в контрольных работах.

Попутно будет рассмотрена задача о нахождении площади фигуры вторым способом – интегрированием по оси OY, что позволит вам не только улучшить свои навыки, но и научит находить наиболее выгодный путь решения. В этом есть и практический смысл!

Пример 5

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.

2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси OY.

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначала обязательно прочитайте первый!

Решение: Задача состоит из двух частей. Начнем с определения площади.

1) Выполним чертёж:

Легко заметить, что функция  задает верхнюю ветку параболы, а функция  – нижнюю ветку параболы. Перед нами парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом, который рассматривался в разделе: 7.2.3. Как вычислить площадь фигуры. Причем, площадь фигуры находится, как сумма площадей:

- на отрезке [0; 1], ;

– на отрезке [1; 4], .

Поэтому:

.

Чем в данном случае плох обычный путь решения? Во-первых, получилось два интеграла. Во-вторых, под интегралами корни, а корни в интегралах – не подарок, к тому же можно запутаться в подстановке пределов интегрирования. На самом деле, интегралы, конечно, не убийственные, но на практике всё бывает значительно печальнее, просто мы подобрали для задачи функции «получше». Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси OY.

Как перейти к обратным функциям? Просто нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

.

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

.

Для самопроверки рекомендую устно или на черновике подставить координаты 2-3-х точек параболы в уравнение , они обязательно должны удовлетворять данному уравнению. С уравнением прямой линии всё проще: .

Теперь смотрим на ось OY и, пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не шутка!). Нужная нам фигура лежит на отрезке [2; 5], оси OY, который ограничен красными пунктирами. При этом на отрезке [2; 5] прямая  расположена выше параболы , то есть площадь фигуры следует найти по уже знакомой вам формуле:

.

Что поменялось в формуле? Только буква, и не более того.

Примечание: Пределы интегрирования по оси OY расставлять строго снизу вверх!

Находим площадь:

На отрезке [2; 5], , поэтому:

.

Для читателей, сомневающихся в корректности интегрирования, найдём производные:

.

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ:

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси OY.

Перерисуем чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси OY. В результате получается «зависшая бабочка», которая вертится вокруг своей оси (ординат).

Для нахождения объема тела вращения будем интегрировать по оси OY. Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте. Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси OY, в результате получается усеченный конус. Обозначим этот объем через V1.

Вращаем фигуру, обведенную зеленым цветом, вокруг оси OY и обозначаем через V2 объем полученного тела вращения. Объем нашей бабочки равен разности V = V1 - V2. Используем формулу для нахождения объема тела вращения:

.

В чем отличие от формулы предыдущего параграфа? Только в букве.

.

А вот и преимущество интегрирования, о котором мы говорили. Гораздо легче найти

,

чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ:

Заметьте, что если эту же плоскую фигуру вращать вокруг оси OX, то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 6

Дана плоская фигура, ограниченная линиями  ,    и осью  OX.

1) Перейти к обратным функциям и найти интегрированием по переменной y площадь плоской фигуры, ограниченной данными линиями.

2) Вычислить объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси OY.

Правильный ответ:

Это пример для самостоятельного решения. Полное же решение двух предложенных пунктов задания в конце урока.

Да, и не забывайте наклонять голову направо, чтобы разобраться в телах вращения и в пределах интегрирования!

Пример 7

Вычислить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной кривыми

;  .

Решение: Выполним чертеж:

Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции

….

Для цели нахождения объема тела вращения достаточно использовать правую половину фигуры, которая заштрихована синим цветом. Обе функции являются четными, их графики симметричны относительно оси OY, симметрична и наша фигура. Таким образом, заштрихованная правая часть, вращаясь вокруг оси OY, непременно совпадёт с левой незаштрихованной частью.

Перейдем к обратным функциям, то есть выразим «иксы» через «игреки»:

Обратите внимание, что правой ветке параболы y = x2 соответствует обратная функция . Левой неиспользуемой ветке параболы соответствует обратная функция . В таких случаях нередко возникают сомнения, какую же функцию выбрать? Сомнения легко, развеиваются, возьмите любую точку правой ветки и подставьте ее координаты в функцию . Координаты подошли, значит, функция  задает именно правую ветку, а не левую.

К слову, та же история и с функций

.

Не всегда бывает сразу понятно, какую обратную функцию выбрать:

 или  .

В действительности мы всегда страхуемся, подставляя в найденную обратную функцию пару точек графика. Теперь наклоняем голову вправо и замечаем следующую вещь:

– на отрезке [0; 1] над осью OY расположен график функции ;

– на отрезке [1; 2] над осью OY расположен график функции .

Логично предположить, что объем тела вращения нужно искать уже как сумму объемов тел вращений. Используем формулу:

В данном случае:

Ответ:

Решения и ответы:

Пример 2: Решение: Выполним чертеж:

Объем тела вращения:

Ответ:

 

Пример 4: Решение: 

1) Выполним чертеж:

Объем тела вращения вычислим как разность объемов при помощи формулы:

В данном случае:

Ответ: 

Примечание: Обратите внимание на использование свойства линейности – в данном случае при интегрировании выгодно превратить два интеграла в один. Это можно сделать, поскольку константы перед интегралами и пределы интегрирования одинаковы, а затем использовать формулу косинуса двойного угла.

Пример 6: Решение:

1) Выполним чертёж:

Перейдем к обратной функции:

На отрезке [-ln2; 0], , поэтому:

Ответ:

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси OY.

Объем тела вращения найдем как разность объемов тел вращения при помощи формулы :

Ответ:

8.3. Несобственные интегралы. Примеры решений

К изучению несобственных интегралов лучше приступать в последнюю очередь в ходе изучения интегрального исчисления функции одной переменной. Читатель данного урока должен быть хорошо подкован в неопределенных интегралах, определенных интегралах, уметь находить площадь плоской фигуры с помощью определенного интеграла. Кроме того, потребуются знания простейших пределов и графиков элементарных функций. По логике изложения материала эта статья является продолжением уроков определенный интеграл, вычисление площади фигуры. Тема несобственных интегралов – очень хорошая иллюстрация тому, как важно не запускать высшую математику и другие точные науки.

Образно говоря, несобственный интеграл – это «продвинутый» определенный интеграл, к тому же у несобственного интеграла есть очень хороший геометрический смысл.

Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит найти ЧИСЛО, точнее, предел последовательности, или доказать, что он расходится, то есть получить в итоге бесконечность вместо числа.

Несобственные интегралы бывают двух видов: первого и второго рода.

8.3.1. Несобственный интеграл с бесконечным пределом (ами) интегрирования

Иногда такой несобственный интеграл еще называют

несобственным интегралом первого рода.

В общем виде несобственный интеграл с бесконечным пределом чаще всего выглядит так:

.

В чем его отличие от определенного интеграла? В верхнем пределе. Он бесконечный:

.

Встречаются интегралы и с бесконечным нижним пределом

,

или с двумя бесконечными пределами:

.

Мы начнём с рассмотрения самого популярного случая

.

Техника работы с другими разновидностями – аналогична.

Всегда ли существует несобственный интеграл

?

Нет, не всегда.

Подынтегральная функция f(x) должна быть непрерывной на интервале [a; +∞), или иметь устранимые разрывы, и быстро сходиться на бесконечности.

Строго говоря, если есть разрывы функции, то в ряде случаев можно разбить интервал на несколько частей и вычислить несколько несобственных интегралов.

Изобразим на чертеже график подынтегральной функции f(x). Типовой график и криволинейная трапеция для данного случая выглядит так:

Здесь подынтегральная функция f(x) непрерывна на интервале [a; +∞). Обратите внимание, что криволинейная трапеция у нас – бесконечная (не ограниченная справа) фигура. И, чтобы площадь криволинейной трапеции существовала, она должна, при стремлении x к +∞, стремиться к конечному числу (быть конечным числом).

Несобственный интеграл 

численно равен площади заштрихованной фигуры, при этом возможны два случая:

1) Первая мысль, которая приходит в голову: «Раз фигура бесконечная, то и интеграл

»,

иными словами, площадь тоже бесконечна. Так может быть. В этом случае говорят, что, что несобственный интеграл расходится.

2) Но! Как это ни парадоксально прозвучит, площадь бесконечной фигуры может равняться… конечному числу! Например:

.

Может ли так быть? Да. В этом случае несобственный интеграл сходится.

В каких случаях несобственный интеграл расходится, а в каком сходится? Это зависит от подынтегральной функции f(x) и от её поведения на бесконечности.

А что будет, если бесконечная криволинейная трапеция расположена ниже оси? В этом случае несобственный интеграл

,

«расходится», либо равен отрицательному числу.

Несобственный интеграл может быть отрицательным.

Важно! Когда Вам для решения предложен ПРОИЗВОЛЬНЫЙ несобственный интеграл, то, вообще говоря, ни о какой площади речи не идет и чертежа строить не нужно. Ваша задача найти ЧИСЛО, либо доказать, что несобственный интеграл расходится. Геометрический смысл несобственного интеграла рассказан только для того, чтобы легче было понять материал. Поскольку несобственный интеграл очень похож на определенный интеграл, то вспомним формулу Ньютона- Лейбница:

.

На самом деле формула применима и к несобственным интегралам, только ее нужно немного модифицировать. В чем отличие? В бесконечном верхнем пределе интегрирования: b = +∞. Наверное, многие догадались, что здесь необходимо применение теории пределов, и формула запишется так:

.

В чем отличие от определенного интеграла? Да ни в чем особенном! Как и в определенном интеграле, нужно уметь находить первообразную функцию F(X) (неопределенный интеграл) и уметь применять формулу Ньютона-Лейбница. Единственное, что добавилось – это вычисление предела.

У кого с ними плохо, изучите урок Пределы функций. Примеры решений. 

Рассмотрим два классических примера:

Пример 1

Вычислить несобственный интеграл или установить его расходимость.

Для наглядности построим чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно.

Подынтегральная функция (y = 1/x) непрерывна на интервале [1; +∞). Попробуем вычислить несобственный интеграл «штатным» методом.

Применение нашей формулы

и решение задачи выглядит так:

То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности (не существует).

В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применяется эта формула под знаком предела. Вместо привычной буквы x «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса».

Если Вам непонятно, почему  при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции.

При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!

Чистовое оформление задания должно выглядеть примерно так:

Подынтегральная функция непрерывна на «полубесконечном» интервале .

Несобственный интеграл расходится.

При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией на границах интервала. Этим мы идентифицируем тип несобственного интеграла.

Если Вам встретится интеграл вроде

,

то с вероятностью, близкой к 100%, можно сказать, что это опечатка. Здесь подынтегральная функция не является непрерывной, на интервале интегрирования , она терпит разрыв в точке . Теоретически и практически допустимо вычислить два несобственных интеграла на интервалах  и , а потом их сложить, но со здравой точки зрения такая вещь выглядит довольно абсурдно. Опечатка.

Иногда вследствие опечатки несобственного интеграла может вообще не существовать. Например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть интервала интегрирования вообще не войдёт в область определения подынтегральной функции.

Всегда смотрим и записываем, является ли подынтегральная функция непрерывной на интервале интегрирования.

Пример 2

Вычислить несобственный интеграл или установить его расходимость:

.

Выполним чертеж:

Во-первых, замечаем следующее: подынтегральная функция

непрерывна на интервале . Хорошо. Решаем с помощью формулы 

:

.

(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.

(3) Указываем, что , если  (это нужно понимать) и упрощаем ответ.

Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.

Чистовое оформление примера должно выглядеть примерно так:

Подынтегральная функция непрерывна на полубесконечном интервале

.

Пример 3

Вычислить несобственный интеграл или установить его расходимость.

.

Подынтегральная функция непрерывна на полубесконечном интервале .

Интеграл не так прост, особенно для чайника. Что делать, если интеграл кажется не самым простым или не сразу понятно как его решать? В этом случае целесообразно применить алгоритм, о котором было рассказано в статье Определенный интеграл. Примеры решений. Сначала попытаемся найти первообразную функцию F(X) или неопределенный интеграл. Если нам не удастся этого сделать, то несобственный интеграл мы, естественно, тоже не решим.

.

На какой из табличных интегралов похожа подынтегральная функция? Напоминает она арктангенс:

.

Из этих соображений напрашивается мысль, что неплохо бы в знаменателе получить квадрат. Делается это путем замены.

Проведем замену , тогда:

.

Неопределенный интеграл найден, константу C в этом случае добавлять не имеет смысла.

На черновике всегда полезно выполнить проверку, то есть продифференцировать полученный результат:

.

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден правильно.

Теперь находим несобственный интеграл:

(1) Записываем решение в соответствии с формулой Ньютона-Лейбница для несобственных интегралов.

.

Константу лучше сразу вынести за знак предела, чтобы она не мешалась в дальнейших вычислениях.

(2) Подставляем верхний и нижний пределы в соответствии с формулой.

Почему  при ? Смотрите график арктангенса.

(3) Получаем окончательный ответ. Тот факт, что arctg(0) = 0, полезно знать наизусть.

Продвинутые студенты могут не находить отдельно неопределенный интеграл, и не использовать метод замены, а использовать метод подведения функции под знак дифференциала и решать несобственный интеграл «сразу». В этом случае решение должно выглядеть примерно так:

Подынтегральная функция непрерывна на интервале .

.

А сейчас два примера для самостоятельного решения.

Пример 4

Вычислить несобственный интеграл или установить его расходимость.

ВНИМАНИЕ! Это типовой пример, и похожие интегралы встречаются очень часто. Хорошо его проработайте! Первообразная функция здесь находится методом выделения полного квадрата, более подробно с методом можно ознакомиться на уроке Интегрирование некоторых дробей.

Пример 5

Вычислить несобственный интеграл или установить его расходимость.

.

Этот интеграл можно решить подробно, то есть сначала найти неопределенный интеграл, проведя замену переменной. А можно решить «сразу» – подведением функции под знак дифференциала. Всё зависит от подготовки. Полные решения и ответы в конце урока.

Примеры решений несобственных интегралов с бесконечным нижним пределом интегрирования можно посмотреть на странице Эффективные методы решения определённых и несобственных интегралов. Там же разобран случай, когда оба предела интегрирования бесконечны.

8.3.2. Несобственные интегралы от неограниченных функций

Иногда такие несобственные интегралы называют несобственными интегралами второго рода. Несобственные интегралы второго рода коварно «шифруются» под обычный определенный интеграл и выглядят точно так же: .

Но, в отличие от определенного интеграла, подынтегральная функция f(x) терпит бесконечный разрыв (не существует):

1) в точке ,

2) точке ,

3) в обеих точках сразу,

4) или даже на отрезке интегрирования.

Мы рассмотрим первые два случая, для случаев 3-4 в конце статьи есть ссылка.

Если подынтегральной функции не существует в точке .

Рассмотрим сразу пример, чтобы было понятно:

.

Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, так как, если мы подставим в подынтегральную функцию значение нижнего предела

,

то знаменатель обращается в ноль, то есть подынтегральной функции в этой точке просто не существует!

При анализе несобственного интеграла всегда нужно подставлять в подынтегральную функцию оба предела интегрирования. В этой связи проверим и верхний предел:

.

Здесь всё хорошо. Криволинейная трапеция для рассматриваемой разновидности несобственного интеграла принципиально выглядит так:

Здесь почти всё так же, как в интеграле первого рода. Наш интеграл численно равен площади заштрихованной криволинейной трапеции, которая не ограничена сверху. При этом могут быть два варианта: несобственный интеграл расходится (площадь бесконечна), либо несобственный интеграл равен конченому числу (когда площадь бесконечной фигуры – конечна!).

Осталось только модифицировать формулу Ньютона-Лейбница. Она тоже модифицируется с помощью предела, но предел стремится уже не к бесконечности, а к значению a справа. Легко проследить по чертежу, что по оси OX мы должны бесконечно близко приблизиться к точке разрыва справа.

Посмотрим, как это реализуется на практике.

Пример 6

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечный разрыв в точке (a = 3/4). Проверяем, всё ли нормально с верхним пределом.

Сначала вычислим неопределенный интеграл:

.

Выполняем замену переменных:

.

.

У кого возникли трудности с заменой, обратитесь к уроку Метод замены в неопределенном интеграле.

Вычислим теперь несобственный интеграл:

.

(1) Что здесь нового? По технике решения практически ничего. Единственное, что поменялось, это запись под значком предела:

.

Добавка +0 обозначает, что мы стремимся к значению (3/4) оставаясь справа от него, что логично (см. график). Такой предел в теории пределов называют односторонним пределом. В данном случае у нас правосторонний предел.

(2) Подставляем верхний и нижний предел по формуле Ньютона Лейбница.

(3) Разбираемся с  при . Как определить, куда стремится выражение? В него нужно просто подставить значение , подставляем три четверти и указываем, что . Причесываем ответ. В данном случае несобственный интеграл равен отрицательному числу. В этом никакого криминала нет, просто соответствующая криволинейная трапеция расположена под осью OX. 

А сейчас примеры для самостоятельного решения.

Пример 7

Вычислить несобственный интеграл или установить его расходимость.

.

Пример 8

Вычислить несобственный интеграл или установить его расходимость.

.

Если подынтегральной функции не существует в точке b.

Здесь всё делаем так же, за исключением того, что предел стремится к значению b слева. По оси OX мы должны бесконечно близко приблизиться к точке разрыва слева.

Пример 9

Вычислить несобственный интеграл или установить его расходимость.

.

Подынтегральная функция терпит бесконечный разрыв в точке b = 3; устно проверяем, что с другим пределом интегрирования всё нормально.

Для разнообразия решим этот предел сразу – методом подведения функции под знак дифференциала. Те, кому трудно, могут сначала найти неопределенный интеграл по уже рассмотренной схеме.

Добавка (-0) обозначает, что предел у нас левосторонний, и к точке b=3 мы приближаемся по оси OX слева, оставаясь меньше 3.

Разбираемся, почему дробь

(это лучше делать устно или на черновике).

Подставляем под корень предельное значение b = 3 - 0.

и тогда

.

Окончательно:

.

Несобственный интеграл расходится.

Знак минус обозначает, что соответствующая криволинейная трапеция расположена под осью OX. Будьте очень внимательны в знаках. 

Да, конечно, здесь несобственный интеграл расходится, но    и    – это разные вещи, разные жанры, и если Вы недосмотрите за знаками, то, строго говоря, допустите серьезную ошибку.

И заключительные два примера для самостоятельного рассмотрения:

Пример 10

Вычислить несобственный интеграл или установить его расходимость.

.

Пример 11

Вычислить несобственный интеграл или установить его расходимость.

.

Разбор ситуации, когда оба предела интегрирования «плохие», или точка разрыва содержится прямо на отрезке интегрирования, можно найти в статье Эффективные методы решения определённых и несобственных интегралов.

Решения и ответы:

Пример 4: Решение:

.

Подынтегральная функция непрерывна на .

Пример 5: Решение:

.

Подынтегральная функция непрерывна на .

.

Несобственный интеграл расходится.

Пример 7: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке

Несобственный интеграл расходится.

Примечание: с пределом выражения

можно разобраться следующим образом: вместо  подставляем (-1)+0:

Пример 8: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке  

Примечание: Разбираемся в пределе выражения . Если , то 

(см. график логарифмической функции!), тогда:

.

Именно эти соображения и помечаются, как

.

Пример 10: Решение:

Подынтегральная функция терпит бесконечный разрыв в точке b = 1

Пример 11: Решение:

.

Подынтегральная функция терпит бесконечный разрыв в точке

.

Несобственный интеграл расходится

Примечание: Разбираемся в пределе выражения

.

Если

,   то

,  и тогда

. 

Будьте очень внимательны в знаках!

8.4. Эффективные методы решения определенных и несобственных интегралов

Данный раздел содержит дополнительные материалы по методам решения определенных и несобственных интегралов. Предполагается, что читатель владеет средними или высокими навыками интегрирования. Если это не так, пожалуйста, начните с азов: Неопределенный интеграл, примеры решений.

Где неопределенный интеграл – там неподалёку и Определенный интеграл, с формулой Ньютона-Лейбница вы тоже должны быть знакомы не понаслышке. Кроме того, уметь решать простейшие задачи на вычисление площади плоской фигуры (см. 7.2.3.) и на вычисление объёма тела вращения (см. 7.2.4.).

Урок предназначен для тех, кто хочет научиться быстрее и эффективнее решать определенные и несобственные интегралы. Сначала рассмотрим особенности интегрирования четной и нечетной функции по симметричному относительно нуля интервалу. Затем мы разберем задачу о нахождении площади круга с помощью определенного интеграла. Эта задача важна еще и тем, что знакомит вас с распространенным приемом интегрирования определенного интеграла – тригонометрической подстановкой. Она еще нигде не рассматривалась – новый материал!

Аналогично, рассмотрим несобственные интегралы от четных и нечетных функций по симметричному интервалу. В том числе, более редкие типы несобственных интегралов, которые не вошли в основной материал предыдущих разделов: когда нижний предел стремится к «минус бесконечности», когда оба предела стремятся к бесконечности, когда в обоих концах отрезка интегрирования функция терпит бесконечный разрыв (это уже интеграл второго рода). И совсем редкий несобственный интеграл – с точкой разрыва на отрезке интегрирования.

8.4.1. Метод решения определенного интеграла от четной функции по симметричному относительно нуля отрезку

Рассмотрим определенный интеграл вида

.

Легко заметить, что отрезок интегрирования [-c; c] симметричен относительно нуля.

Если подынтегральная функция f(x) является чётной, то интеграл

можно вычислить по половине отрезка, а результат – удвоить:

.

Многие догадались, почему это так, но рассмотрим конкретный пример с чертежом:

Пример 1

Вычислить определенный интеграл

.

О чётности функции много говорилось в методическом материале Графики и свойства элементарных функций. Повторим ещё раз: функция является чётной, если для неё выполняется равенство f(-x) = f(x).

Как проверить функцию на чётность? Нужно вместо x подставить -x.

В данном случае:  и .

Значит, данная функция является чётной.

Согласно правилу, на симметричном относительно нуля отрезке [-2; 2] наш интеграл от чётной функции можно вычислить следующим образом:

А сейчас геометрическая интерпретация. Да, продолжаем мучить несчастную параболу….

Любая чётная функция, в частности , симметрична относительно оси OY:

Определенный интеграл 

численно равен площади плоской фигуры, которая заштрихована зеленым цветом. Но, в силу чётности подынтегральной функции, а, значит, и симметричности её графика относительно оси OY, достаточно вычислить площадь фигуры, заштрихованной синим цветом, а результат – удвоить. Одинаковые половинки есть геометрическое выражение свойства четности. Именно поэтому справедливо действие

.

Аналогичная история происходит с любой чётной функцией f(x) по симметричному относительно нуля отрезку:

.

Некоторые скажут: «Да зачем это всё нужно, можно ведь и так вычислить определенный интеграл». Можно. Давайте вычислим:

Но удобно ли было подставлять отрицательный нижний предел? Не очень-то. Кстати, ненулевой процент студентов допустит ошибку в знаках. Гораздо проще и приятнее подставить ноль. Заметим, что это еще был простой демонстрационный пример, на практике всё бывает хуже.

Кроме того, рассматриваемый прием часто применяется при вычислении двойных интегралов, тройных интегралов, где вычислений и так хватает.

Короткий пример для самостоятельного решения:

Пример 2

Вычислить определенный интеграл

.

Полное решение и ответ в конце урока.

Обратите внимание, что когда вам предложено просто вычислить определенный интеграл, то чертеж выполнять не нужно! Рисунок к Примеру 1 дан только для того, чтобы было понятно правило. Как раз данному моменту посвящена следующая простая задачка:

Пример 3

3.1. Вычислить определенный интеграл

.

3.2. Вычислить площадь плоской фигуры, ограниченной линиями

,  и осью OX на интервале  .

Это две разные задачи! Сначала разберемся с первым пунктом:

1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:

.

Определенный интеграл получился отрицательным и так бывает!

Теперь найдем площадь плоской фигуры. Вот здесь без чертежа обойтись трудно:

На отрезке    график функции расположен ниже оси OX, поэтому:

Площадь не может быть отрицательной, именно поэтому в формуле вычисления площади добавляют минус (см. также Пример 3 из раздела 7.2.3.).

Заметьте, что чётность косинуса никто не отменял, поэтому мы опять разделили отрезок и удвоили интеграл.

Вычисление площади круга с помощью определенного интеграла. Тригонометрическая подстановка

Это очень важная задача, поскольку будет рассмотрен типовой интеграл и приём решения, который неоднократно встретится в будущем.

Но сначала небольшое напоминание по уравнению окружности. Уравнение вида    задаёт окружность с центром в точке  радиуса .

В частности, уравнение    задаёт окружность радиуса    с центром в начале координат, в точке (0; 0).

Пример 4

Вычислить площадь круга, ограниченного окружностью с уравнением . Выполним чертёж:

Сначала вычислим площадь круга с помощью известной школьной формулы. Если радиус круга , то его площадь равна: S = π∙r2 = π∙22 = 4π ед2.

Для того, чтобы вычислить площадь круга с помощью определенного интеграла, необходимо из уравнения    выразить функцию «игрек» от «икс» в явном виде:

Верхняя полуокружность задается уравнением  .

Нижняя полуокружность задается уравнением  .

Можно подставить несколько точек окружности в эти уравнения и убедиться в справедливости вышеизложенных утверждений.

Как вычислить площадь круга? В данном примере круг симметричен относительно начала координат, поэтому достаточно вычислить площадь одного сектора в 1-ой четверти (заштрихован синим цветом), а затем результат умножить на  4. Таким образом:

.

Такой же, но неопределенный интеграл рассматривался в Примере 6 раздела Сложные интегралы, он решался длительным и трудоёмким методом сведения интеграла к самому себе. Можно пойти тем же путём, но для определенного интеграла существует удобный и эффективный метод тригонометрической замены:

Проведём замену:

Почему именно такая замена, очень скоро станет понятно, а пока найдем дифференциал:

Выясним, во что превратится корень, который распишем очень подробно:

.

Если в ходе решения вы не сможете догадаться применить формулу наподобие , то, увы, получите: «Приходите в следующий раз».

После преобразования корня отчетливо видно, почему проведена замена , особое внимание обращаем на коэффициент при синусе – «двойке», этот коэффициент нужно подбирать таким образом, чтобы при возведении в квадрат всё хорошо вынеслось за скобки и из-под корня.

Осталось вычислить новые пределы интегрирования:

Если , то .

Новый нижний предел интегрирования: .

Новый верхний предел интегрирования: .

Таким образом:

.

Площадь сектора необходимо умножить на 4, следовательно, площадь всей окружности:

Вероятно, у некоторых возник вопрос, зачем вообще мучиться с интегралом, если есть короткая школьная формула S = π∙r2? А дело в том, что возможность очень точно вычислить площадь круга появилась только с развитием математического анализа, хотя уже в древности Архимед площадь круга рассчитывал с приличной точностью.

Разобранный пример можно решить в общем виде, то есть найти площадь круга, ограниченного окружностью произвольного радиуса: . В результате получится как раз формула S = π∙r2!

Следует отметить, что к решению данной задачи можно было применить и другой подход – вычислить площадь верхнего полукруга с помощью интеграла 

,

а затем удвоить результат. Но в силу чётности подынтегральной функции решение сводится к оптимальной версии:

.

Еще раз подчеркнём важность проведенной тригонометрической замены, она встретится на практике не раз и не два. Поэтому, для закрепления материала, чуть - более сложное задание для самостоятельного решения:

Пример 5

Вычислить определенный интеграл

.

По условию требуется вычислить определенный интеграл, поэтому чертеж выполнять не нужно. Хорошо подумайте над коэффициентом в замене . Если возникнут трудности с интегралом после замены, вернитесь к уроку Интегралы от тригонометрических функций. Полное решение и ответ в конце урока.

8.4.2. Метод решения определенного интеграла от нечетной функции по симметричному относительно нуля отрезку

Вам понравится. Рассмотрим тот же определенный интеграл с симметричным относительно нуля отрезком интегрирования:

.

Если подынтегральная функция f(x) является нечётной, то

.

Почему такой интеграл равен нулю?

Пример 6

Вычислить определенный интеграл 

Выполним чертеж:

Вот, заодно и график функции , который ещё нигде у нас не встречался, график представляет собой перевёрнутую кубическую параболу.

Проверим нашу функцию на четность/нечетность:

,

значит, данная функция является нечётной, и её график симметричен относительно начала координат. Из симметрии графика следует равенство площадей, которые заштрихованы красным и синим цветом.

При вычислении определенного интеграла

площадь, которая заштрихована синим цветом, формально является отрицательной. А площадь, которая заштрихована красным цветом – положительной. Поскольку площади равны и формально противоположны по знаку, то они взаимно уничтожаются, следовательно

.

И еще раз подчеркиваем разницу между заданиями:

1) Любой определенный интеграл (само собой он должен существовать) – это всё равно формально площадь (пусть даже отрицательная). В частности, поэтому

,

так как в силу нечётности функции  площади взаимно уничтожатся. Что и проиллюстрировано на конкретном примере.

2) Задача на нахождение площади – это совершенно другая задача. Так, если нам предложено найти площадь фигуры в данном примере, то её следует вычислить, как:

.

Еще несколько коротких примеров на тему данного правила:

И, аналогично для любой нечетной функции и симметричного относительно нуля отрезка.

Применять ли данный метод на практике? На самом деле вопрос не такой простой. Когда вам предложен сложный пример с большим количеством вычислений, то можно, и даже уместно указать, что такой интеграл равен нулю, сославшись на нечетность функции и симметричность отрезка интегрирования относительно нуля.

Как говорится, знание – сила, а незнание – рабочая сила.

Но когда вам предложен короткий пример, то преподаватель вполне обоснованно может заставить прорешать его подробно: взять интеграл и подставить пределы интегрирования по формуле Ньютона-Лейбница. Всё зависит от постановки задачи. Например, Вам предложено вычислить тот же неопределенный интеграл

.

Если вы сразу запишите, что

и поясните словами, почему получается ноль, то это будет не очень хорошо, поскольку перед Вами стояла задача вычислить. Намного лучше «прикинуться дурачком» и провести полное решение:

.

То, что интеграл равен нулю, вы будете знать заранее. И это знание 100 %-но позволит избежать ошибки.

С другой стороны, когда в тестовом задании спрашивают: «Чему равен интеграл?», то отвечать нужно быстро, на основе всего, что знаешь по этому вопросу.

8.4.3. Метод решения несобственного интеграла с бесконечным нижним пределом

Данный раздел предназначен для тех, кто хорошо разобрался с уроком Несобственные интегралы. Примеры решения, или, по крайне мере, понял бОльшую его часть.

Речь пойдет о несобственных интегралах первого рода с бесконечным нижним пределом:

.

Пример 7

Вычислить несобственный интеграл или установить его расходимость

.

Чем отличается данный интеграл от «обычного» несобственного интеграла с бесконечным верхним пределом? По технике решения практически ничем. Так же нужно найти первообразную (неопределенный интеграл), так же нужно использовать предел при вычислении интеграла. Отличие состоит в том, что необходимо устремить нижний предел интегрирования к «минус бесконечности»:

.

Из вышесказанного следует очевидная формула для вычисления такого несобственного интеграла:

.

В данном примере, подынтегральная функция непрерывна на  и:

,

то есть, несобственный интеграл расходится.

Вот тут, главное, быть аккуратным в знаках и не забывать, что . Нужно внимательно разобраться, что куда стремится.

Пример 8

Вычислить несобственный интеграл или установить его расходимость

.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

8.4.4. Метод решения несобственного интеграла с бесконечными пределами интегрирования

Очень интересный случай. Несобственный интеграл первого рода с двумя бесконечными пределами интегрирования имеет следующий вид:

.

Как его решать? Его нужно представить в виде суммы двух несобственных интегралов:

.

Примечание: вместо ноля может быть любое число, но ноль обычно удобнее всего.

Если оба интеграла правой части сходятся, то сходится и сам интеграл

Если хотя бы один из интегралов правой части расходится, то расходится и интеграл

.

Пример 9

Вычислить несобственный интеграл или установить его расходимость.

Мы специально подобрали простой пример, чтобы проиллюстрировать другой важный момент применения метода.

Подынтегральная функция непрерывна на всей числовой прямой.

Согласно правилу, интеграл следует представить в виде суммы интегралов:

Интеграл будет сходиться, если будут сходиться оба интеграла правой части. Проверяем:

– сходится.

– сходится.

Оба интеграла сходятся, значит, сходится и весь интеграл:

Теперь обратим внимание на подынтегральную функцию. Она является чётной.

В несобственных интегралах с (двумя) бесконечными пределами, а, значит, симметричными интервалами интегрирования, чётностью пользоваться МОЖНО. Аналогично определенному интегралу, интервал интегрирования можно разделить, а результат – удвоить. То есть, решение допустимо записать короче:

Почему такое возможно?

График подынтегральной чётной функции симметричен относительно оси OY. Следовательно, если половина площади конечна (интеграл сходится) – то симметричная половина площади тоже конечна.

Если же половина площади бесконечна (интеграл расходится), следовательно, симметричная половина тоже будет расходиться.

Пример 10

Вычислить несобственный интеграл или установить его расходимость.

.

Подынтегральная функция непрерывна на всей числовой прямой. Согласно правилу, интеграл нужно представить в виде суммы двух интегралов:

Проверяем сходимость интегралов правой части:

.

Первый интеграл расходится. Знак «минус» говорит о том, что бесконечная криволинейная трапеция расположена ниже оси абсцисс.

Не нужно проверять сходимость второго интеграла правой части, поскольку для того, чтобы интеграл

сходился, необходимо чтобы сходились оба интеграла правой части.

Ответ: несобственный интеграл

расходится.

А сейчас очень важный момент: подынтегральная функция 

является нечётной. 

В несобственных интегралах с бесконечными пределами (т. е. симметричными интервалами интегрирования) нечётностью пользоваться НЕ СЛЕДУЕТ!!!

В этом состоит отличие от определенного интеграла. Там всегда можно смело записать:

,

а здесь так поступать – не следует. Почему? Потому что в ряде случаев, как, например, в рассмотренном примере, получится нонсенс (бессмыслица). Если считать, что

,

то интеграл будет сходящимся (поскольку получено конечное число), но в то же время его часть:

– расходится (как мы только что показали в решении). Тонкость же состоит в том, что несобственный интеграл равен своему значению только в предельном смысле. Интеграл

от нечетной функции f(x), в принципе, может стремиться (а не равняться) к нулю, но нельзя сразу записывать, что

.

Всегда представляем интеграл в виде двух интегралов и выполняем проверку на сходимость по стандартному алгоритму.

Пример 11

Вычислить несобственный интеграл или установить его расходимость

.

Полное решение и ответ в конце урока.

8.4.5. Метод решения несобственного интеграла второго рода с точками разрыва на обоих концах отрезка

Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие несобственные интегралы второго рода. Многие выкладки предыдущего раздела будет справедливы и сейчас.

Сразу конкретная задача:

Пример 12

Вычислить несобственный интеграл или установить его расходимость

.

Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию

на чертёже:

Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.

Методика решения практически такая же, как и в предыдущем параграфе. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Если оба интеграла правой части сходятся, то сходится и весь интеграл.

Если хотя бы один из интегралов правой части расходится, то расходится и весь интеграл. А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.

Но, вместо этого замечаем, что подынтегральная функция является чётной. Чётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:

Подынтегральная функция терпит бесконечные разрывы в точках . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.

Ответ:

;  данный интеграл сходится.

Пример 13

Вычислить несобственный интеграл или установить его расходимость

.

Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе – нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму.

Полное решение и ответ в конце урока.

Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля.

Например, рассмотрим несобственный интеграл

.

Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:

Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. Если оба интеграла будут сходиться, то будет сходиться и весь интеграл. Если хотя бы один интеграл правой части расходится, то расходится и весь интеграл.

Кстати, не важно, в каком порядке исследовать сходимость интегралов правой части. Можно сначала исследовать сходимость интеграла 

,

а потом (если до этого дойдет), исследовать сходимость первого интеграла правой части.

8.4.6. Метод решения несобственного интеграла с точкой разрыва на отрезке интегрирования

Такие примеры встречаются на практике относительно редко, поэтому ограничимся только обзором. Пример опять же будет, в известной степени, условным. Рассмотрим несобственный интеграл

.

На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке x = 1. Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интервал интегрирования не симметричен относительно нуля.

Метод решения – тот же старый. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

.

Интегралы правой части вам уже знакомы.

Решения и ответы:

Пример 2: Решение:

Пример 5: Решение:

Проведем замену:

Новые пределы интегрирования:

Пример 8: Решение:

Подынтегральная функция непрерывна на интервале  .

Пример 11: Решение:

Подынтегральная функция непрерывна на всей числовой прямой. Представим интеграл в виде суммы двух интегралов:

Проверим сходимость интегралов правой части:

Сходится.

Сходится. Оба интеграла сходятся, значит, сходится и весь интеграл:

Ответ:

Примечание: Будет серьезной оплошностью сразу записать, что

,

пользуясь нечетностью подынтегральной функции и симметричностью интервала интегрирования. Стандартный алгоритм обязателен!!!

Пример 13: Решение:

Подынтегральная функция терпит бесконечные разрывы в точках

.

Представим данный интеграл в виде суммы двух интегралов:

Исследуем сходимость интегралов правой части:

Несобственный интеграл расходится, значит, расходится и весь интеграл.

Интеграл 

- можно уже не проверять.

Ответ: интеграл

– расходится

Приложение 1. Числа

Наиболее общие закономерности и законы экономических явлений выясняются  путем качественного анализа, но конкретное выражение их возможно лишь с помощью меры и числа.

Число - важнейшее математическое понятие, меняющееся на протяжении веков. Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4…

При счете отдельных предметов единица есть наименьшее число, и делить ее на доли не нужно, а иногда и нельзя, однако уже при грубых измерениях величин приходится делить 1 на доли.

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Дроби обозначаются, как  ; где m и n - целые числа.

- это сокращение дроби; а  - это расширение дроби.

Дроби со знаменателем 10 - это десятичные дроби, которые обозначаются с помощью запятой, разделяющей целую и дробную части: .

Среди десятичных дробей особое место занимают периодические дроби.

Различают 2 случая: 

1) чистая периодическая дробь, как  0,2525…=0,(25)=;

2) смешанная периодическая дробь, как 1,2555…=1,2(5)=.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики. Рене Декарт в 17 веке ввёл понятие отрицательного числа. Объединение множеств целых (положительных и отрицательных) чисел, дробных (положительных и отрицательных) чисел и нуля получили название рациональных чисел (rational numbers).

Определение: Всякое рациональное число может быть записано в виде отношения двух целых чисел, одно из которых (в знаменателе) не равно нулю.

Определение: Всякое рациональное число может быть записано в виде конечной дроби (с конечным числом знаков после запятой) или периодической дроби. 

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - ввели действительные (вещественные) числа (real numbers).

Объединение множеств рациональных (положительных и отрицательных) и иррациональных (положительных и отрицательных) чисел получило название множества действительных чисел.

Определение: Всякое иррациональное число может быть записано в виде бесконечной десятичной непериодической дроби.

Иррациональные числа (irrational numbers) появились при измерении несоизмеримых отрезков (таких, как сторона и диагональ квадрата).

В алгебре иррациональные числа появились при извлечении корней . Примером трансцендентного, или иррационального числа являются числа π, е.

Все действительные числа можно изобразить на числовой оси.

Числовая ось (числовая прямая) это:

а) прямая линия с выбранным на ней направлением;

б) на оси задано начало отсчета – нулевая точка (0);

в) на оси задана единица масштаба.

                                  0                            х   

                -2      -1           1     2     3

Комплексные числа. После действительных чисел (real numbers) не появилось «недействительных чисел», но возникли так называемые «комплексные числа» (complex numbers). «Комплексное число» - это не число в обычном понимании, характеризующееся одним параметром, а математический объект, составленный из двух элементов, каждый из которых - действительное число.

Геометрически комплексное число может быть представлено, как точка на плоскости (элемент плоскости), на которой задана прямоугольная система координат: две взаимно перпендикулярные числовые оси (0X и 0Y) с общей нулевой точкой (0) начала отсчёта. Произвольная точка такой координатной плоскости определяется упорядоченной парой чисел (x; y), где x и y называют обычно координатами точки по соответствующим осям. Пара называется упорядоченной, т. к. при перестановке чисел x; y местами в скобках получается другое комплексное число (другая пара): (x; y) (y; x).

Определение: Всякое комплексное число представимо в виде упорядоченной пары действительных чисел: z = (x; y), где и x, и y – действительные числа, а z – «название» этой пары. Причём первое в паре число (x) называют действительной частью комплексного числа, а второе в паре число (y) – мнимой частью комплексного числа.

Действительные числа после этого определения стали обозначать, как  x  (x; 0), и отмечать их на числовой оси 0X, а мнимые числа (мнимые части комплексных чисел) – как  y  (0; y). Для комплексных чисел ввели особые алгебраические операции. Оказалось, что комплексные числа представимы в виде векторов и просто «алгебраически», как: z = x + iy, если величину  i   (0; 1) назвать мнимой единицей (смотрите раздел Комплексные числа).

Приложение 2. Упражнения по элементам финансовой математики

  1.  Фирме выделен банковский кредит на срок с 3 января по 12 марта под простые проценты с процентной ставкой 12 % годовых. Сумма кредита — 80 млн ден. ед. Определить тремя методами коэффициент наращения и наращенную сумму.
  2.  Сберегательный банк принимает вклад «до востребования» под процентную ставку i % = 4,8 % (проценты простые). В году К = 365 дней. Через сколько дней вклад в 4,5 млн ден. ед. нарастет до 5 млн ден. ед.
  3.  Фирма взяла в коммерческом банке кредит на сумму 600 млн ден. ед. сроком на 4 года. Согласно договору, за первый год процентная ставка составила 14 % и с учетом инфляции каждый последующий год повышалась на 2,5 пунктов. Определите коэффициент наращения, наращенную сумму и доход банка.
  4.  Банки принимают у населения денежные средства на срочные вклады. Клиент хочет внести в банк денежную сумму 8 млн ден. ед. на 3 месяца с таким расчетом, чтобы наращенная сумма была не менее 10 млн ден. ед. Какой должна быть годовая процентная ставка?
  5.  Ссуда в размере 50 000 ден. ед. выдана на полгода по простой ставке процентов 20 % годовых. Определить наращенную сумму.
  6.  Кредит в размере 100 000 ден. ед. выдан 2 марта до 11 декабря под 18 % годовых, год високосный. Определить размер наращенной суммы для различных вариантов (обыкновенного и точного) расчета процентов.
  7.  Кредит в размере 200 000 ден. ед. выдается на 3,5 года. Ставка процентов за первый год — 15 %, а за каждое последующее полугодие она увеличивается на 4 %. Определить множитель наращения и наращенную сумму.
  8.  Определить период начисления, за который первоначальный капитал в размере 25 000 ден. ед. вырастает до 45 000 ден. ед., если используется простая ставка процентов 12 % годовых.
  9.  Определить простую ставку процентов, при которой первоначальный капитал в размере 24 000 ден. ед. достигнет 30 000 ден. ед. через 100 дней. К= 365 дней.
  10.  Кредит выдается под простую ставку 18 % годовых на 250 дней. Рассчитать сумму, получаемую кредитором, и сумму процентных денег, если величина кредита составляет 40 000 ден. ед.
  11.  Кредит выдается на полгода по простой учетной ставке 10 % годовых. Рассчитать сумму, получаемую заемщиком, и величину дисконта, если требуется возвратить 300 000 ден. ед.
  12.  Кредит в размере 100000 ден. ед. выдается по учетной ставке 12 % годовых. Определить срок, на который предоставляется кредит, если заемщик желает получить 130000 ден. ед.
  13.  Рассчитать учетную ставку, которая обеспечивает доход в 60 000 ден. ед., если сумма в 50 000 ден. ед. выдается в ссуду на полгода.
  14.  Банк принимает валютные вклады физических лиц «до востребования» по номинальной процентной ставке 5 %. Клиент внес 200 долл. США. Определите коэффициент наращения, наращенную сумму при сроке вклада 12 месяцев. Проценты сложные начисляются: один раз в год, в полугодие, поквартально, ежемесячно.
  15.  Клиент внес в коммерческий банк вклад «до востребования» в сумме 20 000 ден. ед. под номинальную процентную ставку 10 %. Начисление процентов ежемесячно. Вклад внесен 23 января и получен 4 августа. Определите коэффициент наращения, наращенную сумму и доход клиента.
  16.  При вкладе «до востребования» банк, согласно договору, имеет право изменить процентную ставку. Клиент внес в коммерческий банк 50 000 ден. ед. Первый месяц номинальная процентная ставка составляла 6 %, последующие 2 месяца — 7 %, следующий месяц — 8 % и последние 3 месяца — 10 %. Определите коэффициент наращения, наращенную сумму и доход клиента по приведенным ставкам для сложных и простых процентов. Начисление процентов ежемесячное.
  17.  Три коммерческих банка предложили возможным клиентам следующие условия: первый банк предлагает на валютные вклады простые проценты из расчета 8 % годовых, второй — по номинальной ставке 7 % при ежемесячном начисление процентов, третий — по номинальной ставке 9 % и поквартальном начислении процентов. В какой банк клиенту выгоднее вкладывать деньги?
  18.  Годовая процентная ставка коммерческого банка «до востребования» — 4 %. Начисление процентов ежемесячное, проценты сложные. На какой минимальный срок нужно поместить клиенту вклад 30 000 ден. ед., чтобы наращенная сумма была не менее 40 000 ден. ед.? Принять К = 365 дней в году.
  19.  Для совершения сделки через три месяца клиенту необходимо иметь 500 000 ден. ед. В наличии у него 450 000 ден. ед. Какой должна быть минимальная номинальная ставка процентов коммерческого банка, чтобы наращенная сумма была не менее 500 000 ден. ед. при условии, что начисление процентов ежемесячное.
  20.  Коммерческий банк принимает вклады населения сроком на 90 дней при условии 10 % годовых. Годовой ожидаемый уровень инфляции составляет 8 %. Определить простую процентную ставку с учетом инфляции и коэффициент наращения, приняв К = 365 дней.

  1.  Фирма договорилась с банком о выделении кредита 6 млн ден. ед. на год без учета инфляции. Ожидаемый годовой уровень инфляции составляет 10 %. Определить процентную ставку с учетом инфляции, коэффициент наращения.
  2.  На сумму 20 000 ден. ед. начисляются сложные проценты в течении 3 лет по годовой процентной ставке 0,08 %. Темп прироста инфляции 0,03 % в год. Определить:

а) наращенную сумму без учета инфляции;

б) реально наращенную сумму с учетом инфляции;

в) брутто-ставку;

г) наращенную сумму по брутто-ставке.

  1.  АО создает благотворительный фонд, для чего в конце каждого года в банк делается взнос в размере 40 000 ден. ед. На собранные деньги банк начисляет сложные проценты по годовой процентной ставке 15 %. Определить размер фонда через 10 лет.
  2.  Господин Иванов желает за 8 лет накопить к юбилею 50 000 ден. ед., делая в конце каждого года равные вклады в банк, на которые банк начисляет проценты по годовой ставке 5 %. Какую сумму он должен вкладывать ежегодно?
  3.  Господин Иванов желает положить в банк, который выплачивает 10 % сложных годовых, такую сумму, чтобы его сын, студент 1-го курса, мог снимать с этого счета ежегодно 10 000 ден. ед., исчерпав весь вклад к концу пятилетнего срока учебы. Какую сумму должен положить в банк господин Иванов?
  4.  Каждый член ренты 500 ден. ед., выплачиваемый в конце года, дисконтируется сложными процентами по годовой ставке 0,06. Определить современную величину ренты при условии, что срок ренты равен 10 лет.
  5.  Определить размер одинаковых взносов в конце года при начислении на них сложных процентов по годовой ставке 0,08 для создания к концу 5-го года фонда, равного 1 000 000 ден. ед.
  6.  Кредитное соглашение промышленного предприятия с банком предусматривает, что за первый год предприятие уплачивает 20 % годовых. В каждом последующем полугодии ставка повышается на 1 процентный пункт. Срок сделки 2,5 года. Сумма кредита 5 млн ден. ед. Проценты обыкновенные с приближенным сроком кредита. Определить сумму возврата кредита через 2,5 года, а также доход банка.
  7.  Акционерное общество (АО) для погашения задолженностей по счетам поставщиков считает возможным взять краткосрочный кредит в банке под 15 % годовых. Год не високосный. Кредит на 100 млн ден. ед. планируется с 20 января по 5 марта включительно.

  1.  Определить возможные варианты долга по точным процентам с точным числом дней кредита; по обыкновенным процентам с точным числом дней кредита; по обыкновенным процентам с приближенным числом дней кредита. Какой вариант сделки выгоднее АО, какой — банку.
  2.  На сумму 100 тыс. ден. ед. начисляется 10 % годовых. Проценты простые точные. Какова наращенная сумма, если операция реинвестирования проводится ежемесячно в течение 1 квартала? Принять К =365 дней.
  3.  Определить современную величину банковского депозита, если вкладчик через 10 лет должен получить 2 млн ден. ед. при условии, что банк производит начисление на внесенную сумму по сложной ставке 20 % годовых и в случае, если начисление процентов производится ежеквартально.
  4.  Какую сумму необходимо проставить в договоре, если заемщику предоставлен кредит в 500 тыс. ден. ед. со сроком погашения 1,5 года, а наращение процентов производится по сложной годовой учетной ставке 20 % и в случае ежеквартального наращения?
  5.  Предполагается, что темп инфляции составит 20 % в год. Какую ставку сложных процентов следует проставить в договоре, чтобы реальная доходность составляла 10 %? Чему равна инфляционная премия?
  6.  Для создания страхового фонда фирма ежегодно выделяет в конце года по 100 тыс. ден. ед., которые вкладываются в банк. Определить сумму, накопленную в страховом фонде через 6 лет, если начисляются сложные проценты по годовой ставке 12 %.
  7.  Имеется денежная сумма в рублях, которую предполагается положить на полгода в банк. Обменный курс в начале операции 20 руб. за усл. ед. валюты, ожидаемый курс обмена в конце операции — 26 руб. за усл. ед. Годовая ставка простых процентов по рублевым вкладам 15 %, по валютным вкладам — 5 %. Как выгоднее разместить вклад: рублевый или через конверсию в валюту?
  8.  Ссуда в размере 500 тыс. ден. ед. выдана 5 января на год и 6 месяцев. На протяжении этого срока в счет погашения задолженности предусматриваются платежи в банк: 5 апреля в размере 15 тыс. ден. ед.; 5 июля и 15 октября по 100 тыс. ден. ед.; 5 января в размере 50 тыс. ден. ед. Банком предусматривается начисление простых процентов по ставке 12 % годовых. Рассчитать контур финансовой операции для актуарного метода и метода торговца, определить размер последнего погасительного платежа для окончательного расчета в обоих методах. Результаты расчета сравнить.
  9.  В 1995 г. в России состоялся аукцион по первичному размещению государственных краткосрочных облигаций со сроком обращения 36 дней. Минимальная цена продажи составляла 93,92 % от номинала. Определить доходность покупки облигаций по минимальной цене.
  10.  Фирма приобрела 10 привилегированных акций номиналом по 100 тыс. ден. ед. с фиксированной процентной ставкой 40 % в год. Стоимость этих акций ежегодно возрастает на 8 % относительно номинальной. Полученные проценты вновь инвестируются под 30 % годовых. Определить ожидаемый доход и доходность продажи акций через три года.
  11.  Предприниматель выделил некоторую сумму, на которую он предполагает приобрести акции четырех фирм. Эффективные процентные ставки доходности фирм составляют 16, 20, 24 и 12 %. Сравните выгодность покупки акций для трех вариантов:

Акций первой фирмы куплено на 50 %, второй — на 15 %, третьей — на 15 % и четвертой — на 20 % выделенной суммы.

Акций первой фирмы куплено на 30 %, второй — на 20 %, третьей — на 20 % и четвертой — на 20 % выделенной суммы.

Акций первой фирмы куплено на 20 %, второй — на 30 %, третьей—на 15 % и четвертой — на 35 % выделенной суммы.

Приложение 3. План изучения курса

№ раздела/темы

Наименование разделов и тем

(I семестр)

Задание по теме

Срок сдачи работы

01.

ВВОДНАЯ ЧАСТЬ

1.

РАЗДЕЛ I. Алгебра высказываний

1.1.

Аксиоматический метод и его понятийный аппарат

1.2.

Основные законы математической логики

К.р. № 1

2.

РАЗДЕЛ II. Алгебра матриц

2.1.

Вычисление определителей

2.2.

Вычисление обратной матрицы

3.

РАЗДЕЛ III. Решение системы линейных уравнений

3.1.

Решение системы уравнений методом подстановки

3.2.

Решение системы методом почленного сложения (вычитания) уравнений системы

3.3.

Решение системы по правилу Крамера

3.4.

Решение системы с помощью обратной матрицы

3.5.

Решение систем линейных уравнений методом Гаусса

К.р. № 2

3.6.

Несовместные системы. Системы с общим решением. Частные решения

4

РАЗДЕЛ IV. Алгебра комплексных чисел

4.1.

Понятие комплексного числа

4.2.

Алгебраическая форма комплексного числа

4.3.

Тригонометрическая форма комплексного числа

4.4.

Возведение комплексных чисел в степень

4.5.

Извлечение корней из комплексных чисел

К.р. № 3

5.

РАЗДЕЛ V. Математические формулы и графики

5.1.

Математические формулы

5.2.

Графики и свойства элементарных функций

5.3.

Построение графиков функций.

К.р. № 4

№ раздела/темы

Наименование разделов и тем

(II семестр)

Задание по теме

Срок сдачи работы

6.

РАЗДЕЛ V. Пределы функций

6.1.

Вычисление пределов

6.2.

Первый замечательный предел

6.3.

Второй замечательный предел

К.р. № 5

7.

РАЗДЕЛ VI. Производная и дифференциал

7.1.

Вычисление производных

7.2.

Производная сложной функции

7.3.

Логарифмическая производная и производная степенно-показательной функции

7.4.

Производная функции, заданной неявно

К.р. № 6

7.5.

Частные производные

7.6.

Абсолютная и относительная погрешности вычислений

7.7.

Приближённые вычисления с помощью дифференциалов функций одной и двух переменных

8.

РАЗДЕЛ VII. Интегралы.

8.1.

Неопределённый интеграл

8.2.

Определённый интеграл

8.3.

Несобственные интегралы

8.4.

Эффективные методы вычисления определенных и несобственных интегралов

К.р. № 7

ЛИТЕРАТУРА

Основной список 

  1.  Красс М. С., Чупрынов Б. П. «Математика для экономистов». – СПб., 2007.
  2.  Сборник задач по высшей математике для экономистов. / Под редакцией Ермакова В. И. – «Инфра - М», М., 2003.
  3.  http://mathprofi.ru/matematicheskie_formuly.html

Дополнительный список 

  1.  Общий курс высшей математики под ред. Ермакова. - М., 2004.
  2.  Кремер Н.Ш. «Математика». - М., 2003.
  3.  Шипачев В.С. «Высшая математика». - М., 2003.
  4.  Шипачев В.С. «Высшая математика». Задачник. - М., 2003.

PAGE  308


EMBED Equation.3  




1. Курсовая работа- Методы административного права
2. Астана медицина университеті А~ Нысан ~С~Ж 07
3. Упаковка ВНЕСЕН Госстандартом России 2 ПРИНЯТ Межгосударственным Советом по стандартизации метрологи
4. ЮРИДИЧНА АКАДЕМІЯ УКРАЇНИ ІМЕНІ ЯРОСЛАВА МУДРОГО КРИМСЬКИЙ ЮРИДИЧНИЙ ІНСТИТУТ
5. по теме- Роль и значение PR и социальной рекламы в практике социальной работы Факультет-ГО Группа
6. Научить режиссуре нельзя а научиться можно
7. Реферат- Понятие рабочего времени
8. Уметь ответить на основные вопросы раздела
9. Тема- Психология личности Цель- усвоение знаний по теме- Психология личности Задачи- Рассмотрет
10. Мы распределили его функции на всех сотрудников фирмы