Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ДАЛЬНЕВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
ЮРИДИЧЕСКИЙ ИНСТИТУТ
Факультет правоведения
РЕФЕРАТ
по дисциплине: «Концепция современного естествознания»
на тему: «Репликация ДНК»
Выполнил: студент
722 группы
факультета правоведения
Рыков Виталий Витальевич
Проверил: __________________
-----------------------------------------
-----------------------------------------
Оценка: _______________
«____» _____________ 2010 г.
г. Владивосток
2010
Содержание
Введение
1. Понятие и основа репликации
2. Процесс репликации ДНК
3. Основные ферменты репликации ДНК
4. Репликация у прокариотов и эукариотов
Заключительная часть
Список использованной литературы
Введение
Вся информация о строении и функционировании любого организма содержится в закодированном виде в его генетическом материале, основу которого у подавляющего числа организмов составляет ДНК. Роль ДНК заключается в хранении и передаче генетической (наследственной) информации в живых организмах. Чтобы эта информация могла передаваться от одного поколения клеток (и организмов) к другому, необходимо её точное копирование и последующее распределение её копий между потомками. Процесс, с помощью которого создаются копии молекулы ДНК, называется репликацией. Перед тем как разделится, клетки с помощью репликации создают копию своего генома, и в результате клеточного деления в каждую дочернюю клетку переходит одна копия. Благодаря этому, генетическая информация, содержащаяся в родительской клетке, не исчезает, а сохраняется и передаётся потомкам. В случае многоклеточных организмов передача этой информации осуществляется с помощью половых клеток, образующихся в результате мейотического деления и также несущих копию генома (гаплоидного). Их слияние приводит к объединению двух родительских геномов в одной клетке (зиготе). Из неё развивается организм, клетки которого несут генетическую информацию обоих родительских организмов. Таким образом, основное значение репликации заключается в снабжении потомства генетической информацией. Для обеспечения стабильности организма и вида ДНК должна реплицироваться полностью и с очень высокой точностью, что обеспечивается функционированием определённого набора белков. Замечательной особенностью ДНК является то, что она несёт гены кодирующие эти белки, и, таким образом, информация о механизме её собственного удвоения закодирована в ней самой.
1. Понятие и основа репликации
Репликация (позднелат. replicatio — повторение, от лат. replico — обращаюсь назад, повторяю), редупликация, ауторепродукция, аутосинтез, протекающий во всех живых клетках процесс самовоспроизведения (самокопирования) нуклеиновых кислот, генов, хромосом.
Репликация ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет фермент ДНК-полимераза.
В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК) или рибонуклеиновых кислот (РНК), осуществляемый по матричному принципу. Предложенная в 1953 Дж. Уотсоном и Ф. Криком модель строения ДНК — так называемая двойная спираль — с одной стороны, объяснила, каким образом записана генетическая информация в молекуле ДНК, с другой — позволила понять и экспериментально изучать химические механизмы удвоения генетического материала. Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность Репликация Пара гуанин — цитозин стабилизируется тремя водородными связями, пара аденин — тимин — двумя, что резко снижает вероятность неправильного спаривания оснований. Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает: 1) разрыв водородных связей и расплетение нитей двойной спирали; 2) синтез на одиночных нитях комплементарных цепей. В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая — синтезированная заново (полуконсервативный механизм Репликация).
У вирусов и фагов, имеющих однонитевую ДНК, Репликация идёт особым образом. После внедрения в клетку хозяина одноцепочечной ДНК, которую называют (+)-цепью, на ней, как на матрице, синтезируется комплементарная ей (—)-цепь. На образовавшейся двухспиральной молекуле (репликативная форма) синтезируются новые одноцепочечные (+)-цепи, включающиеся в новые вирусные частицы. По такому же принципу происходит Репликация РНК-содержащих вирусов и фагов. Т. о., во всех известных случаях Репликация ДНК и РНК проходит через стадию двухцепочечных молекул.
У высших организмов — эукариотов, клетки которых содержат сформированное ядро, основную генетическую функцию несут сложно организованные структуры — хромосомы, состоящие из ДНК, РНК, белков и других веществ. В интерфазе, предшествующей делению клеток (см. Митоз, Мейоз), осуществляется Репликация ДНК и других компонентов хромосом; затем удвоенные хромосомы разъединяются и распределяются равномерно между дочерними клетками. Т. о., вся наследственная информация в относительно неизмененном виде передаётся от клетки к клетке, от поколения к поколению.
Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.
Цепи молекулы ДНК расходятся, образую репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.
Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя (1958 г.). Ранее существовали и две другие модели: «консервативная» — в результате репликации одна молекула ДНК состоит только из родительских цепей, а другая — только из дочерних цепей; «дисперсионная» — все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК).
Процесс редупликации: раскручивание спирали молекулы - отделение одной цепи от другой на части молекулы ДНК - воздействие фермента ДНК-полимеразы на молекулу - присоединение к каждой цепи ДНК комплементарных нуклеотидов - образование двух молекул ДНК из одной.
2. Процесс репликации ДНК
В процессе репликации двойная спираль ДНК, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей; при этом исходные цепи ДНК играют роль матриц. Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали, каждая из к-рых состоит из одной старой (исходной) и одной новой цепи (рис. 1). Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК, – так называемый полуконсервативный механизм репликации.
Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки началу репликации, расплетание исходного дуплекса (спирали), удержание его цепей в изолированном друг от друга состоянии, инициацию синтеза на них новых дочерних цепей, их рост (элонгацию), закручивание цепей в спираль и терминацию (окончание) синтеза. Все эти этапы репликации, протекающие с высокой скоростью и исключительной точностью, обеспечивает комплекс, состоящий более чем из 20 ферментов и белков, – так называемая ДНК-репликазная система, или реплисома. Функциональная единица репликации – репликон, представляющий собой сегмент (участок) хромосомы или внехромосомной ДНК, ограниченный точкой начала, в которой инициируется репликация, и точкой окончания, в которой репликация останавливается. Скорость репликации контролируется на стадии инициации. Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен). Частота инициации определяется взаимодействие специальных регуляторных белков с точкой начала репликации. Бактериальные хромосомы содержат один репликон: инициации в единственной точке начала репликации ведет к репликации всего генома. В каждом клеточном цикле репликация инициируется только один раз. Плазмиды и вирусы, являющиеся автономными генетическими элементами, представляют собой отдельные репликоны, способные к многократной инициации в клетке – хозяине. Эукариотичные хромосомы (хромосомы всех организмов, за исключением бактерий и синезеленых водорослей) содержат большое число репликонов, каждый из которых также однократно инициируется за один клеточный цикл.
Начиная с точки инициации, репликация осуществляется в ограниченной зоне, перемещающейся вдоль исходной спирали ДНК. Эта активная зона репликации (т.н. репликац. вилка) может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликационная вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликационные вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соотв. 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, которая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.
В ходе репликации рост цепи осуществляется благодаря взаимодействию дезоксирибонуклеозидтрифосфата с 3'-ОН концевым нуклеотидом уже построенной части ДНК; при этом отщепляется пирофосфат и образуется фосфодиэфирная связь. Рост полинуклеотидной цепи идет только с ее З'-конца, т. е. в направлении 5' : 3'. Фермент, катализирующий эту реакцию, -ДНК – полимераза.
Энергия, затрачиваемая на образование каждой новой фосфодиэфирной связи в цепи ДНК, обеспечивается расщеплением фосфатной связи между a- и b-фосфатными группами нуклеозидтрифосфата.
ДНК-полимераза имеет один центр связывания нуклеозидтрифосфата, общий для всех четырех нуклеотидов. Выбор из среды нуклеотида, основание которого комплементарно очередному основанию матрицы, протекает без ошибок, благодаря определяющему влиянию ДНК-матрицы (исходной цепи ДНК). При некоторых мутационных повреждениях структуры ДНК-полимеразы в ряде случаев происходит включение некомплементарных нуклеотидов.
В процессе репликации формальной ДНК на короткое время с вероятностью 10-4-10-5 возникают редкие таутомерные формы всех 4 азотистых оснований нуклеотидов, которые образуют неправильные пары. Высокая точность репликации (вероятность ошибок не превышает 10-9) обусловлена наличием механизмов, осуществляющих коррекцию (репарацию).
Репликационная вилка асимметрична. Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая – с перерывами. Первую называют ведущей, или лидирующей, цепью, а вторую – отстающей. Синтез второй цепи идет медленнее; хотя в целом эта цепь строится в направлении 3' : 5', каждый из ее фрагментов в отдельности наращивается в направлении 5' : 3'. Благодаря такому прерывистому механизму синтеза, репликация обеих антипараллельных цепей осуществляется с участием одного фермента-ДНК-полимеразы, катализирующего наращивание нуклеотидной цепи только в направлении 5' : 3'.
В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки (праймеры), состоящие примерно из 10 нуклеотидов, с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5' : 3' с помощью фермента РНК-праймазы. РНК-праймеры затем наращиваются дезоксинуклеотидами с 3'-конца ДНК-полимеразой, которая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5'-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки) отстающей цепи насчитывают у бактерий 1000-2000 дезоксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов.
Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. У бактерий РНК-затравка удаляется нуклеотид за нуклеотидом благодаря 5' : 3'-экзонуклеазной активности ДНК-полимеразы. При этом каждый отщепленный рибонуклеотидный мономер замещается соответствующим дезоксирибонуклеотидом (в качестве затравки используется З'-конец синтезированного на старой цепи фрагмента). Завершает весь процесс фермент ДНК-лигаза, катализирующий образование фосфодиэфирной связи между группой З'-ОН нового фрагмента ДНК и 5'-фосфатной группой предыдущего фрагмента. Образование этой связи требует затраты энергии, к-рая поставляется в ходе сопряженного гидролиза пирофосфатной связи кофермента-никотинамид-адениндинуклеотида (в бактериальных клетках) или АТФ (в животных клетках и у бактериофагов).
Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи нескольких специальных белков. Геликазы расплетают короткие участки ДНК, находящиеся непосредственно перед репликационной вилкой. На разделение каждой пары оснований расходуется энергия гидролиза двух молекул АТФ до аденозиндифосфата и фосфата. К каждой из разделившихся цепей присоединяется несколько молекул ДНК-связывающих белков, которые препятствуют образованию комплементарных пар и обратному воссоединению цепей. Благодаря этому нуклеотидные последовательности цепей ДНК оказываются доступными для репликативной системы. Другие специфические белки помогают праймазе получить доступ к матрице отстающей цепи. В результате праймаза связывается с ДНК и синтезирует РНК-затравки для фрагментов отстающей цепи. Для формирования новых спиралей не требуется ни затрат энергии, ни участия комплементарного "закручивающего" фермента.
В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q-репликацией. Кольцевые молекулы ДНК закручены сами на себя (суперспирализованы), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собственной оси. При этом возникает торсионное напряжение, которое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту функцию выполняет фермент ДНК-топоизомераза. Репликация в этом случае обычно происходит в двух направлениях, т.е. существуют две репликационные вилки. После завершения репликации появляются две двухцепочечные молекулы, которые сначала связаны друг с другом как звенья одной цепи. При их разделении одно из двух колец временно разрывается.
Альтернативный вариант репликации кольцевого репликона предполагает разрыв в одной из цепей двухспиральной молекулы ДНК. Образовавшийся при этом свободный 3'-конец ковалентно наращивается, оставаясь связанным с матрицей (второй, неразорванной цепью), а 5'-конец постепенно вытесняется новой полинуклеотидной цепью. Таким образом одна цепь разматывается и непрерывно удлиняется, а репликационная вилка скользит вокруг кольцевой матричной цепи (механизм "катящегося кольца"). По мере роста новой цепи вытесненная цепь с освободившимся 5'-концом становится линейной матрицей для синтеза новой комплементарной цепи. Этот синтез на линейной матрице продолжается до тех пор, пока не образуется дочерняя цепь ДНК, комплементарная одному обороту кольцевой матрицы, т. е. целому репликону. Таким путем с кольцевой матрицы может сходить большое число комплементарных копий. Такой механизм обнаружен у некоторых вирусов, а также в ряде клеток эукариот.
Еще одна схема репликации предполагает формирование структуры, названной D-петлей. Согласно этому механизму, сначала реплицируется только одна из цепей кольцевого репликона, тогда как вторая цепь, оставаясь интактной, вытесняется, образуя петлю. Репликация второй цепи начинается с др. стартовой точки и только после того, как реплицировалась часть первой цепи. Такой механизм репликации обнаружен, например у митохондриальных ДНК.
Репликация РНК (синтез РНК на РНК-матрице) изучена меньше. Она осуществляется только у некоторых вирусов (напр., у вирусов полиомиелита и бешенства). Фермент, катализирующий этот процесс – РНК–зависима РНК–полимераза (его называют также РНК-репликазой или РНК-синтетазой). Известно несколько типов репликации, РНК:
1. вирусы, содержащие матричные РНК, или мРНК [т. наз. (+)РНК], в результате репликации образуют комплементарную ей цепь [(-)РНК], не являющуюся мРНК, которая используется как матрица для синтеза (+)РНК;
2. вирусы, содержащие (—)РНК, в результате репликации синтезируют (+)РНК;
3. вирусы, содержащие двухцепочечную РНК [(+)PHK и (—)РНК], в результате асимметрической репликации синтезируют (+)РНК.
Гипотеза о механизме репликации сформулирована в 1953 Дж. Уотсоном и Ф. Криком, которые предположили, что две комплементарные цепи ДНК после их разделения могут выполнять функции матриц для образования на них новых цепей ДНК. В 1958 М. Мезельсон и Ф. Сталь экспериментально подтвердили такой механизм репликации.
3. Основные ферменты репликации ДНК
ДНК – полимераза
ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.
Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).
ДНК-полимеразу считают холоферментом, поскольку для нормального функционирования она требует присутствия ионов магния в качестве кофактора. В отсутствии ионов магния о ней можно говорить как об апоферментe.
ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.
ДНК – лигазы
Лигаза — фермент, катализирующий соединение двух молекул с образованием новой химической связи (лигирование). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.
Лигазы относятся к классу ферментов EC 6.
В молекулярной биологии лигазы разделяют на две большие группы — РНК-лигазы и ДНК-лигазы. ДНК-лигаза, осуществляющая репарацию ДНК
ДНК-лигазы — ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации. Они образуют фосфодиэфирные мостики между 5'-фосфорильной и 3'-гидроксильной группами соседних дезоксинуклеотидов в местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергию гидролиза пирофосфорильной связи АТФ. Один из самых распространённых коммерчески доступных ферментов — ДНК-лигаза бактериофага Т4.
ДНК – геликазы
ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.
ДНК-топоизомеразы
ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.
Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.
Праймаза
Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.
4. Репликация у прокариотов и эукариотов
Комплементарность азотистых оснований в молекуле ДНК составляет главную сущность молекулярных основ наследственности и позволяет понять, как при делении клетки синтезируются тождественные молекулы ДНК.
Перед каждым удвоением хромосом и делением клетки происходит репликация (удвоение) ДНК. Репликацией называют процесс самокопирование молекулы ДНК с соблюдением порядка чередования нуклеотидов, присущего материнским комплементарным нитям.
Спиралевидная двухцепочная ДНК сначала расплетается (раскручивается) вдоль оси, водородные связи между азотистыми основаниями рвутся и цепи расходятся. Затем, к каждой цепи пристраиваются комплементарные азотистые основания и образуются две новые дочерние молекулы ДНК. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным.
Процесс реплдикации осуществляется с помощью ферментов, которые получили название ДНК-полимераз. Участок молекулы ДНК, в котором начали расплетаться комплементные нити, называется вилкой репликации. Она образуется у прокариот в определенной генетически детерминированной точке. В молекуле ДНК у эукариот таких точек инициации репликации («стартовых точек») бывает несколько. У эукариот процесс репликации ДНК идет неодинаково. Объясняется это тем, что полинуклеотидные цепи в молекуле ДНК антипараллельны, т. е. 5'-конец одной цепи соединяется с 3'-концом другой, и наоборот. Материнская цепь, на которой синтез идет от точки старта 5'->3' в виде сплошной линии, называется лидирующей, а вторая цепь, на которой синтез идет от 3'->5' (в противоположном направлении) отдельными фрагментами получила название запаздывающей. Синтез этой цепи сложнее синтеза лидирующей цепи. Он протекает с участием фермента лигазы отдельными фрагментами. Эти фрагменты (участки кодовой нити ДНК) содержат у эукариот 100-200, а у прокариот 1000-2000 нуклеотидов. Они получили название фрагментов Оказаки, по имени открывшего их японского ученого.
Фрагмент ДНК от одной точки начала репликации до другой точки образует единицу репликации - репликон. Репликация начинается с определенной точки (локус ori) и продолжается до тех пор, пока весь репликон не будет дуплеципрован. Молекулы ДНК прокариотических клеток содержат большое число репликонов, поэтому удваение ДНК начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.
Репликация молекул ДНК у прокариот протекает несколько иначе, чем у эукариот. У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро. Так, у бактерии скорость репликации составляет 30 мкм в минуту. За минуту к нитке-матрице присоединяется около 500 нуклеотидов, у вирусов за это время - около 900 нуклеотидов. У эукариот процесс репликации протекает медленно. У них дочерняя нить удлиняется на 1,5-2,5 мкм в минуту.
ДНК всех живых существ устроен одинаково. ДНК разных видов различаются коэффициентом видоспецифичности, который представляет собой отношение молекулярной суммы А + Т к молекулярной суме Г + Ц. Видоспецифичность ДНК выражается процентом или долей в ней ГЦ-пар. Коэффициент видовой специфичности разный у разных видов, но в общем наблюдается изменение ГЦ-пар от прокариот к эукариотам, а в пределах последних - от низших к более высокоорганизованным формам.
Углеводно-фосфатный остов по всей длине во всех молекулах ДНК имеет однотипную структуру и не несет генетической информации. Наследственная информация зашифрована различной последовательностью оснований. А если последовательность оснований определяет характер белков собаки, коровы, бактерии, вируса и т. д., то соответственная наследственность может передаваться из поколения в поколение.
Таким образом, в структорной организации молекулы ДНК можно выделить первичную структуру - полинуклеотидную цепь, вторичную структуру - две комплементарные друг другу полинуклеотидные цепи, соединенные водородными связями, и третичную структуру - трехмерную спираль с определенными пространственными характеристиками.
ЗаключениеСуть репликации ДНК заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания.
Нужно отметить, что существует ряд объектов, репликация которых проходит по несколько иному механизму, чем было описано выше. Так, например, кольцевая ДНК митохондрий и хлоропластов реплицируется с образованием D-петель (сначала начинает реплицироваться одна цепь, в результате чего образуется структура в форме D, а после репликации более половины первой нити, начинает синтезироваться вторая); ряд плазмид и ДНК некоторых вирусов реплицируется по типу катящегося кольца и т.п. Однако принципиальная схема репликации для всех биологических объектов остаётся одной и той же.
Источники
1. Степт Г., Кэлиндар Р., Молекулярная генетика, пер. с англ. 1981
2. М. Сингер, П.Берг., Гены и геномы. 1998
3. Фаворова О.О., Сохранение ДНК в ряду поколений: Репликация ДНК. 1996
4. Ратнер В. А., Принципы организации и механизмы молекулярно-генетических процессов
5. http://www.wikipedia.ru