Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тема выведенная из положения равновесия начинает колебаться с собственной частотой

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.11.2024

ЛАБОРАТОРНАЯ   РАБОТА   №   4 – 11

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ.

         Цель работы - изучение вынужденных колебаний в колебательном контуре под воздействием гармонически изменяющейся ЭДС и исследование зависимости амплитуды и фазы колебаний от частоты.

ПОСТАНОВКА ЗАДАЧИ

         Колебательная система, выведенная из положения равновесия, начинает колебаться с собственной частотой. Однако во многих случаях, система не просто колеблется сама по себе, а испытывает еще действие внешней, периодически изменяющейся силы, под действием которой система совершает вынужденные колебания.

  1.  Явление резонанса в колебательном контуре.

         Электрические вынужденные колебания осуществляются в колебательном контуре содержащем последовательно включенный источник ЭДС  E (t), емкость  С,  индуктивность  L и омическое сопротивление  R (рис.1).

                                                        Используя закон Ома, получим для цепи

     L                                                колебательного контура выражение    

                                  С                                = E (t) - ,                (1)

     R                                               где  IR – падение напряжения на актив -       

                            E (t)                 ном сопротивлении  R, q/C – падение на-

                      Рис. 1                      пряжения на емкости, - ЭДС самоиндукции,  E(t) – внешний источник ЭДС. Учитывая, что ЭДС изменяется по гармоническому закону   E(t) = E0 Cost, а  и   , преобразуем уравнение (1) в виде

                              E0 Cost,                                  (2)

где   - коэффициент затухания свободных колебаний в контуре,

- частота собственных колебаний контура,

- частота колебаний вынуждающей ЭДС.

         Спустя некоторое время после подключения источника ЭДС в контуре устанавливаются вынужденные колебания с постоянной амплитудой. Установившиеся вынужденные колебания заряда и силы тока описываются уравнениями (3 – 5), которые являются решением дифференциального уравнения (2).

                                            q = q0 Cos (t + 0),                                           (3)

                           .                     (4)

Амплитуда силы тока  I0 = q0  и начальная фаза   находятся по формулам

                                      ,                                        (5)                                                           

                                           .                                                 (6)

Графики зависимости  I0 = f () при различных значениях сопротивления  R , называемые резонансными кривыми колебательного контура, представлены на рис. 2.

                                                         R3  R2  R1

                  I0                                              

                                                0                                   

                                             Рис. 2

         Из формулы (5) следует, что амплитуда силы тока в контуре  I0 зависит от частоты    питающего напряжения. Эта амплитуда, как видно из (5),  будет максимальна при частоте, отвечающей условию   и называемой резонансной частотой  РЕЗ. Выражая отсюда  РЕЗ, получаем

                                      .                                                   (7)

         Таким образом, частота внешней вынуждающей ЭДС станет равной частоте собственных колебаний контура.

         Резонансная циклическая частота не зависит от сопротивления  R. Амплитуда силы тока при резонансе равна  . Амплитуда падения напряжения на конденсаторе равна амплитуде падения напряжения на индуктивности (ЭДС самоиндукции) Действительно,

,

         При  R = 0 резонансный пик (амплитуда силы тока  I0 ) уходит в бесконечность. При этом энергия постоянно вводится в систему и не рассеивается. В реальных системах сопротивление и потери энергии никогда не равны нулю, поэтому резонансный пик имеет конечную высоту.

         Сила тока в цепи и ЭДС  могут не совпадать по фазе. В каждый момент времени напряжение, приложенное извне, равно сумме напряжений на отдельных элементах контура:

                                     UR + UL + UC = E0 Cos t,                                     (8)

                       UR = IR = URo Cos (t - ),               URo = IR,                (9)

               ,         ULo = I0L,              (10)

                 ,            ,                (11)

где  URo, ULo, UCo – амплитудные значения напряжения на соответствующих элементах цепи.

         Емкость и индуктивность в цепях переменного тока обладают сопротивлением, которое называют реактивным. Реактивное сопротивление емкости (емкостное сопротивление)  ХС  и индуктивности (индуктивное сопротивление)  ХL  определяется по аналогии с омическим сопротивлением  R в законе Ома как коэффициент пропорциональности между напряжением и силой тока: для конденсатора – UCo = I0XC, для индуктивности – ULo = I0XL. Емкостное реактивное сопротивление конденсатора с повышением частоты уменьшается   , а индуктивное сопротивление – увеличивается  (XL = L).

         Сопоставление формул (4), (9), (10) и (11) показывает фазовое соотношение между силой тока и напряжением на каждом элементе контура:  UR совпадает по фазе с током,  UL опережает ток на , UC отстает от тока на .

         Наглядно представить фазовые соотношения можно методом векторных диаграмм  (рис. 3).  При этом каждое напряжение представляется в виде вектора в прямоугольной системе координат  XY. Длина вектора характеризует амплитудное значение напряжения на соответствующем элементе цепи, а направление вектора образует с осью  Х, в качестве которой выбрана ось токов, угол, равный начальной фазе колебаний.

                                       Y

                                

                                                                         

                                                                              

                                                                                                           X  

                                   I0                                     

                                            

                                          Рис. 3.

         Из прямоугольного треугольника, образованного на диаграмме векторами  ,  и , легко получить формулы (5) и (6) , а также определить импеданс  Z  (полное сопротивление) цепи с помощью соотношения

           ,

откуда

                                   .                                            (12)

Фазочастотная характеристика колебательного контура приведена на рис. 4.

  •  0 = R1  R2  R3    

                  /2  

                                                      0                              

                - /2

                                                       Рис. 4

         При резонансе, согласно (6), сдвиг фаз между силой тока и ЭДС  (рез) = 0. Если   0, то    0, то есть сила тока опережает ЭДС по фазе и тем сильнее, чем меньше   ( = - /2 при = 0). Если    0, то   0, то есть сила тока отстает по фазе от ЭДС и тем сильнее, чем больше   (  /2, при   ).

Упражнение 1. Измерение сдвига фаз.

         Для измерения сдвига фаз используется метод сложения взаимно перпендикулярных колебаний одинаковой частоты (метод фигур Лиссажу). На горизонтально отклоняющие пластины электронного осциллографа подается один синусоидальный сигнал, а на вертикально отклоняющие – другой.

         Пусть нужно измерить сдвиг фаз между двумя напряжениями  U1 и  U2  одинаковой частоты. Подадим эти напряжения на вход «Х» и «Y» осциллографа. Смещение луча по горизонтали определяется выражением

x = x0 Cos t, смещение по вертикали -  y = y0 Cos (t + ), где - сдвиг фаз между напряжениями  U1 и  U2, x0, y0 – амплитуды напряжений U1 и  U2, умноженные на коэффициенты усиления соответствующих каналов осциллографа. Исключая время t в вышеприведенных уравнениях, путем соответствующих тригонометрических преобразований получим

                             .                                     (13)

Это математическое выражение эллипса, описываемого электронным лучом на экране осциллографа (рис. 5). Ориентация эллипса относительно координатных осей  Х  и  Y  зависит как от угла  , так и от усиления каналов осциллографа.

                                              Y

                                                                  a       b               X

                                                     Рис. 5

         Из уравнения (13) следует, что измеряя отношение x/x0  или  y/y0, можно определить сдвиг фаз  .  Так при  x = 0 имеем

                     ,              .                 (14)  

Положительные и отрицательные значения   на экране осциллографа неотличимы  (эти значения отличаются друг от друга направлением движения электронного луча, описывающего эллипс).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

         В состав лабораторной установки входит кассета «Вынужденные колебания» (ФПЭ – 11/10), магазин сопротивлений  R, магазин емкостей  С, источник питания, низкочастотный генератор и осциллограф. Блок – схема установки изображена на рис. 6.

                                                                                               R

                                                                                               C    Y    

                    МС                                  МЕ

                                                                                                      X

                                                                                             PQ

                                                                                        

                  ГЗ                          220 В                  осциллограф

                                                                          «вход» «вход синхр.»          

                                                        Рис. 6

         Для возбуждения колебаний в электрический контур, состоящий из катушки индуктивности  (L = 100 5 мГн), магазина емкостей  С  и магазина сопротивлений  R, с генератора частоты подается переменное напряжение. Последовательно с элементами контура включен резистор       ( R1 = 0,75 Ом), напряжение с которого подается на вход «Y» осциллографа. Это напряжение пропорционально току в контуре и находится с ним в одной фазе. На вход «Х» осциллографа подается напряжение с клемм генератора.

 Упражнение 1. Исследование зависимости амплитуды колебаний от частоты.

  1.  Соберите схему, изображенную на рис 6, отключив сигнал на вход «Х» осциллографа (поставьте переключатель осциллографа из положения «Х» в положение “    “). Колебательный контур подключите к гнезду генератора “          “ .
  2.  Установите значение емкости  С = 0,1 – 1,0 мкФ (по указанию преподавателя) и сопротивление  R = 1 Ом
  3.  После проверки схемы преподавателем включите в сеть электронный осциллограф и звуковой генератор. Прогрейте приборы в течение 5 – 10 мин.
  4.  Определите (в домашней заготовке) по значению L = 100 мГн и заданному значению  С  циклическую резонансную частоту контура  РЕЗ  по формуле (7) и частоту  РЕЗ = /2.
  5.  Выходное напряжение генератора установите вращением ручки   

           . Установите переключатель множителя частоты  в положение 102.

  1.  Изменяя частоту звукового генератора с помощью ручки «Частота» в диапазоне около найденного значения  РЕЗ, добейтесь максимальной амплитуды колебаний. Регулируя величину усиления по вертикали, получите картину синусоидальных колебаний на экране осциллографа.
  2.  Измерьте на экране осциллографа в делениях вертикальной шкалы амплитуду колебаний напряжения на сопротивлении в контуре. Используя коэффициент усиления осциллографа  КУС  по оси  «Y», рассчитайте амплитуду колебаний  UРЕЗ в вольтах. Полученные значения  UРЕЗ  и  РЕЗ занесите в табл. 1.

Таблица   1

п/п

R = 1 Ом

R = 100 Ом

R = 200 Ом

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

,

Гц

U

,

Гц

U

,

Гц

U

дел.

В

дел.

В

дел.

В

1

2

3

16

  1.  Меняя частоту генератора вблизи РЕЗ в интервале (0,4 – 1,6) РЕЗ, провести 10 замеров амплитуды, а вдали в интервалах (0 – 0,4) РЕЗ  и (1,6 – 2) РЕЗ  по 3 замера.
  2.  Провести аналогичные измерения при других значения сопротивления R = 100 Ом и 200 Ом. Результаты измерений занести в табл. 1.
  3.  По полученным экспериментальным данным построить резонансные кривые  U = f() для трех значений сопротивления  R. Пользуясь полученными графиками, определить резонансную частоту  РЕЗ и сравнить ее с полученной теоретически.

Упражнение 2. Построение фазочастотной характеристики.

1. Соберите схему, изображенную на рис. 6. Колебательный контур подключите к гнезду генератора «          ». Подайте на вход «Х» осциллографа  напряжение с клемм звукового генератора (Поставьте переключатель осциллографа из положения  «      » в положение «Х»).

2 – 5. Аналогичны соответствующим пунктам задания 1.

6. Регулируя усиление осциллографа по оси «Y» и входное напряжение звукового генератора с помощью ручки «          », получите одинаковую величину сигнала по оси  «Х»  и  «Y». На экране появятся фигуры Лиссажу в виде эллипса (рис. 5).

7. Подбирая частоту генератора вращением ручки «Частота  Hz», добейтесь резонанса. При резонансе сдвиг фаз   = 0 и эллипс вырождается в прямую линию. Полученное значение  РЕЗ занесите в табл. 2.

Таблица 2

, Гц

1

2

3

4

   15

R = 1 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 100 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 200 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

8. Меняя частоту   по обе стороны от резонансного значения, измерьте отрезки  «а»  и  «b» в делениях  (рис. 5). Измерение проведите для 14 – 15 значений частоты звукового генератора, причем отсчет делайте с интервалом 50 Гц вблизи резонансного значения и с интервалом 100 Гц вдали от него.

9. Провести измерения по пунктам 6 – 8 при других значениях сопротивления  R = 100 Ом и 200 Ом. Результаты занести в табл. 2.

  1.  Рассчитайте по формуле (10) сдвиг фаз между током в контуре и напряжением на входе контура. Результаты занесите в табл. 2.
  2.  На основании полученных результатов постройте графики зависимости   = f () при заданных значениях сопротивления  R.

КОНТРОЛЬНЫЕ  ВОПРОСЫ

  1.  Что такое колебание? Какие колебания называются вынужденными?
  2.  Дайте понятие основных характеристик колебательного движения (амплитуда, частота, период, фаза).
  3.  Элементы электрического колебательного контура. Опишите физические процессы, происходящие в контуре. Для каких целей используется колебательный контур?
  4.  Получите дифференциальное уравнение вынужденных колебаний.
  5.  Как частота питающего напряжения влияет на величину активного, емкостного и индуктивного сопротивлений, а также импеданса колебательного контура
  6.  Нарисуйте фазочастотную характеристику колебательного контура и объясните, какой смысл имеет знак сдвига фаз? Можно ли, зная Cos , сделать вывод о том, что наблюдается в цепи резонанс или нет?

58

  1.  



1. Національні меншини на Рівненщині
2. Pulini cupn Kunth по имени С.
3. В ЛОМОНОСОВА Город Москва ГЗ МГУ ауд
4. Лабораторная работа- Экономическая теория в информационных системах
5. 1953 гг СССР понес в ВОВ колоссальные потери- людские потери- потери среди военных- 85 млн
6. БелГУ Сравнительная характеристика социальноэкономического развития ЯмалоНенецкого Автоном
7. ТЕМА 1 ПРЕДМЕТ ЛОГИКИ ЗАНЯТИЕ 1 1
8. представляет собой повторяющуюся или итеративную операцию
9. VIII 214808 від 19.10.73 Держави які беруть участь у цьому Пакті беручи до уваги що відповідно д
10. Реферат- Расчет подкрановой балки
11. Тема ДОКУМЕНТАЛЬНОЕ ОФОРМЛЕНИЕ МАРШРУТА Оформление маршрута начинается с составления маршрутного распи
12. Установка двигателя СН-6Д
13. ТЕМА- МЕХАНИЗМ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ
14. Правовые аспекты коммерческого контракта
15. Тема- Способи створення текстових документів у середовищі MS Word1
16. кезіндегі айдаудатербеліске ~арсыласу ~седі- [1525есе Автомобиль ~оз~алысын те~геру немен сипатталады[
17. Тема Технология работы с документами в современных условиях
18. Облік і аудит денної форми навчання Харків ХНЕУ 2011 Загальні питання Мето
19. Привычный способ восприятия времени - причина войн на планете
20. Семюэл Ричардсон